
lti

Concavity and Initialization for 
Unsupervised Dependency Parsing

Kevin Gimpel Noah A. Smith

1



lti

Unsupervised learning in NLP                 non-convex optimization
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Pearson’s r = 0.63
(strong correlation)

Dependency Model with Valence (Klein & Manning, 2004)
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Range = 20%!

Dependency Model with Valence (Klein & Manning, 2004)
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initializer 
from K&M04

Dependency Model with Valence (Klein & Manning, 2004)
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How has this been addressed?

� Scaffolding / staged training (Brown et al., 1993; 
Elman, 1993; Spitkovsky et al., 2010)

� Curriculum learning (Bengio et al., 2009)

� Deterministic annealing (Smith & Eisner, 2004),  
Structural annealing (Smith & Eisner, 2006)

� Continuation methods (Allgower & Georg, 1990)
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Example: Word Alignment
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IBM Model 1

HMM Model

IBM Model 4

Brown et al. (1993)
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Example: Word Alignment
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IBM Model 1

HMM Model

IBM Model 4

Brown et al. (1993)CONCAVE
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Except IBM Model 1 for word alignment 
(which has a concave log-likelihood function)
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IBM Model 1  (Brown et al., 1993)
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IBM Model 1  (Brown et al., 1993)
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IBM Model 1 (Brown et al., 1993)
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IBM Model 1 (Brown et al., 1993)
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alignment 
probability

translation 
probability

IBM Model 2

CONCAVE

NOT 
CONCAVE

product of parameters 
within log-sum

For concavity:

1 parameter is permitted for each atomic piece of latent structure.

No atomic piece of latent structure can affect any other piece.
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Except IBM Model 1 for word alignment 
(which has a concave log-likelihood function)

What models can we build without sacrificing concavity?
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For concavity:

1 parameter is permitted for each atomic piece of latent structure.

No atomic piece of latent structure can affect any other piece.
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For concavity:

1 parameter is permitted for each atomic piece of latent structure.

No atomic piece of latent structure can affect any other piece.

single dependency arc
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For concavity:

1 parameter is permitted for each atomic piece of latent structure.

No atomic piece of latent structure can affect any other piece.

Every dependency arc must be independent, 
so we can’t use a tree constraint

single dependency arc
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For concavity:

1 parameter is permitted for each atomic piece of latent structure.

No atomic piece of latent structure can affect any other piece.

Every dependency arc must be independent, 
so we can’t use a tree constraint

Only one parameter allowed per dependency arc

single dependency arc
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For concavity:

1 parameter is permitted for each atomic piece of latent structure.

No atomic piece of latent structure can affect any other piece.

Our Model:

Like IBM Model 1, but we generate the same sentence again, 
aligning words to the original sentence (cf. Brody, 2010)

single dependency arc
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$   Vikings came in longboats from Scandinavia in 1000 AD

$   Vikings came in longboats from Scandinavia in 1000 AD
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$   Vikings came in longboats from Scandinavia in 1000 AD

$   Vikings came in longboats from Scandinavia in 1000 AD

$   Vikings came in longboats from Scandinavia in 1000 AD
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Cycles, multiple roots, and non-projectivity
are all permitted by this model

$   Vikings came in longboats from Scandinavia in 1000 AD

$   Vikings came in longboats from Scandinavia in 1000 AD

$   Vikings came in longboats from Scandinavia in 1000 AD
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$   Vikings came in longboats from Scandinavia in 1000 AD

$   Vikings came in longboats from Scandinavia in 1000 AD

Only one parameter per dependency arc:
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$   Vikings came in longboats from Scandinavia in 1000 AD

$   Vikings came in longboats from Scandinavia in 1000 AD

Only one parameter per dependency arc:

We cannot look at other dependency arcs, but we can condition on 
(properties of) the sentence:
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$   Vikings came in longboats from Scandinavia in 1000 AD

$   Vikings came in longboats from Scandinavia in 1000 AD

We condition on direction:

(“Concave Model A”)
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$   NNPS  VBD  IN  NNS  IN  NNP  IN  CD  NN

$   NNPS  VBD  IN  NNSfrom Scandinavia in 1000 AD

We condition on direction:

(“Concave Model A”)

Note: we’ve been using words in our examples, but in our 
model we follow standard practice and use gold POS tags
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(“Concave Model A”)

Model Initializer Accuracy*

Attach Right N/A 31.7

DMV Uniform 17.6

DMV K&M 32.9

Concave Model A Uniform 25.6

*Penn Treebank 
test set, sentences 
of all lengths

WSJ10 used for 
training

We condition on direction:

$   NNPS  VBD  IN  NNS  IN  NNP  IN  CD  NN

$   NNPS  VBD  IN  NNSfrom Scandinavia in 1000 AD
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(“Concave Model A”)

Model Initializer Accuracy*

Attach Right N/A 31.7

DMV Uniform 17.6

DMV K&M 32.9

Concave Model A Uniform 25.6

*Penn Treebank 
test set, sentences 
of all lengths

WSJ10 used for 
training

We condition on direction:

$   NNPS  VBD  IN  NNS  IN  NNP  IN  CD  NN

$   NNPS  VBD  IN  NNSfrom Scandinavia in 1000 AD

Note:

IBM Model 1 is not strictly concave 
(Toutanova & Galley, 2011)



lti 37

We can also use hard constraints while preserving concavity:

The only tags that can align to $ are verbs
(Marecček & Žabokrtský, 2011; Naseem et al., 2010)

(“Concave Model B”)

$   NNPS  VBD  IN  NNS  IN  NNP  IN  CD  NN

$   NNPS  VBD  IN  NNSfrom Scandinavia in 1000 AD
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Model Initializer Accuracy*

Attach Right N/A 31.7

DMV Uniform 17.6

DMV K&M 32.9

Concave Model A Uniform 25.6

Concave Model B Uniform 28.6

*Penn Treebank 
test set, sentences 
of all lengths

WSJ10 used for 
training

$   NNPS  VBD  IN  NNS  IN  NNP  IN  CD  NN

$   NNPS  VBD  IN  NNSfrom Scandinavia in 1000 AD
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Except IBM Model 1 for word alignment 
(which has a concave log-likelihood function)

What models can we build without sacrificing concavity?

Can these concave models be useful?
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As IBM Model 1 is used to initialize other word alignment models, 
we can use our concave models to initialize the DMV
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As IBM Model 1 is used to initialize other word alignment models, 
we can use our concave models to initialize the DMV

Model Initializer Accuracy

Attach Right N/A 31.7

DMV Uniform 17.6

DMV K&M 32.9

DMV Concave Model A 34.4

DMV Concave Model B 43.0

*Penn Treebank 
test set, sentences 
of all lengths

WSJ10 used for 
training
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As IBM Model 1 is used to initialize other word alignment models, 
we can use our concave models to initialize the DMV

Model Initializer Accuracy*

DMV, trained on sentences of length ≤ 20 Concave Model B 53.1

Shared Logistic Normal (Cohen & Smith, 2009) K&M 41.4

Posterior Regularization (Gillenwater et al., 2010) K&M 53.3

LexTSG-DMV (Blunsom & Cohn, 2010) K&M 55.7

Punctuation/UnsupTags (Spitkovsky et al., 2011), 
trained on sentences of length ≤ 45

K&M’ 59.1

*Penn Treebank test set, sentences of all lengths
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Multilingual Results
(averages across 18 languages)

43

Model Initializer Avg. Accuracy* Avg. Log-Likelihood †

DMV Uniform 25.7 -15.05

DMV K&M 29.4 -14.84

DMV Concave Model A 30.9 -14.93

DMV Concave Model B 35.5 -14.45

* Sentences of all lengths from each test set

† Micro-averaged across sentences in all training sets 
(used sentences ≤ 10 words for training)



lti

Unsupervised learning in NLP                 non-convex optimization

Except IBM Model 1 for word alignment 
(which has a concave log-likelihood function)

What models can we build without sacrificing concavity?

Can these concave models be useful?

Like word alignment, we can use simple, concave models to initialize 
more complex models for grammar induction
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Thanks!


