TTIC 31190:
Natural Language Processing

Kevin Gimpel
Spring 2018

Lecture 12:

Sequence Labeling and
Structured Prediction



Project Proposal

* project proposal due in one week



Midterm

* midterm on Wednesday, May 16t

» we’ll give you the formulas/definitions you
will need



Roadmap

words, morphology, lexical semantics

text classification

language modeling

word embeddings
recurrent/recursive/convolutional networks in NLP
sequence labeling, HMMs, dynamic programming
syntax and syntactic parsing

semantics, compositionality, semantic parsing

machine translation and other NLP tasks



Sequence Labeling Tasks in NLP

Part-of-Speech Tagging

proper proper

determiner verb (past) prep. noun noun poss. adj. noun

Some questioned if Tim Cook ’s first product
proper

modal verb det. adjective noun prep. nhoun punc.

would be a breakaway hit for Apple

Named Entity Recognition

O @) O B-PERSON I-PERSON O @) O
Some questioned if Tim Cook ’s first product
o) 0 o) o) O O B-ORGANIZATION O

would be a breakaway hit for Apple



Penn

Treebank
tag set

Tag  Description Example Tag Description Example
CC coordin. conjunction and, but, or SYM symbol +,%, &
CD cardinal number one, two TO  “to” to

DT determiner a, the UH interjection ah, oops
EX existential ‘there’ there VB  verb base form eat

FW  foreign word mea culpa VBD verb past tense ate

IN preposition/sub-conj of, in, by VBG verb gerund eating

JJ adjective yellow VBN verb past participle eaten

JJR  adj., comparative bigger VBP verb non-3sg pres eat

JJS adj., superlative wildest VBZ verb 3sg pres eats

LS list item marker 1, 2, One WDT wh-determiner which, that
MD  modal can, should @ WP  wh-pronoun what, who
NN  noun, sing. ormass [lama WP$ possessive wh- whose
NNS noun, plural llamas WRB wh-adverb how, where
NNP proper noun, sing. IBM $ dollar sign $

NNPS proper noun, plural  Carolinas # pound sign #

PDT predeterminer all, both “ left quote “or“
POS  possessive ending ’s ”? right quote “or”
PRP  personal pronoun I, you, he ( left parenthesis LG <
PRP$ possessive pronoun  your, one’s ) right parenthesis ~ 1,), }, >
RB adverb quickly, never comma ,

RBR adverb, comparative faster sentence-final punc . ! ?

RBS adverb, superlative  fastest mid-sentence punc : ;... —-
RP particle up, off



Part-of-Speech

* open-class:
— nouns, verbs, adjectives, adverbs

— “open” because new words in these categories are
often created

* closed-class:
— function words like determiners and prepositions
— new function words rarely catch on

— (though new forms/variants of function words do
appear, especially in “conversational text”)



POS Ambiguity

Types: WSJ Brown
Unambiguous (1 tag) 44,432 (86%) 45,799 (85%)
Ambiguous  (2+ tags) 7,025 (14%) 8,050 (15%)

Tokens:

Unambiguous (1 tag) 577,421 (45%) 384,349 (33%)
Ambiguous  (2+ tags) 711,780 (55%) 786,646 (67%)

13701 N UI¥] The amount of tag ambiguity for word types in the Brown and WSJ corpora,
from the Treebank-3 (45-tag) tagging. These statistics include punctuation as words, and
assume words are kept in their original case.

* most word types have only one tag
— frequent word types have more tags

— rare words are often nouns or verbs



Universal Tag Set

* contains 12 tags:

— noun, verb, adjective, adverb, pronoun,
determiner, adposition, numeral, conjunction,
particle, punctuation, other

sentence: The oboist Heinz Holliger has taken a hard line about the problems .

original: DT NN NNP NNP vBz VBN DT JJ NN IN DT NNS
universal: DET NOUN NOUN NOUN VERB VERB DET ADJ NOUN ADP DET NOUN

Figure 1: Example English sentence with its language specific and corresponding universal POS tags.

Petrov, Das, McDonald (2011)



Feed-Forward Networks for POS Tagging

* feed-forward networks are OK for tagging

* they tend to work best with very small
contexts (e.g., 1 word to left & right)

e can also use convolutional networks defined
on a window centered on the target word



RNNs for Part-of-Speech Tagging

car ...

the
DT

IN NN ...



RNN Taggers

* RNN POS taggers are simple and effective

* most common is to use some sort of
bidirectional RNN, like a BiLSTM or BiGRU



RNN Taggers

* RNN taggers are not structured predictors

* yes, a structure is being predicted, but
predictions for neighboring words are
independent!



Sequence Labeling as Structured Prediction



Modeling, Inference, Learning in Structured Prediction

inference: solve argmax

modeling: define score function

N

v

classify(x, w) = argmax score(x,y, w)

Yy

learning: choose w

15




Modeling, Inference, Learning in Structured Prediction

|mode|ing: define score function |

v

classify(x, w) = argmax score(x, y, w)
Yy

* Modeling: How do we assign a score to an
(x,y) pair using parameters w?

16



Modeling, Inference, Learning in Structured Prediction

inference: solve argmax |mode|ing: define score function |

N ¥

classify(x, w) = argmax score(x, y, w)
Yy

* Inference: How do we efficiently search over
the space of all outputs?

17



Modeling, Inference, Learning in Structured Prediction

inference: solve argmax

modeling: define score function

N

v

classify(x, w) = argmax score(x, y, w)

Yy

learning: choose w

* Learning: How do we choose the weights w?

18




Learning in Structured Prediction

classify(x, w) = argmax score(x, y, w)
Yy

|Iearning: choose w |

* |learning in structured prediction is similar to
learning in multi-class classification

e we can use the same loss functions



Loss Subgradients for Linear Models

* perceptron loss:

lossperc (X, y, w szfz x,y) + maXszfz x,y')

e subderivative for a single parameter:

Olossperc (T, y, W)

D, = —fi(z,y) + f;(z, classify(x, w))



Loss Subgradients for Linear Models

* hinge loss:

losshmge r,Y,w szfz r y -+ max <Z wifi(way,) + COSt(Z/:@))

y' el

e subderivative for a single parameter:

Olosshinge (T, Y, W)
8wj

= —fi(x,y) + fj(x, costClassify(x,y, w))



Modeling, Inference, Learning in Structured Prediction

inference: solve argmax

|mode|ing: define score function |

N

v

classify(x, w) = argmax score(x, y, w)

Yy

learning: choose w

* for learning, we can use the same loss functions

* but learning requires inference (classify/costClassify)
* inference becomes much more difficult in the

structured setting

22



Applications of our Classifier Framework so far

task input (x) output (y) output space ( /) size of [°
pre-defined, small
text a sentence gold standard label set (e.g., 2-10

classification

label for x

{positive, negative})




Applications of our Classifier Framework so far

task input (x) output (y) output space ( /) size of [°
-defi Il
text gold standard pre-defined, sma
e s a sentence label set (e.g., 2-10
classification label for x . :
{positive, negative})
instance of a re-defined sense
word sense particular word | gold standard pinventory from 530
disambiguation (e.i.; ?g:,?e)\xlth word sense of x WordNet for bass
learning skip- . a word in the
instance of a :
gram word word in a corpus context of x in vocabulary | V|
embeddings P a corpus
Art-of-speech gold standard all possible part-of-
P P a sentence part-of-speech | speech tag sequences |P| 1]

tagging

tags for x

with same length as x




Applications of our Classifier Framework so far

task input (x) output (y) output space ( /) size of [°

text gold standard pre-defined, small

e L a sentence label set (e.g., 2-10
classification

label for x

{positive, negative})

word sense
disambiguation

instance of a
particular word
(e.g., bass

its cont

learning skip-
gram word
embeddings

instance
word in a ¢

gold standard

pre-defined sense

exponential in size of input!

“structured prediction”

part-of-speech
tagging

a sentence

gold standard
part-of-speech
tags for x

all possible part-of-
speech tag sequences
with same length as x

25



Inference for Text Classification

classify (x, w) = argmax score(ax, y, w)
ye{positive,negative}

e trivial (loop over labels)



Inference for Structured Prediction

classify(x, w) = argmax score(x, y, w)
Y

* how do we efficiently search over the space of all
structured outputs?

* this space may have size exponential in the size of
the input, or be unbounded



* complexity of inference is closely linked to the
score function



Feature Locality

feature locality: how “big” are your features?

we need to be mindful of this to enable efficient
inference

features can be arbitrarily big in terms of the input

but features cannot be arbitrarily big in terms of
the output!



Features for Part-of-Speech Tagging
are these features big or small?

feature big or small?

feature that counts instances of “the” in the input
sentence, along with checking current tag

feature that returns square root of counts of
am/is/was/were, along with checking current tag

feature that counts “verb verb” sequences

feature that counts “determiner noun
verb verb” sequences

feature that returns 1 if and only if there are 5
nouns in a sentence

feature that returns the ratio of nouns to verbs

30



Features for Part-of-Speech Tagging
are these features big or small?

feature big or small?

feature that counts instances of “the” in the input small
sentence, along with checking current tag
feature that returns square root of counts of
: : : small
am/is/was/were, along with checking current tag
feature that counts “verb verb” sequences pretty small
feature that counts “determiner noun .
” pretty blgI
verb verb” sequences
feature that returns 1 if and only if there are 5 big, but we can
nouns in a sentence design specialized
algorithms to handle
feature that returns the ratio of nouns to verbs them if they're the
only big features

31



Features for POS Tagging

* when designing features for structured
prediction, focus on “small” features

 when considering larger features, start small

— tag bigrams work well and are pretty efficient
— tag trigrams are potentially powerful, but slow
— what’s another problem with tag trigrams?

* remember: you can always define features

based on the entire input... these are always
“small”



Hidden Markov Models

* simple, useful, well-known model for sequence
labeling: Hidden Markov Model (HMM)

* HMMs are used in NLP, speech processing,
computational biology, and other areas

e good starting point for learning about graphical
models

33



Markov Assumption

* simplifying assumption in
language modeling:

Andrei Markov

P(the |its water 1s so transparent that) = P(the | that)

* Or maybe:

P(the l1ts water 1s so transparent that) = P(the | transparent that)

J&M/SLP3



Hidden Markov Models

* n-gram language models define a probability
distribution over word sequences x

« HMMs define a joint probability distribution
over input sequences x and output sequences y

||

p(way) — Hp(xz ’ L1y-eey Li—1,Y1, ,yz)p(yz ’ L1y.-e9 Li—1,Y1, '°°7yi—1)
1=1

* conditional independence assumptions
(“Markov assumption”) are used to factorize
this joint distribution into small terms

*for now, we are omitting stopping probabilities for clarity



Independence

* Independence: two random variables X and Y are
independent if:

P X=2Y=y)=PX =2)P(Y =y)

(or P(x,y) = P(x)P(y))
for all values x and y

we writethisas: X 1Y

36



Independence and Conditional Independence

* Independence: two random variables X and Y are
independent if:

P X=z,Y=y)=PX =x)P(Y =y)
(o P(x,y) = P(x)P(y)) X1y

for all values x and y

* Conditional Independence: two random variables X

and Y are conditionally independent given a third
variable Z if

P,y |2)=Px|2)P(y]|z2)
for all values of x, y, and z X1Y | Z
(or P(z|y,2)=P(z|=z))

37



* simplifying assumption:

Markov Assumption

Andrei Markov

P(the l1ts water 1s so transparent that) = P(the | that)

* Or maybe:

P(the l1ts water 1s so transparent that) = P(the | transparent that)

Wi

Wt—37 Wt—47 ooy Wl ‘ Wt—17 Wt—2

J&M/SLP3



Random Variables

e |let’s define random variables for observations:
— observation variable at time step t: X,

— its possible values: words in vocabulary V

* and we’ll define one “hidden” variable for
each observation:
— hidden variable at time t: Y}
— its possible values: discrete symbols in some set
— for now, think of the set of possible POS tags



Conditional Independence Assumptions of HMMs

* two Y’s are conditionally independent given the Y’s
between them:

Yioi LYy | Y,

e an X at position t is conditionally independent of
other Y’s given the Y at position t:

X; LY, | Y



Graphical Model for an HMM

(for a sequence of length 4)

a graphical model is a graph in which:

each node corresponds to a random variable

each directed edge corresponds to a conditional probability distribution
of the target node given the source node

conditional independence statements among random variables are
encoded by the edge structure



Graphical Model for an HMM

(for a sequence of length 4)

conditional independence statements among random
variables are encoded by the edge structure:

Yioi LY | Y
X: 1Y 1| Y,



Graphical Model for an HMM

(for a sequence of length 4)

YiilYi | Y X lY, 0|V

||
p(ﬂ?,y) — Hp(xz | L1y-eey Li—15Y1, 7yz)p(yz ‘ L1y--0y Li—15Y1, °"7yi—1)
1=1
||
pw(®@,y) = | [ P~ Wi | yie1)pn(zi | i)
1=1

*for now, we are omitting stopping probabilities for clarity



Graphical Model for an HMM

(for a sequence of length 4)

conditional independence statements encoded by edge
structure > we only have to worry about local distributions:

transition parameters: D.- (yz ‘ ng—1)

emission parameters: Pn (wz ’ yz)

||

Pw (T, y) = pr(yi | Yi—1)pn(zi | yi)



Graphical Model for an HMM

(for a sequence of length 4)

||

pw(way) — Hp'r(yi ‘ yi—l)pn(wi ‘ y’b)
=1

transition parameters: D+ (yz ‘ yi—l)

emission parameters: Pn (:13@ | yz)



Important: Stopping Probabilities
||

P (T, Y) = HpT(yz- i1 )P (T | yi)

i ||

puw (@, y) = pr(</s> | yz)) | [ pr(vi | vi1)pn (@i | vi)

1=1
We also assume: Yo =— <S>
special
end-of-sequence \
label special
start-of-sequence
label

why does this matter?

46



HMMs for Word Clustering
(Brown et al., 1992)

each y, € L isaclusterID
so, label spaceis £ = {1,2,...,100}



HMMs for Part-of-Speech Tagging

each y, € L is a part-of-speech tag
so, label space is £ = {noun, verb, ...}

what parameters need to be learned?

transition parameters: D+ (yz ‘ y¢_1)

emission parameters: Dy, (337, ‘ yz)



How should we learn the HMM parameters?

transition parameters: D+ (y@ ’ yq;_1) p+(verb | noun)
p+(verb | adjective)

emission parameters: D ($Z | yz) pn(fOT ’ Verb)
pn(walk | verb)



Supervised HMMs

* given a dataset of input sequences and annotated

OUtpUtS: proper proper prepo-
noun noun sition

* to estimate transition/emission distributions, use
maximum likelihood estimation (count and normalize):

count(y’ y) (2] ) < count(y, )
count(y’) Pl 1)

/ Z
pry[y) - count(y)

count(noun verb) count(verb, walk)

pr(verb | noun) <

pn(walk | verb) <

count(noun) count(verb)



Estimates of Tag Transition Probabilities

proper modal infinitive adjective noun adverb determiner

noun verb verb

NNP MD VB JJ NN RB DT
<s > 0.2767 0.0006 0.0031 0.0453 0.0449 0.0510 0.2026
NNP 0.3777 0.0110 0.0009 0.0084 0.0584 0.0090 0.0025
MD 0.0008 0.0002 0.7968 0.0005 0.0008 0.1698 0.0041
VB 0.0322 0.0005 0.0050 0.0837 0.0615 0.0514 0.2231
JJ 0.0366 0.0004 0.0001 0.0733 0.4509 0.0036 0.0036
NN 0.0096 0.0176 0.0014 0.0086 0.1216 0.0177 0.0068
RB 0.0068 0.0102 0.1011 0.1012 0.0120 0.0728 0.0479
DT 0.1147 0.0021 0.0002 0.2157 0.4744 0.0102 0.0017

1DTul A EY  The A transition probabilities P(#;(t;—1 ) computed from the WSJ corpus without
smoothing. Rows are labeled with the conditioning event; thus P(VB|MD) is 0.7968.

count(y’ y)

/ Vi
p‘T(y ‘ Y ) A COU_Ilt(y/)



Estimates of Emission Probabilities

Janet will back the bill
NNP 0.000032 0 0 0.000048 O
MD 0 0.308431 0O 0 0
VB 0 0.000028 0.000672 0 0.000028
JJ 0 0 0.000340 0.000097 O
NN 0 0.000200 0.000223 0.000006 0.002337
RB 0 0 0.010446 O 0
DT 0 0 0 0.506099 O

10Ty BN Observation likelihoods B computed from the WSJ corpus without smoothing.

count(y, x)

Pn( | Y) < count(y)



Inference in HMMs

classify(x, w) = argmax pq (T, y)
Y

||

= argmax pr(</s> | Yz|) Hpr(yi | Yio1)Pn(i | Yi)
Yy i=1

* since the output is a sequence, this argmax
requires iterating over an exponentially-large set

e we can use dynamic programming (DP) to solve
these problems exactly

 for HMMs (and other sequence models), the
algorithm for solving this is the Viterbi algorithm

53



Dynamic Programming (DP)

* what is dynamic programming?
— a family of algorithms that break problems into smaller
pieces and reuse solutions for those pieces

— only applicable when the problem has certain properties
(optimal substructure and overlapping sub-problems)

* we can often use DP to iterate over exponentially-
large output spaces in polynomial time

e we focus on a particular type of DP algorithm:
memoization

54



Viterbi Algorithm

* recursive equations + memoization:

base case:
returns probability of sequence starting with label y for first word

\

V(1Ly) =pylr1|y) prly | <s>)

Vi(m,y) = max ( pp(zm | y) p-(y | y) V(m —1,9"))

f y' el

recursive case:
computes probability of max-probability label
sequence that ends with label y at position m

final value isin: goal(x) = max (pr(</s>|y)V(z|,y"))
y'e

55



Example:

Janet will back the bill

proper modal infinitive determiner noun
noun verb verb

56



Janet will  back the  bill
proper modal infinitive  determiner noun
noun verb verb

NNP MD VB JJ NN RB DT
<5 > 0.2767 0.0006 0.0031 0.0453 0.0449 0.0510 0.2026
NNP 0.3777 0.0110 0.0009 0.0084 0.0584 0.0090 0.0025
MD 0.0008 0.0002 0.7968 0.0005 0.0008 0.1698 0.0041
VB 0.0322  0.0005 0.0050 0.0837 0.0615 0.0514 0.2231
JJ 0.0366 0.0004 0.0001 0.0733 0.4509 0.0036 0.0036
NN 0.0096 0.0176 0.0014 0.0086 0.1216 0.0177 0.0068
RB 0.0068 0.0102 0.1011 0.1012 0.0120 0.0728 0.0479
DT 0.1147 0.0021 0.0002 0.2157 0.4744 0.0102 0.0017

Janet will back the bill

NNP 0.000032 0O 0 0.000048 0O
MD 0 0.308431 O 0 0
VB 0 0.000028 0.000672 0 0.000028
JJ 0 0 0.000340 0.000097 0O
NN 0 0.000200 0.000223 0.000006 0.002337
RB 0) 0 0.010446 O 0
DT 0 0 0 0.506099 0




d ! { end 3 { end 3 end 3
q iend ot S o o
end '©nd : .
vo(7)
97 (DT
o v,(6) v3(6)=
6 (RB) max *.0104
N e\
&L
Vo(5)= by V3(5)=
45 (NN max *.0002 * P(NNINN) 7 o v
=.0000000001 | 000223
2 v4(4)=. V3(4)=
9 4 3\6\'02 —7| 045%0=0 max *.00034
T o )
v43)= 3)=
1 v3(3)
q o
3 (VB PNB&%B\ .00310x0 max * .00067
/ y G 1
G (MD | JoaP2 0 |
] P '00060"0: 0000002772 | |
|
et I
7 - |
I
.S o v,(1) I
TS 2
p(uNPlstard) | .28 000032 Q‘io%& /) !
* S v /
- 28 =.000009 &, /
D : / R / | —
/ AREN 4 emm e - 7
RAVEN ', backtrace,
- e  start ; \ s start | start |  start J , start |
~ backtrace ’ \ ba/cktrace o S
Janet will back the bill
o, 0, 05 0, 05

\/




Viterbi Algorithm

* space and time complexity?
* can be read off from the recursive equations:

space complexity:
size of memoization table, which is # of unique indices of recursive equations

length of number
sentence of labels

\/

maX(pn(SL‘m ) p-(y | y) V(im—1,9"))

so, space complexity is O(| x| |L]|)

59



Viterbi Algorithm

e space and time complexity?
e can be read off from the recursive equations:

time complexity:
size of memoization table * complexity of computing each entry

length of number " each entry requires
sentence of labels iterating through the labels

\/

= max ( pn(@m | y) pr(y | y) V(m = 1.9))

so, time complexity is O(|x]| |L] |L]) =O(|x] |L]|?)

60



Linear Sequence Models

* we can generalize HMMs and talk about linear
models for scoring label sequences in our
classifier framework

e but first, how do we know that the HMM
scoring function is a linear model?



HMM as a Linear Model?

||

HMM: Doy (T, Y) = Dr(</ 5> | Y|a|) Hp‘r(yi | Yi—1)pn (i | Yi)
i=1

linear model: SCOl”e(CC, Y, W) = WTf(w, y) — Z w’&f@(ma y)
Pw (T, y) o exp{score(z,y, W)}

* what are the feature templates and weights?



HMM as a Linear Model

||

HMM: Doy (T, Y) = pr(</s> | y|w|) Hpr(yi | Yi—1)pn (i | Yi)
i=1

linear model: SCOI‘e(.’B, vy, W) = WTf($, y) — Z wzfz("Ba y)

feature templates and weights:

fT(y’,y”)(way) — ZM(yz—l — y/) N (y’b — y//)] W (y! y'") = logp‘r (y,/ ‘ y/)

1=1

fn(y’,a:’)(wa y) — ZH[(yZ — y,) A\ (QUZ — :U/)] Wy (y",z") = lngn(QZ, | y,)
1=1



Linear Sequence Models

* 50, an HMM is:

— a linear sequence model

— with particular features on label transitions and label-
observation emissions

— and uses maximum likelihood estimation (count &
normalize) for learning

* but we could use any feature functions we like, and
use any of our loss functions for learning!



(Chain) Conditional Random Fields

Conditional Random Fields: Probabilistic Models
for Segmenting and Labeling Sequence Data

John Lafferty ' LAFFERTY@CS.CMU.EDU
Andrew McCallum*T MCCALLUM@WHIZBANG.COM
Fernando Pereira*? FPEREIRA(@WHIZBANG.COM

*WhizBang! Labs—Research, 4616 Henry Street, Pittsburgh, PA 15213 USA
fSchool of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 USA
tDepartment of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104 USA

Abstract mize the joint likelihood of training examples. To define
a joint probability over observation and label sequences,
a generative model needs to enumerate all possible ob-
servation sequences, typically requiring a representation
in which observations are task-appropriate atomic entities,
such as words or nucleotides. In particular, it is not practi-
cal to represent multiple interacting features or long-range
dependencies of the observations, since the inference prob-
lem for such models is intractable.

We present conditional random fields, a frame-
work for building probabilistic models to seg-
ment and label sequence data. Conditional ran-
dom fields offer several advantages over hid-
den Markov models and stochastic grammars
for such tasks, including the ability to relax
strong independence assumptions made in those
models. Conditional random fields also avoid
a fundamental limitation of maximum entropy This difficulty is one of the main motivations for looking at
Markov models (MEMMs) and other discrimi- conditional models as an alternative. A conditional model

65




(Chain) Conditional Random Fields

classify(ax, w) = argmax score(x,y, w)
d

score(x, Yy, w) = wa(a;, Y) = sz‘fi(way)

linear sequence model
arbitrary features of input are permitted
test-time inference uses Viterbi Algorithm

learning done by minimizing log loss (DP
algorithms used to compute gradients)



Max-Margin Markov Networks

Max-Margin Markov Networks

Ben Taskar Carlos Guestrin Daphne Koller
{ btaskar,guestrin, koller } @cs.stanford.edu
Stanford University

Abstract

In typical classification tasks, we seek a function which assigns a label to a sin-
gle object. Kernel-based approaches, such as support vector machines (SVMs),
which maximize the margin of confidence of the classifier, are the method of
choice for many such tasks. Their popularity stems both from the ability to
use high-dimensional feature spaces, and from their strong theoretical guaran-
tees. However, many real-world tasks involve sequential, spatial, or structured
data, where multiple labels must be assigned. Existing kernel-based methods ig-
nore structure in the problem, assigning labels independently to each object, los-
ing much useful information. Conversely, probabilistic graphical models, such
as Markov networks, can represent correlations between labels, by exploiting
problem structure, but cannot handle high-dimensional feature spaces, and lack
strong theoretical generalization guarantees. In this paper, we present a new
framework that combines the advantages of both approaches: Maximum mar-
gin Markov (M®) networks incorporate both kernels, which efficiently deal with
high-dimensional features, and the ability to capture correlations in structured
data. We present an efficient algorithm for learning M® networks based on a

67



Maximum-Margin Markov Networks

classify(ax, w) = argmax score(x,y, w)
d

score(x, Yy, w) = wa(a;, Y) = sz‘fi(way)

linear sequence model
arbitrary features of input are permitted
test-time inference uses Viterbi Algorithm

learning done by minimizing hinge loss (DP
algorithm used to compute subgradients)



Feature Locality

e features can be arbitrarily big in terms of the
input sequence, but not output sequence

e the features in HMMs are small in both the

input and output sequences (only two pieces
at a time)

e features in (chain) CRFs and max-margin
Markov networks:

— small in output sequence (<= 2 labels at a time)
— but can be large in input sequence



 why do HMMs use such small features of the
input sequence?

* what benefit does this give us?

— HMM parameters can be estimated with closed-
form via MLE (count & normalize)

— for CRFs/M3Ns, we need to do inference during
training



