TTIC 31190:
Natural Language Processing

Kevin Gimpel
Spring 2018

Lecture 15:
Review



Roadmap

words, morphology, lexical semantics

text classification

simple neural methods for NLP

language modeling and word embeddings
recurrent/recursive/convolutional networks in NLP
sequence labeling, HMMs, dynamic programming
syntax and syntactic parsing

semantics, compositionality, semantic parsing

machine translation and other NLP tasks



Why is NLP hard?

* ambiguity and variability of linguistic expression:

— variability: many forms can mean the same thing

— ambiguity: one form can mean many things

* many different kinds of variability and ambiguity

e each NLP task must address distinct kinds



Sample Question

Spammers often use modifications of certain
words to avoid being flagged. For example:

F'.REE

d!et

coupOn
This poses challenges for building spam filters.

1. Is this challenge caused by ambiguity (A) or
variability (V) of natural language?



Sample Question

Spammers often use modifications of certain
words to avoid being flagged. For example:

F'.REE

d!et

coupOn
This poses challenges for building spam filters.

1. Is this challenge caused by ambiguity (A) or
variability (V) of natural language? V



Sample Question

Spammers often use modifications of certain
words to avoid being flagged. For example:

F'.REE
d!et
coupOn
This poses challenges for building spam filters.

2. If you noticed spammers starting to do this, how
might you change your system to deal with it?



Sample Question

2. If you noticed spammers starting to do this, how
might you change your system to deal with it?

you could train word clusters or embeddings on
data that contains both spam and non-spam

you could also use features based on subword
structure, like character n-grams



Roadmap

words, morphology, lexical semantics

text classification

simple neural methods for NLP

language modeling and word embeddings
recurrent/recursive/convolutional networks in NLP
sequence labeling, HMMs, dynamic programming
syntax and syntactic parsing

semantics, compositionality, semantic parsing

machine translation and other NLP tasks



Types and Tokens

once text has been tokenized, let’s count the words
types: entries in the vocabulary
tokens: instances of types in a corpus

example sentence: If they want to go, they should go .
— how many types? 8
— how many tokens? 10

type/token ratio: useful statistic of a corpus (here, 0.8)
as we add data, what happens to the type-token ratio?



Morphology

* morphemes:
— the small meaningful units that make up words
— stems: core meaning-bearing units
— affixes: bits and pieces that adhere to stems
e often with grammatical functions

J&M/SLP3



Kinds of Word Formation

* inflection: modifying word with affix to change
grammatical function (tense, number, etc.)

— result is “different form of same word”

— examples: book > books, walk > walked

* derivation: adding affix to stem to create a
new word

— examples: great > greatly, great > greatness

* compounding: combining two stems
— examples: lawsuit, keyboard, bookcase



Morphology in NLP

e two common tasks:
— lemmatization

— stemming



Sample Question

* Which task would stemming/lemmatization
be more helpful for: word sense
disambiguation (WSD) or part-of-speech (POS)
tagging? Why?



Sample Question

* Which task would stemming/lemmatization
be more helpful for: word sense
disambiguation (WSD) or part-of-speech (POS)
tagging? Why?

e WSD

— WSD is more focused on semantics, which is
mostly preserved by stemming/lemmatization

— POS tagging can benefit much more from
morphological indicators (to differentiate tenses
of verbs, number of nouns, etc.)

14



Many ways to get word vectors

some based on counting, some based on prediction/learning
some sparse, some dense

some have interpretable dimensions, some don’t
shared ideas:
model meaning of a word by “embedding” it in a vector space

these word vectors are also called “embeddings”

contrast: in traditional NLP, word meaning is represented by a
vocabulary index (“word #545”)

J&M/SLP3



Context words of “cooked” with highest PMIs

O

J J J -J -J 0O 0O 0O 0O 0O O O O O O 0

. 30533
.88418
.063397
.019406
.56584
.50945
.4931

. 33137
.29489
.25088
.20831
.15708
.08345
. 9532

.94043
. 78435
. 7563

. 14444

beef
shrimp
potatoes
ate
dishes
eaten
beans
texture
vegetables
soda

meat
sauce
consuming
culsine
raw

curry
Jjulce
vegetable

< J J J J J J JJJJJJ 9939394

.06406
.56264
.56167
.45315
.43874
.43715
.41193
.39793
.39175
.34773
.33211
.32253
.29057
.28626
277912
27769
.27485
.25049

chili
rice
soup
flour
steamed
crushed
meals
digest
rockies
ramsay
honey
toxicity
cared
tomatoes
boilling
dal
citrus
doncaster



Word Sense Ambiguity

* many words have multiple meanings



* two ways to categorize the patterns of
multiple meanings of words:

— homonymy: the multiple meanings are unrelated
(coincidental?)

— polysemy: the multiple meanings are related

18



Homonymy or Polysemy?

daXes

an edge tool with a heavy a fixed reference line for

bladed head mounted the measurement of
across a handle coordinates
Yy
6%
49
2 ®
<9 - —|—e %
2 4 6

19



Homonymy or Polysemy?

daXes

an imaginary line about
which a body rotates

a fixed reference line for the
measurement of coordinates

20



Synonyms

e words with same meaning in some or all
contexts:
— big / large
— water / H,0

* two lexemes are synonyms if they can be
substituted for each other in all situations

J&M/SLP3



Antonyms

* senses that are opposites with respect to one feature of
meaning

e otherwise, they are very similar!

dark/light short/long fast/slow rise/fall
hot/cold up/down in/out

J&M/SLP3



Sample Question

Word embeddings often have high similarity for
antonym pairs, e.g., rise/fall, up/down,
increase/decrease.

Suppose you are developing an NLP system for a
financial application and you want to avoid this.

How would you learn word embeddings that
avoid having high similarity for antonyms?



Senses of bass in WordNet

Noun
e S: (n) bass (the lowest part of the musical range)
e S: (n) bass, bass part (the lowest part in polyphonic music)
e S: (n) bass, basso (an adult male singer with the lowest voice)
e S: (n) sea bass, bass (the lean flesh of a saltwater fish of the family
Serranidae)
e S: (n) freshwater bass, bass (any of various North American freshwater fish
with lean flesh (espeually of the genus Micropterus))
e S: (n) bass, bass voice, basso (the lowest adult male singing voice)
e S: (n) bass (the member with the lowest range of a family of musical
instruments)
e S: (n) bass (nontechnical name for any of numerous edible marine and
freshwater spiny-finned fishes)
Adjective
e S: (adj) bass, deep (having or denoting a low vocal or instrumental range) ‘a
deep voice"; "a bass voice is lower than a baritone voice"; "a bass clarinet”

J&M/SLP3



Word Sense Disambiguation (WSD)

* given:
— a word in context
— a fixed inventory of potential word senses

 decide which sense of the word this is

* why? machine translation, question answering,
sentiment analysis, text-to-speech

J&M/SLP3



WordNet Hypernym Hierarchy for bass

(n) bass, basso (an adult male singer with the lowest voice)
o direct hypernym | inherited hypernym | sister term
e S: (n) singer, vocalist, vocalizer, vocaliser (a person who sings)
e S: (n) musician, instrumentalist, player (someone who plays a musical instrument (as a profession))
e S: (n) performer, performing artist (an entertainer who performs a dramatic or musical work for an audi
e S: (n) entertainer (a person who tries to please or amuse)
¢ S: (n) person, individual, someone, somebody, mortal, soul (a2 human being) "there was too m
person to do"
¢ S: (n) organism, being (a living thing that has (or can develop) the ability to act or functi
independently)
¢ S: (n) living thing, animate thing (a living (or once living) entity)
e S: (n) whole, unit (an assemblage of parts that is regarded as a single entity) “
part compared to the whole?"; "the team is a unit"
¢ S: (n) object, physical object (a tangible and visible entity; an entity that «
shadow) “it was full of rackets, balls and other objects”
* S: (n) physical entity (an entity that has physical existence)
¢ S: (n) entity (that which is perceived or known or inferred to h:
distinct existence (living or nonliving))

J&M/SLP3



Supersenses: top level hypernyms in hierarchy

(counts from Schneider & Smith’s Streusel corpus)

Noun
GROUP 1469 place
PERSON 1202 people
ARTIFACT 971 car
COGNITION 771 way
FOOD 766 food
ACT 700 service
LOCATION 638 area
TIME 530 day
EVENT 431 experience

COMMUNIC.” 417 review
POSSESSION 339 price
ATTRIBUTE 205 gquality
QUANTITY 102 amount
ANIMAL 88 dog

BODY
STATE

NATURAL OBJ.

RELATION
SUBSTANCE
FEELING
PROCESS
MOTIVE

87 hair
56 pain
54 flower

35 portion
34 oil

34 discomfort

28 process
25 reason

PHENOMENON 23 result

SHAPE
PLANT
OTHER

6 square
S tree

2 stuff

J&M/SLP3

Verb

STATIVE 2922 is
COGNITION 1093 know
COMMUNIC.” 974 recommend

SOCIAL 944 use
MOTION 602 go
POSSESSION 309 pay
CHANGE 274 fix
EMOTION 249 love

PERCEPTION 143 see
CONSUMPTION 93 have

BODY 82 get...done
CREATION 64 cook
CONTACT 46 put
COMPETITION 11 win
WEATHER 0 —

27



Sample Question

|s supersense tagging more similar to WSD or
POS tagging? Why?

28



Sample Question

Is supersense tagging more similar to WSD or POS
tagging? POS tagging

Why?

same labels used for multiple word types (in WSD, each
word type has its own labels)

typically, there are 20-30 noun supersenses and 10-20
verb supersenses

but in some ways, supersense tagging is similar to WSD
because it pertains more to semantics than syntax

29



Roadmap

words, morphology, lexical semantics

text classification

simple neural methods for NLP

language modeling and word embeddings
recurrent/recursive/convolutional networks in NLP
sequence labeling, HMMs, dynamic programming
syntax and syntactic parsing

semantics, compositionality, semantic parsing

machine translation and other NLP tasks



NLP Datasets

 NLP datasets include inputs (usually text) and
outputs (usually some sort of annotation)



Sample Question

Suppose you want to build a system to
automatically detect the most important/salient
words in a piece of text, say an email, a social media
post, a news article, etc.

The idea is that the system can automatically
highlight those words for a user to potentially
enable faster reading for users in a hurry.

How might you collect naturally-annotated data for
this task?



What is a classifier?

* a function from inputs x to classification labels y
* one simple type of classifier:

— for any input x, assign a score to each label y,
parameterized by parameters w:

score(x, y, w)

— classify by choosing highest-scoring label:

classify(x, w) = argmax score(x, y, w)
Y



Modeling, Inference, Learning

inference: solve argmax

|mode|ing: define score function

N

v

classify(x, w) = argmax score(x,y, w)

Y

/

learning: choose w

* We will use this formulation throughout

— even when output space is exponentially large or
unbounded (e.g., machine translation)

34



Linear Models

 parameters are arranged in a vector w

e score function is linearin w:

score(x, y, w) =w ' f(x,y) = Zwifz'(fﬂa y)

e f:vector of feature functions



Unigram Binary Features
two example features:

fi(zx,y) = Iy = positive] A [[x contains great]
fo(x,y) = Ily = negative| A [|x contains great|
where 1[9] = 1if S is true, 0 otherwise
we usually think in terms of feature templates
unigram binary feature template:

fUP(x,y) =1y = label] A I[z contains word]

to create features, this feature template is
instantiated for particular labels and words



Feature Engineering for Text Classification

* Two features:
fi(x,y) = Iy = positive] A I[x contains great]
fo(x,y) = Ily = negative| A I[x contains great|
* Let’s say we set w; > wo

* On sentences containing “great” in the
Stanford Sentiment Treebank training data,
this would get us an accuracy of 69%

* But “great’ only appears in 83/6911 examples



ambiguity: “great” may not mean positive sentiment

* On sentences containing “great” in the
Stanford Sentiment Treebank training data,
this would get us an accuracy of 69%

* But “great’ only appears in 83/6911 examples

variability: many other words can indicate positive sentiment

38



Sample Question

Typically, bigrams that contain “good” are predictive of positive
sentiment and bigrams containing “downside” are predictive of

negative sentiment.

However, Pat trained a linear model text classifier with binary
unigram and binary bigram features and found:

- “only good” is strongly predictive of negative sentiment
- “only downside” is strongly predictive of positive sentiment

What’s going on here?



 What about a feature like the following?

fs(x,y) = I|x contains great|

 What do you expect its weight to be?
— Doesn’t matter.
— Why?

classify(x, w) = argmax w ' f(x,y)
y€{positive,negative}

— a feature with the same value for all outputs will
not affect the argmax



Sample Question

* Why do our linear model features always have to
consider the output label while the features input
to a neural network do not?

* features input to a neural network are
transformed, then transformed values are paired
with the output label in the final layer. Our linear
model features are used directly to score output
labels.

41



Cost Functions

cost function: scores outputs against a gold standard

cost : L X L = R>g

should be as close as possible to the actual
evaluation metric for your task

usual conventions: cost(y,y) = 0
cost(y, y') = cost(y’, y)



Cost Functions

cost function: scores outputs against a gold standard

cost : L X L = R>g

should be as close as possible to the actual
evaluation metric for your task

for classification, what cost should we use?

cost(y,y") = Iy # y/]

how about for other NLP tasks?



Empirical Risk Minimization
(Vapnik et al.)

* replace expectation with sum over examples:

A

w = argmin Ep, ) [cost(y, classify (x, w))]
i | |
W = argmin Z cost(y'V, classify (¥, w))

w i=1

44



solution: replace “cost loss” (also
called “0-1" loss) with a surrogate

function that is easier to optimize

W = argmin Z cost(y'V, classify (z'¥, w))

l generalize to permit any loss function

T
W = argmin Z loss(z®, y) w)
w i=1

cost loss / 0-110ss: 10880t (2, ¥, w) = cost(y, classify(z, w))

45



Surrogate Loss Functions

cost loss / 0-110ss:  losscost (0, ¥, w) = cost(y, classify(z, w))

perceptron loss:

1OSSPerC(mv Y, ’UJ) — —SCOI'G(.’I), Y, ’UJ) + ma}é SCOI‘G((IJ, y,a ’UJ)
y'e
hinge loss:
1OSShinge(wa Y, ’UJ) — —SCOI‘G(JJ, Y, ’UJ) + max (SCOI‘Q(J}7 y/7 ’lU) +COSt<y7 y,))

y'el



Sample Question

e what is the smallest value this loss can be?

1OSSperC(ma Y, ’LU) — —SCOI'G(Q',‘, Y, ’UJ) + H,laz:( SCOI‘Q(Q}‘, yla ’LU)
Yy e

0

47



Sample Question

e write down a condition on cost(y, y’) that will
be sufficient to make this loss nonnegative:

loSShinge (€, Yy, w) = —score(x, y, w) + max (score(z,y’,w) + cost(y,y"))
y'e

* cost(y,y’)>=0

48



Log Loss

lossieg (€, Y, w) = —logpw(y | T)

* minimize negative log of conditional
probability of output given input



Score > Probability

e can turn score into probability by

exponentiating (to make it positive) and
normalizing:

pw (Y | ©) o< exp{score(x,y, w)}

exp{score(x,y, w)}
. exp{score(x,y’, w)}

e this is often called a “softmax” function



Regularized Empirical Risk Minimization

surrogate loss regularization

\ strength
T N

W = argmin Z loss(2®, ¥ w) + AR(w)

i=1 ~
regularization

term

51



Regularized Empirical Risk Minimization

T
W = argmin Zloss(:c(i), v w) + AR(w)

7 \

encourages model encourages model to be
to fit the training “simpler” in the hope that
data well this will help it to

generalize to new data

52



Probabilistic Language Modeling

e goal: compute the probability of a sequence of words:
P(w) = P(wy,wa, ..., wy,)
* related task: probability of next word:
P(wy | w1, wa, w3)
* a model that computes either of these:
Plw) or Pwg | wy,ws, ..., wip_1)

is called a language model (LM)

J&M/SLP3



Markov Assumption

* simplifying assumption:

Andrei Markov

P(the |its water 1s so transparent that) = P(the | that)

* Or maybe:

P(the l1ts water 1s so transparent that) = P(the | transparent that)

J&M/SLP3



Estimating bigram probabilities

* the maximum likelihood estimate (MLE)

count(w;_1, w;)

Plw; | wi—1) =
(UJ ‘UJ 1) Count(wi_l)

J&M/SLP3



Probability of Held-out Data

* probability of held-out sentences:

1] P(w™)

()

* |let’s work with log-probabilities:

log; H P(’w(i)) = Z log, P(’w(i))

e divide by number of words M in held-out
. 1 ,
sentences: - Zlog2p(w<z>)



Probability -> Perplexity

* average log-probability of held-out words:
1 |
0 = i Z log, P(w'")

* perplexity:

PP =2¢



Intuition of smoothing (from Dan Klein)

* When we have sparse statistics:

P(w | denied the)
3 allegations
2 reports
1 claims
1 request

7 total

(%]
c
0
)
©
(o1}
9
‘©

attack
man
outcome

* Steal probability mass to generalize better:

P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other

7 total

allegations

reports
attack
man

outcome

claims
request




“Add-1" estimation

* just add 1 to all counts

* MLE estimate:
count(w;_1,w;)

Puee(wi | wi-1) = count(w;_1)
i

 Add-1 estimate:
count(w;_1,w;) + 1
count(w;_1) + |V|

Paga—1(w; | wi—1) =

J&M/SLP3



Backoff and Interpolation

sometimes it helps to use less context

— condition on less context for contexts you haven’t

learned much about

backoff:

— use trigram if you have good evidence, otherwise

bigram, otherwise unigram
interpolation:

— mixture of unigram, bigram, trigram (etc.) models

interpolation works better

J&M/SLP3



Absolute Discounting

Bigram count in Bigram count in
training set heldout set

0.0000270

0.448

1.25

2.24

3.23

421

5.23

6.21

7.21

8.26

137 R]  For all bigrams in 22 million words of AP newswire of count 0, 1, 2,...,9, the
counts of these bigrams in a held-out corpus also of 22 million words.

Voo~ bW — O

J&M/SLP3



Absolute Discounting

Bigram count in Bigram count in
heldout set
0.0000270
0.448

1.25

2.24

3.23

421

5.23

6.21

7.21

:
%

coO I Ontn bW~ O

observed bigrams have counts that are overestimated

unobserved bigrams have counts that are underestimated

J&M/SLP3



Kneser-Ney Smoothing

* how many times is w a novel continuation?

P.ontinuation (w) o< |[{w’ : count(w’, w) > 0}

. J
Y

number of unique words that appeared before w




Kneser-Ney Smoothing

* how many times is w a novel continuation?

P.ontinuation (w) o< |[{w’ : count(w’, w) > 0}

* normalize by total number of word bigram types:

{w’ : count(w’, w) > 0}

Pcon inuation —
tinuation (W) {{(w’, w) : count(w’, w) > 0}



A Neural Probabilistic Language Model

Département d’Informatique et Recherche Opérationnelle
Centre de Recherche Mathématiques
Université de Montréal, Montréal, Québec, Canada

Journal of Machine Learning Research 3 (2003) 1137-1155 Submitted 4/02; Published 2/03

Yoshua Bengio BENGIOY @IRO.UMONTREAL.CA
Réjean Ducharme DUCHARME @IRO.UMONTREAL.CA
Pascal Vincent VINCENTP@IRO.UMONTREAL.CA
Christian Jauvin JAUVINC@IRO.UMONTREAL.CA

* idea: use a neural network for n-gram
language modeling:

PH(wt | Wt—n+1y -y Wt—2, wt—l)

65



A Simple Neural Trigram Language Model

* given previous words w, and w,, predict next word



A Simple Neural Trigram Language Model
* given previous words w, and w,, predict next word

* input is concatenation of vectors (embeddings) of
previous words:

x 000 OO0

N\ J\- J
Y Y

emb(wy) emb(ws)

x = cat(emb(wy), emb(ws))

67



A Simple Neural Trigram Language Model

e output vector contains scores of possible next words:

-3 0000000000000 0
X
-
N Y
emb(wy) emb(ws)

score(x, w;, U) = x' Uj 1.4

68



Sample Question

A feed-forward neural language model typically
concatenates the embeddings of the previous
words and predicts the next word.

Consider an alternative architecture that averages
the embeddings of the previous words instead of
concatenating them.

When would this “context-averaging” model work
better than the “context-concatenation” model?



Sample Question

When would this “context-averaging” model
work better than the “context-concatenation”
model?

if you are using a very large context or if you have
very little data (since it has fewer parameters)

maybe free word order languages?



A Simple Neural Trigram Language Model
0000000000000 0

emb(w1) emb(ws)

* most common way to train: log loss

lossiog ((w1, we), w3, 8) = —log pe(ws | (w1, w2))

po(ws | (wy,ws)) ox exp{score(cat(emb(wy), emb(ws)),ws, U)}

71



Adding a Hidden Layer
J 0000000000000 0

72



skip-gram training data (window size = 5)

corpus (English Wikipedia):
agriculture is the traditional mainstay of the cambodian economy .
but benares has been destroyed by an earthquake .

outputs (y)

agriculture <s>
agriculture is
agriculture the

IS <s>

is agriculture

is the

is traditional

the is

73



CBOW training data (window size = 5)

corpus (English Wikipedia):
agriculture is the traditional mainstay of the cambodian economy .
but benares has been destroyed by an earthquake .

outputs (v}

{<s>, is, the, traditional} agriculture
{<s>, agriculture, the, traditional} is
{agriculture, is, traditional, mainstay} the
{is, the, mainstay, of} traditional
{the, traditional, of, the} mainstay
{traditional, mainstay, the, cambodian} of

{mainstay, of, cambodian, economy} the

74



word2vec Score Functions

* skip-gram:

(in,z) (out,y) agriculture <s>
score(x,y, w) = wi¥) L wloUhY . .
agriculture is
agriculture the
* CBOW:
score(x,y, w) = E w(inza) | | (out,y)
Iw!
 nputs() | outputs(y)
{<s>, is, the, traditional} agriculture
{<s>, agriculture, the, traditional} is

{agriculture, is, traditional, mainstay} the
75



skip-gram

e skip-gram objective: log loss

min Z Z —log Pw (214 | @)

1<t<|T| —e<j<c,j#0

/

sum over
positions in
corpus

sum over context
words in window

76



min Z Z —log Pw (24 | @)

1<t<|T| —e<j<e,j#0

from score to probability:

Pw(y | z) o< exp{score(z,y, w)}

Py (y | ) oc exp{wi™®) . wiouts)}



min Z Z —log Pw (24 | @)

1<t<|T| —e<j<e,j#0

normalization requires sum over entire vocabulary:

exp{w(in,az) . W(out,y)}
Zy/ eXp{W(in,az) , W(out,y’)}

Pw(y | x) =



Negative Sampling
(Mikolov et al., 2013)

* rather than sum over entire vocabulary,
generate samples and sum over them

* instead of a multiclass classifier, use a binary
classifier:

mm Z Z log o (score(xy, Ty , w)) + Z log o(score(zs, z, w))
1<t<|T| —c<j3<¢c,j#0 reNEG

 where sigma is logistic sigmoid function



A Simple Neural Text Classification Model

e given a word sequence x, predict its label
* represent x by averaging its word embeddings:

80



A Simple Neural Text Classification Model

* represent x by averaging its word embeddings
e output is a score vector over all possible labels:

s = Uf,(x)
s; = score(x, y;, w)

n

( %‘ fove () = - ; emb(x;)
& A

emb(x1)  emb(x2) emb(xy,) -




Encoders

* encoder: a function to represent a word
sequence as a vector

* simplest: average word embeddings:

fove () = ! Z emb(x;)

n “
1=1



Attention

e attention is a useful generic tool

e often used to replace a sum or average with
an attention-weighted sum

e e.g., for a word averaging encoder:

n

fare(x) = Z@ft(aﬁi, 7, a:j)emb(:cz-)
=1 Y

“attention” function,
returns a scalar




Attention

attention is a useful generic tool

often used to replace a sum or average with
an attention-weighted sum

e.g., for a word averaging encoder:

n

foe(x) = Z att(xz;, i, x)emb(x;)

1=1
n

Z att(x;,i,x) =1

1=1

many attention functions are possible!



Recurrent Neural Networks
h, = tanh W<x>xt+w h,_ 1+b

“hidden vector” @ ° @



Long Short-Term Memory Networks (gateless)
Ct = Ct—1 T tanh (a:c)Xt + W(hc)ht . +b c))

h; = tanh(c;)




All Gates

c; =1 ©ci—1 +1; © tanh W(xc>xt W(hc)ht |+ b(C)

h; = o; ® tanh(cy) @ @ @

87




Deep LSTM ° use hidden vectors
(2-layer) from layer 1 as
~ inputs to layer 2

1
Cii1

Xz

T™~T

layer 1 <

layer 2 <

e




“Output” Recurrent Neural Networks

h, — tanh W(x)xt +WWh, | + b)

“hidden vector”

|H

“output symbo

VR

y; = argmax h, emb(y)

yeO



“hidden vector”

“output symbol”

N\

y; = argmax h;r emb(y)

yeO
P(Y;) = softmax (Wh,)

W = [emb(y1) ;s emb(ya) ;... emb(yjo)) ']

90



Example: Language Modeling

the car ...

* input: a word sequence
* output?

91



Example: Language Modeling

if car ...

the
car

. :
>

runs ...

e target output at each position:

next word in the sequence!




Language Modeling: Training

o if

car ...

o
.
o

—log P(Y;—1 = “the”) —log P(Y; = “car”) ..



Convolution

x = not that great

x=1[04..09 02..0.7 03..0.6]"
_ VAN AN J
Y Y Y

vector for not vector for that vector for great

consider a single convolutional filter W & ]Rd

94



Convolution
compute dot product of filter and each word vector:

x = not that great
W

x=1[04..09 02..0.7 03..0.6]"
_ VAN AN J
Y Y Y

vector for not vector for that vector for great

C1 — W - X1q.d

95



Convolution

compute dot product of filter and each word vector:

x = not that great
\" 4

x=1[04..09 02..0.7 03..0.6]"
_ VAN AN J
Y Y Y

vector for not vector for that vector for great
C1 — W X1.d

Co — W * Xd11:2d

96



Convolution
compute dot product of filter and each word vector:

x = not that great
W

x=1[04..09 02..0.7 03..0.6]"
_ VAN AN J
Y Y Y

vector for not vector for that vector for great
C1 — W - X1.d
Co — W - Xd+1:2d

C3 = W * X24+1:3d

97



Convolution

x = not that great

x=1[04..09 02..0.7 03..0.6]"
_ VAN AN J
Y Y Y

vector for not vector for that vector for great
€1 = W X1:d
C2 = W * Xq+1:2d
C3 = W * X2d+1:3d
Note: it’s common to add a bias b and use a nonlinearity g:

c1 =¢g(W-Xx1.4+b)

98



Convolution

x = not that great

x=1[04..09 02..0.7 03..0.6]"
_ VAN AN J
Y Y Y

vector for not vector for that vector for great
C1 — W - X1.d
Co — W - Xd+1:2d

C3 = W * X24+1:3d

c = “feature map” for this filter,

has an entry for each position in input (in this case, 3 entries)

99



Sequence Labeling Tasks in NLP

Part-of-Speech Tagging

proper proper

determiner verb (past) prep. noun noun poss. adj. noun

Some questioned if Tim Cook ’s first product
proper

modal verb det. adjective noun prep. nhoun punc.

would be a breakaway hit for Apple

Named Entity Recognition

O @) O B-PERSON I-PERSON O @) O
Some questioned if Tim Cook ’s first product
o) 0 o) o) O O B-ORGANIZATION O

would be a breakaway hit for Apple

100



Part-of-Speech

* open-class:
— nouns, verbs, adjectives, adverbs

— “open” because new words in these categories are
often created

* closed-class:
— function words like determiners and prepositions
— new function words rarely catch on

— (though new forms/variants of function words do
appear, especially in “conversational text”)

101



POS Ambiguity

Types: WSJ Brown
Unambiguous (1 tag) 44,432 (86%) 45,799 (85%)
Ambiguous  (2+ tags) 7,025 (14%) 8,050 (15%)

Tokens:

Unambiguous (1 tag) 577,421 (45%) 384,349 (33%)
Ambiguous  (2+ tags) 711,780 (55%) 786,646 (67%)

13701 N UI¥] The amount of tag ambiguity for word types in the Brown and WSJ corpora,
from the Treebank-3 (45-tag) tagging. These statistics include punctuation as words, and
assume words are kept in their original case.

* most word types have only one tag
— frequent word types have more tags

— rare words are often nouns or verbs

102



Universal Tag Set

* contains 12 tags:

— noun, verb, adjective, adverb, pronoun,
determiner, adposition, numeral, conjunction,
particle, punctuation, other

sentence: The oboist Heinz Holliger has taken a hard line about the problems .

original: DT NN NNP NNP vBz VBN DT JJ NN IN DT NNS
universal: DET NOUN NOUN NOUN VERB VERB DET ADJ NOUN ADP DET NOUN

Figure 1: Example English sentence with its language specific and corresponding universal POS tags.

Petrov, Das, McDonald (2011)

103



Feed-Forward Neural Networks for Twitter POS Tagging

verb det noun
B > | | i
1e asked fir| yo last name ¢

e e.g., predict tag of yo given context

* what should the input x be?

x=1[0.4 0.1 ... 09]"
NG /
Y

word vector for yo

104



Feed-Forward Neural Networks for Twitter POS Tagging

verb det noun
| pref | adj |
e asked fir| yo llast name -

* when using word vectors as part of input, we can also
treat them as more parameters to be learned!

* thisis called “updating” or “fine-tuning” the vectors
(since they are initialized using something like word2vec)

x=[-0205..08 0401 ..09]"

& AN J
Y Y

word vector for fir word vector for yo

105



RNNs for Part-of-Speech Tagging

.. if the car ...

* input: a word sequence

106



RNNs for Part-of-Speech Tagging

if car ...

the
.. 1IN DT NN ...

e target output at each position: POS tag

for corresponding word



Feed-Forward Networks for POS Tagging

* feed-forward networks are OK for tagging

* they tend to work best with very small
contexts (e.g., 1 word to left & right)

e can also use convolutional networks defined
on a window centered on the target word



RNNs for Part-of-Speech Tagging

car ...

the
DT

IN NN ...



RNN Taggers

* RNN POS taggers are simple and effective

* most common is to use some sort of
bidirectional RNN, like a BiLSTM or BiGRU



Modeling, Inference, Learning in Structured Prediction

inference: solve argmax

modeling: define score function

N

v

classify(x, w) = argmax score(x,y, w)

Yy

learning: choose w

111




Applications of our Classifier Framework so far

task input (x) output (y) output space ( /) size of [°
-defi Il
text gold standard pre-defined, sma
e s a sentence label set (e.g., 2-10
classification label for x . :
{positive, negative})
instance of a re-defined sense
word sense particular word | gold standard pinventory from 530
disambiguation (e.i.; ?g:,?e)\xlth word sense of x WordNet for bass
learning skip- . a word in the
instance of a :
gram word word in a corpus context of x in vocabulary | V|
embeddings P a corpus
Art-of-speech gold standard all possible part-of-
P P a sentence part-of-speech | speech tag sequences |P| 1]

tagging

tags for x

with same length as x




Applications of our Classifier Framework so far

task input (x) output (y) output space ( /) size of [°

text gold standard pre-defined, small

e L a sentence label set (e.g., 2-10
classification

label for x

{positive, negative})

word sense
disambiguation

instance of a
particular word
(e.g., bass

its cont

learning skip-
gram word
embeddings

instance
word in a ¢

gold standard

pre-defined sense

exponential in size of input!

“structured prediction”

part-of-speech
tagging

a sentence

gold standard
part-of-speech
tags for x

all possible part-of-
speech tag sequences
with same length as x

113



Inference for Structured Prediction

classify(x, w) = argmax score(x, y, w)
Y

* how do we efficiently search over the space of all
structured outputs?

* this space may have size exponential in the size of
the input, or be unbounded



Feature Locality

feature locality: how “big” are your features?

we need to be mindful of this to enable efficient
inference

features can be arbitrarily big in terms of the input

but features cannot be arbitrarily big in terms of
the output!



Hidden Markov Models

* n-gram language models define a probability
distribution over word sequences x

« HMMs define a joint probability distribution
over input sequences x and output sequences y

* conditional independence assumptions
(“Markov assumption”) are used to factorize
this joint distribution into small terms



Graphical Model for an HMM

(for a sequence of length 4)

conditional independence statements among random
variables are encoded by the edge structure:

Yioi LY | Y
X: 1Y 1| Y,



Graphical Model for an HMM

(for a sequence of length 4)

conditional independence statements encoded by edge
structure > we only have to worry about local distributions:

transition parameters: D.- (yz ‘ ng—1)

emission parameters: Pn (wz ’ yz)



HMMs for Word Clustering
(Brown et al., 1992)

each y, € L isaclusterID
so, label spaceis £ = {1,2,...,100}



HMMs for Part-of-Speech Tagging

each y, € L is a part-of-speech tag
so, label space is £ = {noun, verb, ...}

what parameters need to be learned?

transition parameters: D+ (yz ‘ y¢_1)

emission parameters: Dy, (337, ‘ yz)



Sample Question

Suppose you wanted to use an HMM as a language
model, i.e., as a way to compute the probability of
a word sequence. How would you do this?



Sample Question

Suppose you wanted to use an HMM as a language

model, i.e., as a way to compute the probability of
a word sequence. How would you do this?

marginalize out (sum over) the hidden variables (y)

122



Supervised HMMs

* given a dataset of input sequences and annotated

OUtpUtS: proper proper prepo-
noun noun sition

* to estimate transition/emission distributions, use
maximum likelihood estimation (count and normalize):

count(y’ y) (2] ) < count(y, )
count(y’) Pl 1)

/ Z
pry[y) - count(y)

count(noun verb) count(verb, walk)

pr(verb | noun) <

pn(walk | verb) <

count(noun) count(verb)



Inference in HMMs

* since the output is a sequence, this argmax
requires iterating over an exponentially-large set

e we can use dynamic programming (DP) to solve
these problems exactly

 for HMMs (and other sequence models), the
algorithm for solving this is the Viterbi algorithm

124



Viterbi Algorithm

* recursive equations + memoization:

base case:
returns probability of sequence starting with label y for first word

\

V(1Ly) =pylr1|y) prly | <s>)

Vi(m,y) = max ( pp(zm | y) p-(y | y) V(m —1,9"))

f y' el

recursive case:
computes probability of max-probability label
sequence that ends with label y at position m

125



Linear Sequence Models

* 50, an HMM is:

— a linear sequence model

— with particular features on label transitions and label-
observation emissions

— and uses maximum likelihood estimation (count &
normalize) for learning

* but we could use any feature functions we like, and
use any of our loss functions for learning!



(Chain) Conditional Random Fields

classify(ax, w) = argmax score(x,y, w)
d

score(x, Yy, w) = wa(a;, Y) = sz‘fi(way)

linear sequence model
arbitrary features of input are permitted
test-time inference uses Viterbi Algorithm

learning done by minimizing log loss (DP
algorithms used to compute gradients)



Maximum-Margin Markov Networks

classify(ax, w) = argmax score(x,y, w)
d

score(x, Yy, w) = wa(a;, Y) = sz‘fi(way)

linear sequence model
arbitrary features of input are permitted
test-time inference uses Viterbi Algorithm

learning done by minimizing hinge loss (DP
algorithm used to compute subgradients)



