TTIC 31190: Natural Language Processing

Kevin Gimpel Spring 2018

Lecture 4: Text Classification

Roadmap

- words, morphology, lexical semantics
- text classification
- simple neural methods for NLP
- language modeling and word embeddings
- recurrent/recursive/convolutional networks in NLP
- sequence labeling, HMMs, dynamic programming
- syntax and syntactic parsing
- semantics, compositionality, semantic parsing
- machine translation and other NLP tasks

Text Classification

- simplest user-facing NLP application
- email (spam, priority, categories):

sentiment:

- topic classification
- others?

Text Classification

- datasets
- classification
 - modeling
 - inference
 - learning

NLP Datasets

 NLP datasets include inputs (usually text) and outputs (usually some sort of annotation)

Annotation

- supervised machine learning needs labeled datasets, where labels are called ground truth
- in NLP, labels are annotations provided by humans
- there is always some disagreement among annotators, even for simple tasks
- these annotations are called a gold standard, not ground truth

How are NLP datasets developed?

1. paid, trained human annotators

- traditional approach
- researchers write annotation guidelines, recruit & pay annotators (often linguists)
- more consistent annotations, but costly to scale
- e.g., Penn Treebank (1993)
 - 1 million words, mostly Wall Street Journal, annotated with part-of-speech tags and syntactic parse trees

2. crowdsourcing (e.g., Amazon Mechanical Turk)

- more recent trend
- can't really train annotators, but easier to get multiple annotations for each input (which can then be averaged)
- e.g., Stanford Sentiment Treebank:

with better characters, some genuine quirkiness and at least a measure of style

3. naturally-occurring annotation

IBM Deposition

Canadian Hansard English

 long history: used by IBM for speech recognition and statistical machine translation

There's No Data Like More Data

 Dick Garwin's correspondence 	~2.5M words
Associated Press	20M words
 Oil company 	25M words
Federal Register	??M words
 American Printing House for the Blind 	60M words

credit: Brown & Mercer, 20 Years of Bitext Workshop, 2013

100M words

100M words

3. naturally-occurring annotation

 long history: used by IBM for speech recognition and statistical machine translation

There's No Data Like More Data	
 Dick Garwin's correspondence Associated Press Oil company Federal Register American Printing House for the Blind IBM Deposition Canadian Hansard English 	~2.5M words 20M words 25M words ??M words 60M words 100M words

credit: Brown & Mercer, 20 Years of Bitext Workshop, 2013

- how might you find naturally-occurring data for:
 - conversational agents
 - summarization
 - coreference resolution

Annotator Agreement

 given annotations from two annotators, how should we measure inter-annotator agreement?

Annotator Agreement

- given annotations from two annotators, how should we measure inter-annotator agreement?
 - percent agreement?

Annotator Agreement

- given annotations from two annotators, how should we measure inter-annotator agreement?
 - percent agreement?
 - Cohen's Kappa (Cohen, 1960) accounts for agreement by chance
 - generalizations exist for more than two annotators (Fleiss, 1971)

Text Classification Data

- There are many annotated datasets
 - Stanford Sentiment Treebank: fine-grained sentiment analysis of movie reviews
 - subjectivity/objectivity sentence classification
 - binary sentiment analysis of customer reviews
 - TREC question classification

• Subjectivity/objectivity classification:

the hulk is an anger fueled monster with incredible strength and resistance to damage .	
in trying to be daring and original, it comes off as only occasionally satirical and never fresh.	
solondz may well be the only one laughing at his own joke	
obstacles pop up left and right, as the adventure gets wilder and wilder.	

• Subjectivity/objectivity classification:

the hulk is an anger fueled monster with incredible strength and resistance to damage .	objective
in trying to be daring and original, it comes off as only occasionally satirical and never fresh.	subjective
solondz may well be the only one laughing at his own joke	
obstacles pop up left and right, as the adventure gets wilder and wilder.	

• Subjectivity/objectivity classification:

the hulk is an anger fueled monster with incredible strength and resistance to damage .	objective
in trying to be daring and original, it comes off as only occasionally satirical and never fresh.	subjective
solondz may well be the only one laughing at his own joke	subjective
obstacles pop up left and right, as the adventure gets wilder and wilder.	objective

Subjectivity/objectivity classification:

the hulk is an anger fueled monster with incredible strength and resistance to damage .	objective
in trying to be daring and original, it comes off as only occasionally satirical and never fresh.	subjective
solondz may well be the only one laughing at his own joke	subjective
obstacles pop up left and right, as the adventure gets wilder and wilder.	objective

How was this dataset generated?

Subjectivity/objectivity classification:

the hulk is an anger fueled monster with incredible strength and resistance to damage .	objective
in trying to be daring and original, it comes off as only occasionally satirical and never fresh.	subjective
solondz may well be the only one laughing at his own joke	subjective
obstacles pop up left and right, as the adventure gets wilder and wilder.	objective

- How was this dataset generated?
 - IMDB plot summaries: objective
 - Rotten Tomatoes snippets: subjective

it works with a minimum of fuss .	
i 've had this thing just over a month and the headphone jack has already come loose .	
size - bigger than the ipod	
you can manage your profile , change the contrast of backlight , make different type of display , either list or tabbed .	
i replaced it with a router raizer and it works much better.	

it works with a minimum of fuss .	positive
i 've had this thing just over a month and the headphone jack has already come loose .	negative
size - bigger than the ipod	
you can manage your profile, change the contrast of backlight, make different type of display, either list or tabbed.	
i replaced it with a router raizer and it works much better.	

it works with a minimum of fuss .	positive
i 've had this thing just over a month and the headphone jack has already come loose .	negative
size - bigger than the ipod	1(a)
you can manage your profile, change the contrast of backlight, make different type of display, either list or tabbed.	1(b)
i replaced it with a router raizer and it works much better.	1(c)

it works with a minimum of fuss .	positive
i 've had this thing just over a month and the headphone jack has already come loose .	negative
size - bigger than the ipod	negative
you can manage your profile, change the contrast of backlight, make different type of display, either list or tabbed.	positive
i replaced it with a router raizer and it works much better .	negative

• question classification:

Who invented baseball ?	human
CNN is an acronym for what ?	abbreviation
Which Latin American country is the largest?	location
How many small businesses are there in the U.S .	number
What would you add to the clay mixture to produce bone china?	entity
What is the root of all evil ?	description

Text Classification

- datasets
- classification
 - modeling
 - inference
 - learning

a function from inputs x to classification labels y

- a function from inputs x to classification labels y
- one simple type of classifier:
 - for any input x, assign a score to each label y, parameterized by parameters w:

$$score(\boldsymbol{x}, y, \boldsymbol{w})$$

Notation

 $\mathbf{u}=\mathsf{a}\,\mathsf{vector}$

 $u_i = \text{entry i in the vector}$

Notation

 $\mathbf{u} = \mathsf{a} \, \mathsf{vector}$

 $u_i = \text{entry i in the vector}$

 $oldsymbol{x}=\mathsf{a}\,\mathsf{structured}\,\mathsf{object}$

 $x_i = \text{entry i in the structured object}$

- a function from inputs x to classification labels y
- one simple type of classifier:
 - for any input x, assign a score to each label y, parameterized by parameters w:

$$score(\boldsymbol{x}, y, \boldsymbol{w})$$

– classify by choosing highest-scoring label:

classify
$$(\boldsymbol{x}, \boldsymbol{w}) = \underset{y}{\operatorname{argmax}} \operatorname{score}(\boldsymbol{x}, y, \boldsymbol{w})$$

Course Philosophy

- From reading papers, one gets the idea that machine learning concepts are monolithic, opaque objects
 - e.g., naïve Bayes, logistic regression, SVMs, CRFs, neural networks, LSTMs, etc.
- Nothing is opaque
- Everything can be dissected, which reveals connections
- The names above are useful shorthand, but not useful for gaining understanding

classify
$$(\boldsymbol{x}, \boldsymbol{w}) = \underset{y}{\operatorname{argmax}} \operatorname{score}(\boldsymbol{x}, y, \boldsymbol{w})$$

 Modeling: How do we assign a score to an (x,y) pair using parameters w?

 Inference: How do we efficiently search over the space of all labels?

Learning: How do we choose the weights w?

Modeling, Inference, Learning

- We will use this formulation throughout
 - even when output space is exponentially large or unbounded (e.g., machine translation)

Text Classification

- datasets
- classification
 - modeling
 - inference
 - learning

Binary Sentiment Classification

$$\operatorname{classify}(\boldsymbol{x}, \boldsymbol{w}) = \underset{y \in \{\text{positive}, \text{negative}\}}{\operatorname{argmax}} \operatorname{score}(\boldsymbol{x}, y, \boldsymbol{w})$$

Binary Sentiment Classification

Binary Sentiment Classification

$$\text{classify}(\boldsymbol{x}, \boldsymbol{w}) = \underset{y \in \{\text{positive}, \text{negative}\}}{\operatorname{argmax}} \text{score}(\boldsymbol{x}, y, \boldsymbol{w})$$

Linear Models

- parameters are arranged in a vector w
- score function is linear in w:

$$score(\boldsymbol{x}, y, \mathbf{w}) = \mathbf{w}^{\top} \mathbf{f}(\boldsymbol{x}, y) = \sum_{i} w_{i} f_{i}(\boldsymbol{x}, y)$$

• f : vector of feature functions

Linear Models for Binary Sentiment Classification

$$\operatorname{classify}(\boldsymbol{x}, \boldsymbol{w}) = \underset{y \in \{\text{positive}, \text{negative}\}}{\operatorname{argmax}} \operatorname{score}(\boldsymbol{x}, y, \boldsymbol{w})$$

classify
$$(\boldsymbol{x}, \mathbf{w}) = \underset{y \in \{\text{positive, negative}\}}{\operatorname{argmax}} \mathbf{w}^{\top} \mathbf{f}(\boldsymbol{x}, y)$$

Linear Models for Binary Sentiment Classification

$$\operatorname{classify}(\boldsymbol{x}, \boldsymbol{w}) = \underset{y \in \{\text{positive}, \text{negative}\}}{\operatorname{argmax}} \operatorname{score}(\boldsymbol{x}, y, \boldsymbol{w})$$

classify
$$(\boldsymbol{x}, \mathbf{w}) = \underset{y \in \{\text{positive, negative}\}}{\operatorname{argmax}} \mathbf{w}^{\top} \mathbf{f}(\boldsymbol{x}, y)$$

• How do we define f?

Features for NLP

- NLP datasets include inputs and outputs
- features are usually not included
- you have to define your own features

Features for NLP

- NLP datasets include inputs and outputs
- features are usually not included
- you have to define your own features
- contrast this with UCI datasets, which include a fixed-length dense feature vector for every instance

Features for NLP

- NLP datasets include inputs and outputs
- features are usually not included
- you have to define your own features
- contrast this with UCI datasets, which include a fixed-length dense feature vector for every instance
- in (traditional) NLP, features usually sparse

Defining Features

- this is a large part of NLP
- last 25 years: **feature engineering**
- last 4 years: representation learning

Defining Features

- this is a large part of NLP
- last 25 years: feature engineering
- last 4 years: representation learning

- In this course, we'll do both
- learning representations doesn't mean that we don't have to look at the data or the output!
- there's still plenty of engineering required in representation learning

Feature Engineering

- Often decried as "costly, hand-crafted, expensive, domain-specific", etc.
- But in practice, simple features typically give the bulk of the performance

 Let's get concrete: how should we define features for text classification?

Unigram Binary Features

two example features:

$$f_1(\boldsymbol{x},y) = \mathbb{I}[y = \text{positive}] \wedge \mathbb{I}[\boldsymbol{x} \text{ contains } \textit{great}]$$
 $f_2(\boldsymbol{x},y) = \mathbb{I}[y = \text{negative}] \wedge \mathbb{I}[\boldsymbol{x} \text{ contains } \textit{great}]$ where $\mathbb{I}[S] = 1$ if S is true, 0 otherwise

Unigram Binary Features

two example features:

```
f_1(\boldsymbol{x},y) = \mathbb{I}[y = \text{positive}] \wedge \mathbb{I}[\boldsymbol{x} \text{ contains } \textit{great}] f_2(\boldsymbol{x},y) = \mathbb{I}[y = \text{negative}] \wedge \mathbb{I}[\boldsymbol{x} \text{ contains } \textit{great}] where \mathbb{I}[S] = 1 if S is true, 0 otherwise
```

we usually think in terms of feature templates

Unigram Binary Features

two example features:

```
f_1(\boldsymbol{x},y) = \mathbb{I}[y = \text{positive}] \wedge \mathbb{I}[\boldsymbol{x} \text{ contains } \textit{great}] f_2(\boldsymbol{x},y) = \mathbb{I}[y = \text{negative}] \wedge \mathbb{I}[\boldsymbol{x} \text{ contains } \textit{great}] where \mathbb{I}[S] = 1 if S is true, 0 otherwise
```

- we usually think in terms of feature templates
- unigram binary feature template:

$$f^{\mathrm{u,b}}(\boldsymbol{x},y) = \mathbb{I}[y = \text{label}] \wedge \mathbb{I}[\boldsymbol{x} \text{ contains } word]$$

• to create features, this feature template is instantiated for particular labels and words

Feature Count Cutoffs

- problem: some features are extremely rare
- solution: only keep features that appear at least k times in the training data

training dataset with 2 examples:

great movie positive

not so great negative

and a single feature template:

$$f^{\mathrm{u,b}}(\boldsymbol{x},y) = \mathbb{I}[y = \text{label}] \wedge \mathbb{I}[\boldsymbol{x} \text{ contains } word]$$

training dataset with 2 examples:

great movie positive
not so great negative

and a single feature template:

$$f^{\mathrm{u,b}}(\boldsymbol{x},y) = \mathbb{I}[y = \text{label}] \wedge \mathbb{I}[\boldsymbol{x} \text{ contains } word]$$

what features would be in the model with a feature count cutoff of 2?

To remind you, here's an example of an instantiation of the feature template above:

$$f_1(\boldsymbol{x}, y) = \mathbb{I}[y = \text{positive}] \wedge \mathbb{I}[\boldsymbol{x} \text{ contains } great]$$

training dataset with 2 examples:

```
great movie positive
```

and a single feature template:

$$f^{\mathrm{u,b}}(\boldsymbol{x},y) = \mathbb{I}[y = \text{label}] \wedge \mathbb{I}[\boldsymbol{x} \text{ contains } word]$$

- what features would be in the model with a feature count cutoff of 2?
 - none

training dataset with 2 examples:

```
great movie positive
not so great negative
```

and a single feature template:

$$f^{\mathrm{u,b}}(\boldsymbol{x},y) = \mathbb{I}[y = \text{label}] \wedge \mathbb{I}[\boldsymbol{x} \text{ contains } word]$$

what features would be in the model with a feature count cutoff of 1?

training dataset with 2 examples:

great movie positive

not so great negative

and a single feature template:

$$f^{\mathrm{u,b}}(\boldsymbol{x},y) = \mathbb{I}[y = \text{label}] \wedge \mathbb{I}[\boldsymbol{x} \text{ contains } word]$$

what features would be in the model with a feature count cutoff of 1?

 $f_1(\boldsymbol{x}, y) = \mathbb{I}[y = \text{positive}] \wedge \mathbb{I}[\boldsymbol{x} \text{ contains } great]$

 $f_2(\boldsymbol{x}, y) = \mathbb{I}[y = \text{positive}] \wedge \mathbb{I}[\boldsymbol{x} \text{ contains } movie]$

 $f_3(\boldsymbol{x}, y) = \mathbb{I}[y = \text{negative}] \wedge \mathbb{I}[\boldsymbol{x} \text{ contains } not]$

 $f_4(\boldsymbol{x}, y) = \mathbb{I}[y = \text{negative}] \wedge \mathbb{I}[\boldsymbol{x} \text{ contains } so]$

 $f_5(\boldsymbol{x}, y) = \mathbb{I}[y = \text{negative}] \wedge \mathbb{I}[\boldsymbol{x} \text{ contains } great]$

training dataset with 2 examples:

great movie positive

not so great negative

and a single feature template:

$$f^{\mathrm{u,b}}(\boldsymbol{x},y) = \mathbb{I}[y = \text{label}] \wedge \mathbb{I}[\boldsymbol{x} \text{ contains } word]$$

 what additional features would be in the model with a feature count cutoff of 0?

2(c)

- training dataset with 2 examples:
 - great movie positive
 - not so great negative
- and a single feature template:

$$f^{\mathrm{u,b}}(\boldsymbol{x},y) = \mathbb{I}[y = \text{label}] \wedge \mathbb{I}[\boldsymbol{x} \text{ contains } word]$$

 what additional features would be in the model with a feature count cutoff of 0?

2(c)

$$f_6(\boldsymbol{x}, y) = \mathbb{I}[y = \text{negative}] \land \mathbb{I}[\boldsymbol{x} \text{ contains } movie]$$

 $f_7(\boldsymbol{x}, y) = \mathbb{I}[y = \text{positive}] \land \mathbb{I}[\boldsymbol{x} \text{ contains } not]$
 $f_8(\boldsymbol{x}, y) = \mathbb{I}[y = \text{positive}] \land \mathbb{I}[\boldsymbol{x} \text{ contains } so]$

Higher-Order Binary Feature Templates

unigram binary template:

$$f^{\mathrm{u,b}}(\boldsymbol{x},y) = \mathbb{I}[y = \text{label}] \wedge \mathbb{I}[\boldsymbol{x} \text{ contains } word]$$

bigram binary template:

$$f^{\mathrm{b,b}}(\boldsymbol{x},y) = \mathbb{I}[y = \text{label}] \wedge \mathbb{I}[\boldsymbol{x} \text{ contains "word1 word2"}]$$

trigram binary template:

• • •

Unigram Count Features

- a "count" feature returns the count of a particular word in the text
- unigram count feature template:

$$f^{\mathrm{u,c}}(\boldsymbol{x},y) = \begin{cases} \sum_{i=1}^{|\boldsymbol{x}|} \mathbb{I}[x_i = word], & \text{if } \mathbb{I}[y = \text{label}] \\ 0, & \text{otherwise} \end{cases}$$

$$score(\boldsymbol{x}, y, \mathbf{w}) = \mathbf{w}^{\top} \mathbf{f}(\boldsymbol{x}, y) = \sum_{i} w_{i} f_{i}(\boldsymbol{x}, y)$$

Two features:

$$f_1(\boldsymbol{x}, y) = \mathbb{I}[y = \text{positive}] \wedge \mathbb{I}[\boldsymbol{x} \text{ contains } great]$$

 $f_2(\boldsymbol{x}, y) = \mathbb{I}[y = \text{negative}] \wedge \mathbb{I}[\boldsymbol{x} \text{ contains } great]$

where I[S] = 1 if S is true, 0 otherwise

$$score(\boldsymbol{x}, y, \mathbf{w}) = \mathbf{w}^{\top} \mathbf{f}(\boldsymbol{x}, y) = \sum_{i} w_{i} f_{i}(\boldsymbol{x}, y)$$

Two features:

$$f_1(\boldsymbol{x}, y) = \mathbb{I}[y = \text{positive}] \wedge \mathbb{I}[\boldsymbol{x} \text{ contains } great]$$

 $f_2(\boldsymbol{x}, y) = \mathbb{I}[y = \text{negative}] \wedge \mathbb{I}[\boldsymbol{x} \text{ contains } great]$

where $\mathbb{I}[S] = 1$ if S is true, 0 otherwise

• What do you expect the weights to be?

3

$$w_1 > w_2$$
? $w_1 = w_2$? $w_1 < w_2$?

$$\operatorname{score}(\boldsymbol{x}, y, \mathbf{w}) = \mathbf{w}^{\top} \mathbf{f}(\boldsymbol{x}, y) = \sum_{i} w_{i} f_{i}(\boldsymbol{x}, y)$$

Two features:

$$f_1(\boldsymbol{x}, y) = \mathbb{I}[y = \text{positive}] \wedge \mathbb{I}[\boldsymbol{x} \text{ contains } great]$$

 $f_2(\boldsymbol{x}, y) = \mathbb{I}[y = \text{negative}] \wedge \mathbb{I}[\boldsymbol{x} \text{ contains } great]$

where $\mathbb{I}[S] = 1$ if S is true, 0 otherwise

What do you expect the weights to be?

$$w_1 > w_2$$
?

$$w_1 > w_2$$
? $w_1 = w_2$? $w_1 < w_2$?

Two features:

```
f_1(\boldsymbol{x}, y) = \mathbb{I}[y = \text{positive}] \wedge \mathbb{I}[\boldsymbol{x} \text{ contains } great]
f_2(\boldsymbol{x}, y) = \mathbb{I}[y = \text{negative}] \wedge \mathbb{I}[\boldsymbol{x} \text{ contains } great]
```

- Let's say we set $w_1 > w_2$
- On sentences containing "great" in the Stanford Sentiment Treebank training data, this would get us an accuracy of 69%
- But "great" only appears in 83/6911 examples

Two features:

```
f_1(\boldsymbol{x}, y) = \mathbb{I}[y = \text{positive}] \wedge \mathbb{I}[\boldsymbol{x} \text{ contains } great]
f_2(\boldsymbol{x}, y) = \mathbb{I}[y = \text{negative}] \wedge \mathbb{I}[\boldsymbol{x} \text{ contains } great]
```

ambiguity: "great" may not mean positive sentiment

- On sentences containing "great" in the Stanford Sentiment Treebank training data, this would get us an accuracy of 69%
- But "great" only appears in 83/6911 examples

variability: many other words can indicate positive sentiment

• Usually, *great* indicates positive sentiment:

The most wondrous love story in years, it is a *great* film.

A *great* companion piece to other Napoleon films.

Usually, great indicates positive sentiment:
 The most wondrous love story in years, it is a great film.
 A great companion piece to other Napoleon films.

• Sometimes not. Why? List 3 reasons.

Usually, great indicates positive sentiment:

The most wondrous love story in years, it is a **great** film.

A great companion piece to other Napoleon films.

• Sometimes not. Why? List 3 reasons.

Negation: It's not a **great** monster movie.

Different sense: There's a **great** deal of corny dialogue and preposterous moments.

Multiple sentiments: A great ensemble cast can't lift this heartfelt enterprise out of the familiar.

What about a feature like the following?

$$f_3(\boldsymbol{x},y) = \mathbb{I}[\boldsymbol{x} \text{ contains } great]$$

What do you expect its weight to be?

What about a feature like the following?

$$f_3(\boldsymbol{x},y) = \mathbb{I}[\boldsymbol{x} \text{ contains } great]$$

- What do you expect its weight to be?
 - Doesn't matter.
 - Why?

classify
$$(\boldsymbol{x}, \mathbf{w}) = \underset{y \in \{\text{positive, negative}\}}{\operatorname{argmax}} \mathbf{w}^{\top} \mathbf{f}(\boldsymbol{x}, y)$$

 a feature with the same value for all outputs will not affect the argmax

Text Classification

- datasets
- classification
 - modeling
 - inference
 - learning

inference: solve
$$\operatorname{argmax}$$

$$\operatorname{classify}(\boldsymbol{x}, \boldsymbol{w}) = \operatorname{argmax} \operatorname{score}(\boldsymbol{x}, y, \boldsymbol{w})$$

 Inference: How do we efficiently search over the space of all labels?

Inference for Text Classification

$$\operatorname{classify}(\boldsymbol{x},\boldsymbol{w}) = \underset{y \in \{\text{positive}, \text{negative}\}}{\operatorname{argmax}} \operatorname{score}(\boldsymbol{x},y,\boldsymbol{w})$$

trivial (loop over labels)

Text Classification

- datasets
- classification
 - modeling
 - inference
 - learning

Modeling, Inference, Learning

 Learning: How should we choose values for the weights?

in the beginning, we just had data

- in the beginning, we just had data
- first innovation: split into train and test
 - motivation: simulate conditions of applying system in practice

- in the beginning, we just had data
- first innovation: split into train and test
 - motivation: simulate conditions of applying system in practice
- but, there's a problem with this...

- in the beginning, we just had data
- first innovation: split into train and test
 - motivation: simulate conditions of applying system in practice
- but, there's a problem with this...
 - we need to explore and evaluate methodological choices
 - after multiple evaluations on test, it is no longer a simulation of real-world conditions

- we need to explore/evaluate methodological choices
- what should we do?
 - some use cross validation on train, but this is slow and doesn't quite simulate real-world settings (why?)

- we need to explore/evaluate methodological choices
- what should we do?
 - some use cross validation on train, but this is slow and doesn't quite simulate real-world settings (why?)
- second innovation: divide data into train, test, and a third set called development (dev) or validation (val)
 - use dev/val to evaluate choices
 - then, when ready to write the paper, evaluate the best model on test

- we need to explore/evaluate methodological choices
- what should we do?
 - some use cross validation on train, but this is slow and doesn't quite simulate real-world settings (why?)
- second innovation: divide data into train, test, and a third set called development (dev) or validation (val)
 - use dev/val to evaluate choices
 - then, when ready to write the paper, evaluate the best model on test
- are we done yet? no! there's still a problem:

- we need to explore/evaluate methodological choices
- what should we do?
 - some use cross validation on train, but this is slow and doesn't quite simulate real-world settings (why?)
- second innovation: divide data into train, test, and a third set called development (dev) or validation (val)
 - use dev/val to evaluate choices
 - then, when ready to write the paper, evaluate the best model on test
- are we done yet? no! there's still a problem:
 - overfitting to dev/val

- best practice: split data into train, development (dev), development test (devtest), and test
 - train model on train, tune hyperparameters on dev, do preliminary testing on devtest, do final testing on test a single time when writing the paper
 - Even better to have even more test sets! test1, test2, etc.
- experimental credibility is a huge component of doing useful research
- when you publish a result, it had better be replicable without tuning anything on test

Don't Cheat!

