TTIC 31190: Natural Language Processing

Kevin Gimpel Spring 2018

Lecture 6: Learning for Classification; Language Modeling

- assignment 1 due today
- questions?
- if you want to use late day(s), state that on your report

assignment 2 will be posted tomorrow

 start thinking about your project, who you might want to work with, etc.

- short quiz at start of class Wed., April 18th
- covering material up to and including Mon.,
 April 9th
- don't stress about it
- grading will be check-minus/check/check-plus

Roadmap

- words, morphology, lexical semantics
- text classification
- simple neural methods for NLP
- language modeling and word embeddings
- recurrent/recursive/convolutional networks in NLP
- sequence labeling, HMMs, dynamic programming
- syntax and syntactic parsing
- semantics, compositionality, semantic parsing
- machine translation and other NLP tasks

Text Classification

- datasets
- classification
 - modeling
 - inference
 - learning

Classifiers

- one simple type:
 - for any input x, assign a score to each label y

$$score(\boldsymbol{x}, y, \boldsymbol{w})$$

– classify by choosing highest-scoring label:

classify
$$(\boldsymbol{x}, \boldsymbol{w}) = \underset{y}{\operatorname{argmax}} \operatorname{score}(\boldsymbol{x}, y, \boldsymbol{w})$$

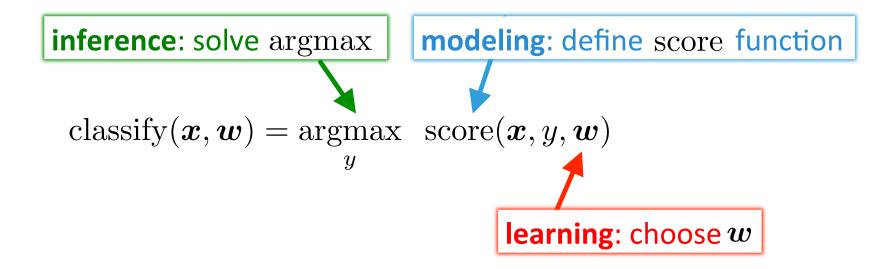
Linear Models

- parameters are arranged in a vector w
- score function is linear in w:

$$score(\boldsymbol{x}, y, \mathbf{w}) = \mathbf{w}^{\top} \mathbf{f}(\boldsymbol{x}, y) = \sum_{i} w_{i} f_{i}(\boldsymbol{x}, y)$$

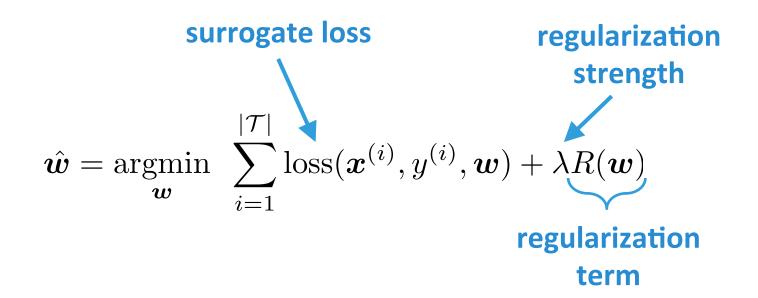
• f : vector of feature functions

Modeling, Inference, Learning

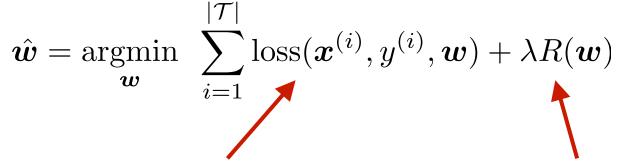


Learning: How do we choose the weights w?

Regularized Empirical Risk Minimization



Regularized Empirical Risk Minimization

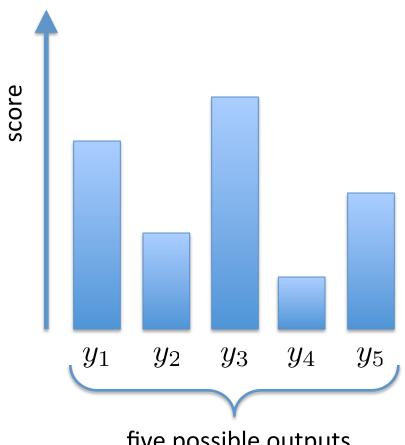


encourages model to fit the training data well

encourages model to be "simpler" in the hope that this will help it to generalize to new data

Visualization

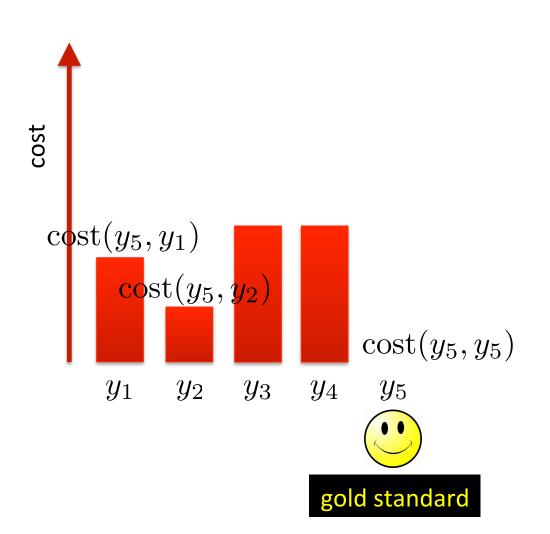
for a single input **x**



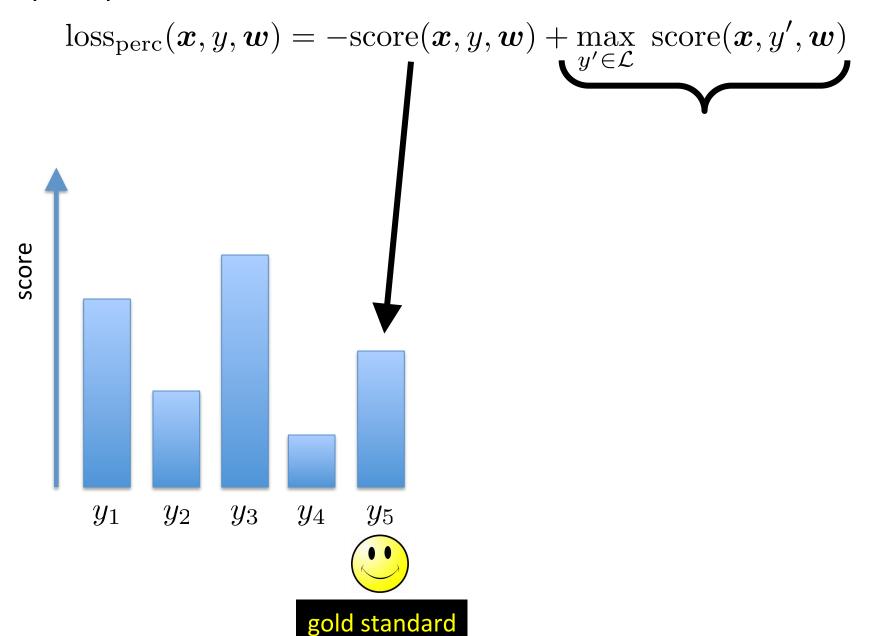
five possible outputs

Visualization

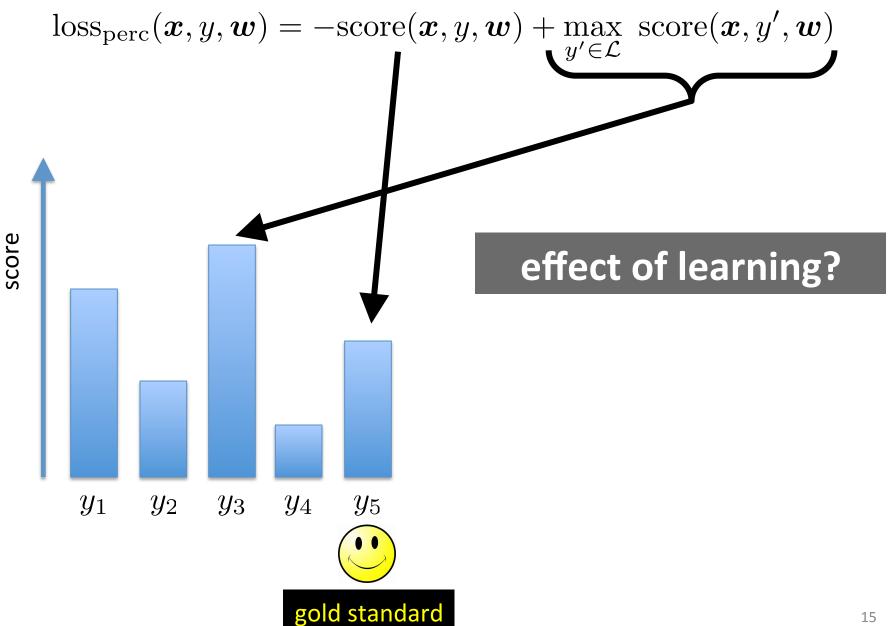
for a single input x



perceptron loss:

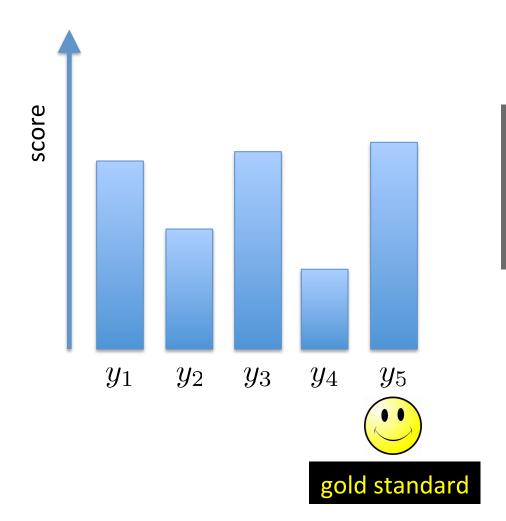


perceptron loss:



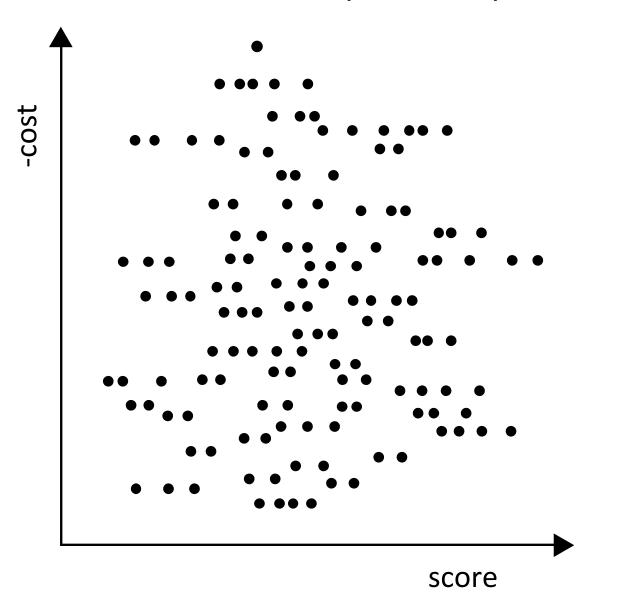
perceptron loss:

$$loss_{perc}(\boldsymbol{x}, y, \boldsymbol{w}) = -score(\boldsymbol{x}, y, \boldsymbol{w}) + \max_{y' \in \mathcal{L}} score(\boldsymbol{x}, y', \boldsymbol{w})$$

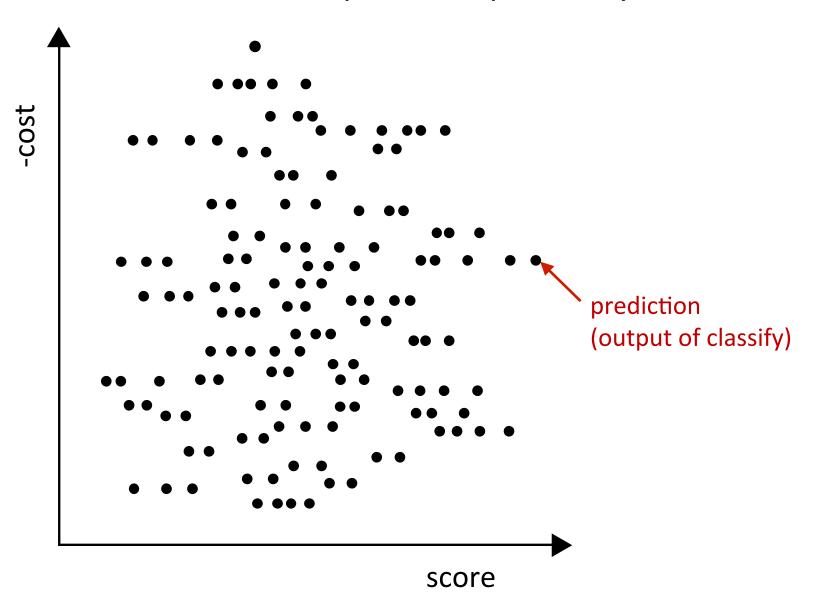


effect of learning: gold standard will have highest score

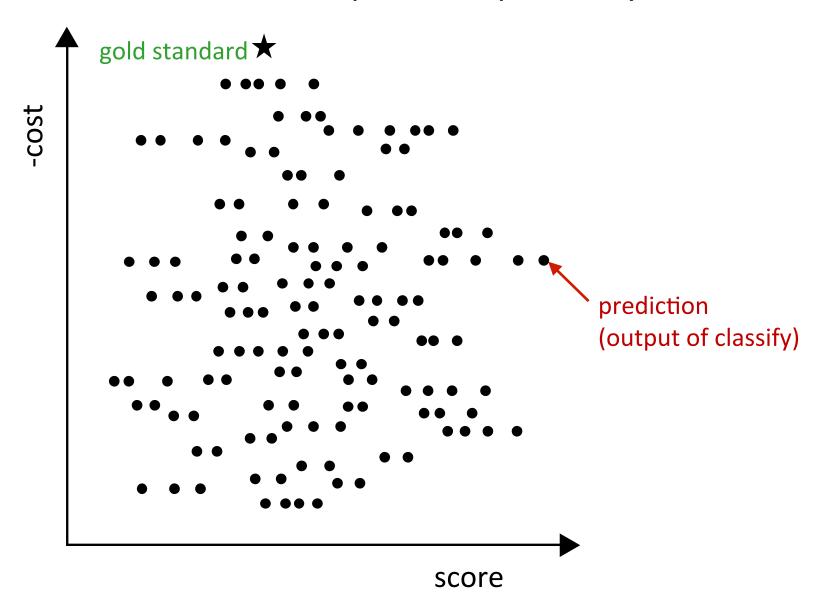
Visualization for a single **x**: each point is a possible **y**

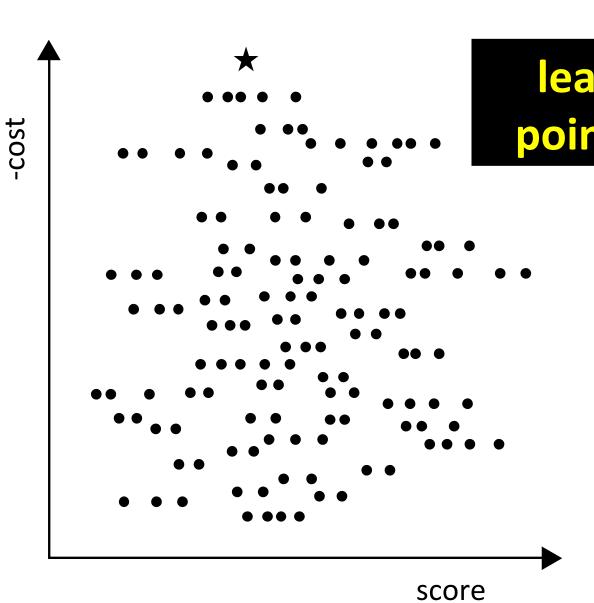


Visualization for a single **x**: each point is a possible **y**

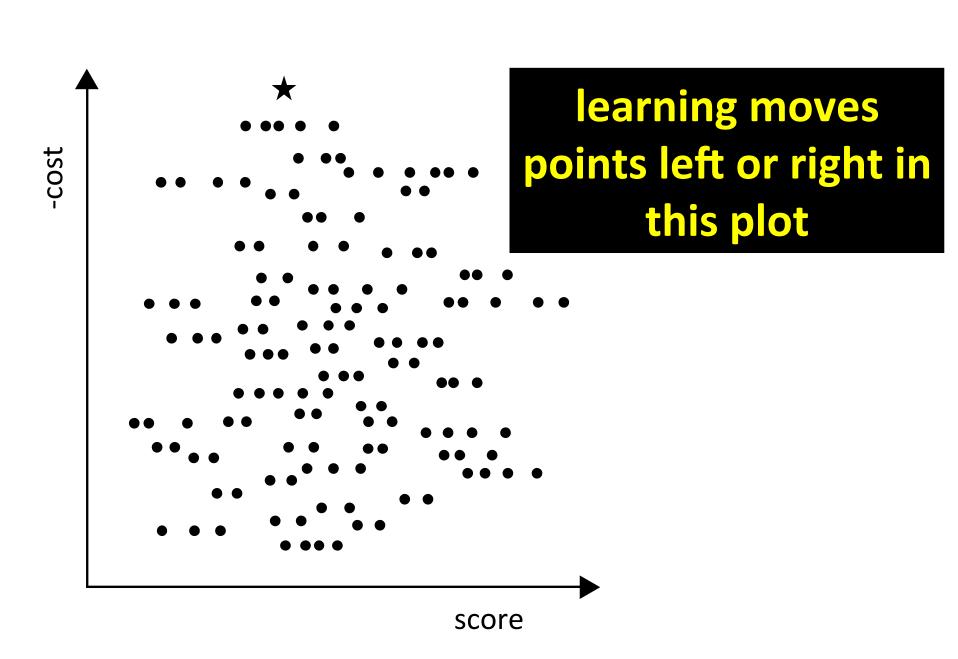


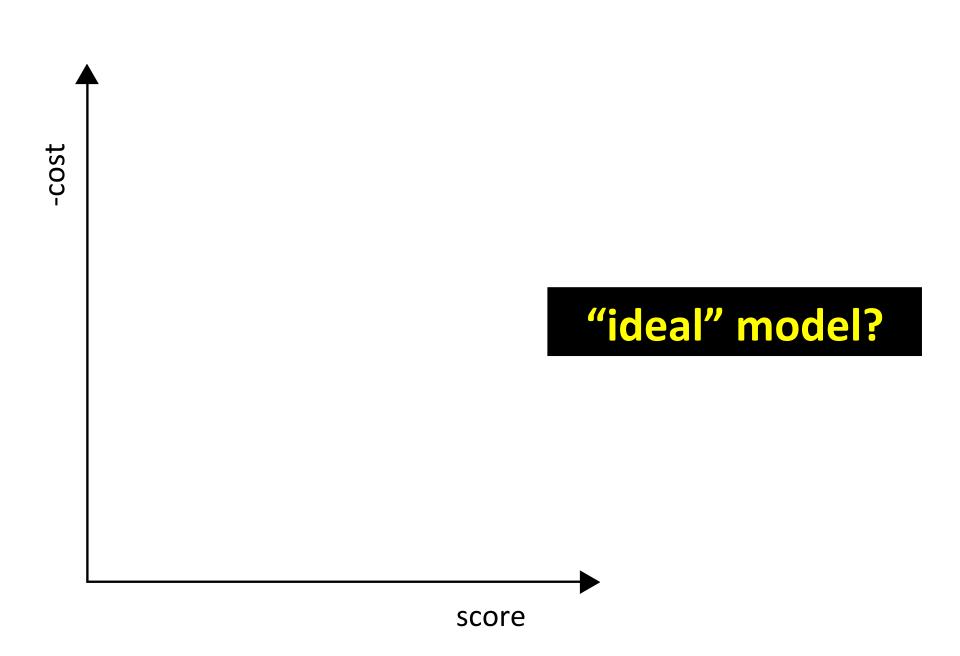
Visualization for a single **x**: each point is a possible **y**

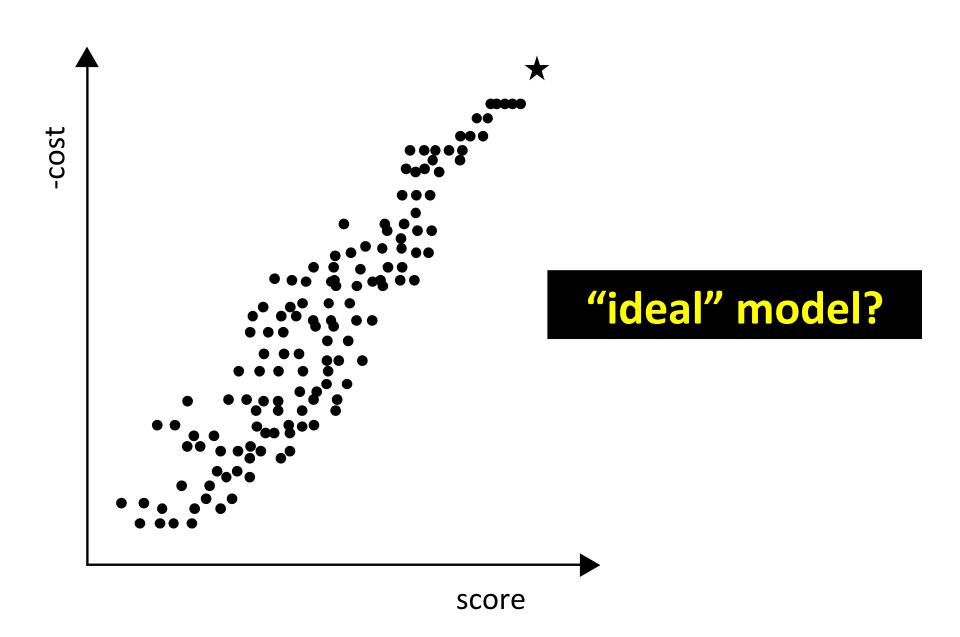




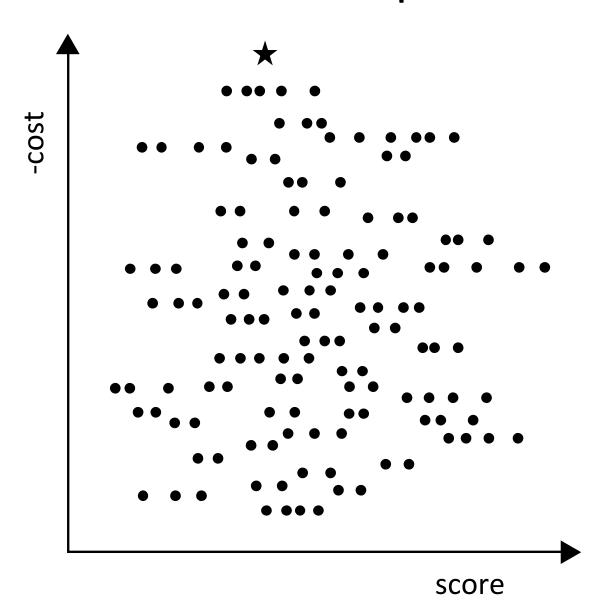
learning moves points in this plot



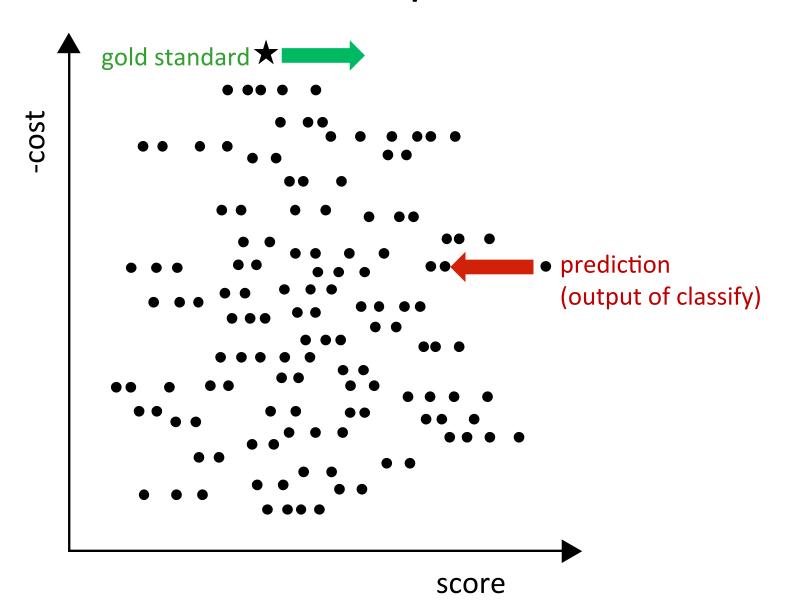




Perceptron Loss?



Perceptron Loss



Losses for Linear Models

$$\operatorname{loss_{perc}}(\boldsymbol{x}, y, \boldsymbol{w}) = -\operatorname{score}(\boldsymbol{x}, y, \boldsymbol{w}) + \max_{y' \in \mathcal{L}} \operatorname{score}(\boldsymbol{x}, y', \boldsymbol{w})$$
$$\operatorname{loss_{perc}}(\boldsymbol{x}, y, \mathbf{w}) = -\mathbf{w}^{\top} \mathbf{f}(\boldsymbol{x}, y) + \max_{y' \in \mathcal{L}} \mathbf{w}^{\top} \mathbf{f}(\boldsymbol{x}, y')$$

Losses for Linear Models

$$loss_{perc}(\boldsymbol{x}, y, \boldsymbol{w}) = -score(\boldsymbol{x}, y, \boldsymbol{w}) + \max_{y' \in \mathcal{L}} score(\boldsymbol{x}, y', \boldsymbol{w})$$
$$loss_{perc}(\boldsymbol{x}, y, \boldsymbol{w}) = -\boldsymbol{w}^{\top} \boldsymbol{f}(\boldsymbol{x}, y) + \max_{y' \in \mathcal{L}} \boldsymbol{w}^{\top} \boldsymbol{f}(\boldsymbol{x}, y')$$
$$= -\sum_{i} w_{i} f_{i}(\boldsymbol{x}, y) + \max_{y' \in \mathcal{L}} \sum_{i} w_{i} f_{i}(\boldsymbol{x}, y')$$

some of our loss functions are not differentiable:

$$loss_{perc}(\boldsymbol{x}, y, \mathbf{w}) = -\sum_{i} w_{i} f_{i}(\boldsymbol{x}, y) + \max_{y' \in \mathcal{L}} \sum_{i} w_{i} f_{i}(\boldsymbol{x}, y')$$

but they are subdifferentiable:

$$\frac{\partial \operatorname{loss_{perc}}(\boldsymbol{x}, y, \mathbf{w})}{\partial w_j} =$$

some of our loss functions are not differentiable:

$$loss_{perc}(\boldsymbol{x}, y, \mathbf{w}) = -\sum_{i} w_{i} f_{i}(\boldsymbol{x}, y) + \max_{y' \in \mathcal{L}} \sum_{i} w_{i} f_{i}(\boldsymbol{x}, y')$$

but they are subdifferentiable:

$$\frac{\partial \operatorname{loss_{perc}}(\boldsymbol{x}, y, \mathbf{w})}{\partial w_j} = -f_j(\boldsymbol{x}, y) +$$

some of our loss functions are not differentiable:

$$loss_{perc}(\boldsymbol{x}, y, \mathbf{w}) = -\sum_{i} w_{i} f_{i}(\boldsymbol{x}, y) + \max_{y' \in \mathcal{L}} \sum_{i} w_{i} f_{i}(\boldsymbol{x}, y')$$

but they are subdifferentiable:

$$\frac{\partial loss_{perc}(\boldsymbol{x}, y, \mathbf{w})}{\partial w_j} = -f_j(\boldsymbol{x}, y) + \frac{\partial}{\partial w_j} \max_{y' \in \mathcal{L}} \sum_i w_i f_i(\boldsymbol{x}, y')$$

some of our loss functions are not differentiable:

$$loss_{perc}(\boldsymbol{x}, y, \mathbf{w}) = -\sum_{i} w_{i} f_{i}(\boldsymbol{x}, y) + \max_{y' \in \mathcal{L}} \sum_{i} w_{i} f_{i}(\boldsymbol{x}, y')$$

but they are subdifferentiable:

$$\frac{\partial}{\partial w_j} \max_{y' \in \mathcal{L}} \sum_i w_i f_i(\boldsymbol{x}, y') =$$

find subgradient of the function that achieves the max

some of our loss functions are not differentiable:

$$loss_{perc}(\boldsymbol{x}, y, \mathbf{w}) = -\sum_{i} w_{i} f_{i}(\boldsymbol{x}, y) + \max_{y' \in \mathcal{L}} \sum_{i} w_{i} f_{i}(\boldsymbol{x}, y')$$

but they are subdifferentiable:

$$\frac{\partial}{\partial w_j} \max_{y' \in \mathcal{L}} \sum_i w_i f_i(\boldsymbol{x}, y') = \frac{\partial}{\partial w_j} \sum_i w_i f_i(\boldsymbol{x}, \text{classify}(\boldsymbol{x}, \mathbf{w}))$$

find subgradient of the function that achieves the max

some of our loss functions are not differentiable:

$$loss_{perc}(\boldsymbol{x}, y, \mathbf{w}) = -\sum_{i} w_{i} f_{i}(\boldsymbol{x}, y) + \max_{y' \in \mathcal{L}} \sum_{i} w_{i} f_{i}(\boldsymbol{x}, y')$$

but they are subdifferentiable:

$$\frac{\partial}{\partial w_j} \max_{y' \in \mathcal{L}} \sum_i w_i f_i(\boldsymbol{x}, y') = \frac{\partial}{\partial w_j} \sum_i w_i f_i(\boldsymbol{x}, \text{classify}(\boldsymbol{x}, \mathbf{w})) = f_j(\boldsymbol{x}, \text{classify}(\boldsymbol{x}, \mathbf{w}))$$

find subgradient of the function that achieves the max

perceptron loss:

$$loss_{perc}(\boldsymbol{x}, y, \mathbf{w}) = -\sum_{i} w_{i} f_{i}(\boldsymbol{x}, y) + \max_{y' \in \mathcal{L}} \sum_{i} w_{i} f_{i}(\boldsymbol{x}, y')$$

subderivative for a single parameter:

$$\frac{\partial \operatorname{loss_{perc}}(\boldsymbol{x}, y, \mathbf{w})}{\partial w_j} = -f_j(\boldsymbol{x}, y) + f_j(\boldsymbol{x}, \operatorname{classify}(\boldsymbol{x}, \mathbf{w}))$$

perceptron loss and subgradient:

$$\frac{\log_{\text{perc}}(\boldsymbol{x}, y, \mathbf{w}) = -\sum_{i} w_{i} f_{i}(\boldsymbol{x}, y) + \max_{y' \in \mathcal{L}} \sum_{i} w_{i} f_{i}(\boldsymbol{x}, y')}{\partial \log_{\text{perc}}(\boldsymbol{x}, y, \mathbf{w})} = -f_{j}(\boldsymbol{x}, y) + f_{j}(\boldsymbol{x}, \text{classify}(\boldsymbol{x}, \mathbf{w}))$$

parameter update:

$$w_i \leftarrow w_i + f_i(\boldsymbol{x}, y) - f_i(\boldsymbol{x}, \text{classify}(\boldsymbol{x}, \mathbf{w}))$$

perceptron loss and subgradient:

$$loss_{perc}(\boldsymbol{x}, y, \mathbf{w}) = -\sum_{i} w_{i} f_{i}(\boldsymbol{x}, y) + \max_{y' \in \mathcal{L}} \sum_{i} w_{i} f_{i}(\boldsymbol{x}, y')$$
$$\partial loss_{perc}(\boldsymbol{x}, y, \mathbf{w})$$

$$\frac{\partial loss_{perc}(\boldsymbol{x}, y, \mathbf{w})}{\partial w_j} = -f_j(\boldsymbol{x}, y) + f_j(\boldsymbol{x}, classify(\boldsymbol{x}, \mathbf{w}))$$

parameter update:

$$w_j \leftarrow w_j + \eta \left(f_j(\boldsymbol{x}, y) - f_j(\boldsymbol{x}, \text{classify}(\boldsymbol{x}, \mathbf{w})) \right)$$

step size / learning rate for stochastic subgradient descent

Perceptron Loss with Regularization

$$\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i=1}^{|\mathcal{T}|} \operatorname{loss}_{\operatorname{perc}}(\boldsymbol{x}^{(i)}, y^{(i)}, \mathbf{w}) + \lambda R_{L2}(\mathbf{w})$$

$$R_{L2}(\mathbf{w}) = ||\mathbf{w}||_2^2 = \sum_i w_i^2$$

update rule from before:

$$w_j \leftarrow w_j + \eta \left(f_j(\boldsymbol{x}, y) - f_j(\boldsymbol{x}, \text{classify}(\boldsymbol{x}, \mathbf{w})) \right)$$

• with L2 regularization:

Perceptron Loss with Regularization

$$\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i=1}^{|\mathcal{T}|} \operatorname{loss}_{\operatorname{perc}}(\boldsymbol{x}^{(i)}, y^{(i)}, \mathbf{w}) + \lambda R_{L2}(\mathbf{w})$$

$$R_{L2}(\mathbf{w}) = ||\mathbf{w}||_2^2 = \sum_i w_i^2$$

update rule from before:

$$w_j \leftarrow w_j + \eta \left(f_j(\boldsymbol{x}, y) - f_j(\boldsymbol{x}, \text{classify}(\boldsymbol{x}, \mathbf{w})) \right)$$

• with L2 regularization:

$$w_j \leftarrow w_j + \eta \left(f_j(\boldsymbol{x}, y) - f_j(\boldsymbol{x}, \text{classify}(\boldsymbol{x}, \mathbf{w})) - 2\lambda w_j \right)$$

Perceptron Loss with Regularization

$$\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i=1}^{|\mathcal{T}|} \operatorname{loss_{perc}}(\boldsymbol{x}^{(i)}, y^{(i)}, \mathbf{w}) + \lambda R_{L2}(\mathbf{w})$$

$$R_{L2}(\mathbf{w}) = ||\mathbf{w}||_2^2 = \sum_i w_i^2$$

update rule from before:

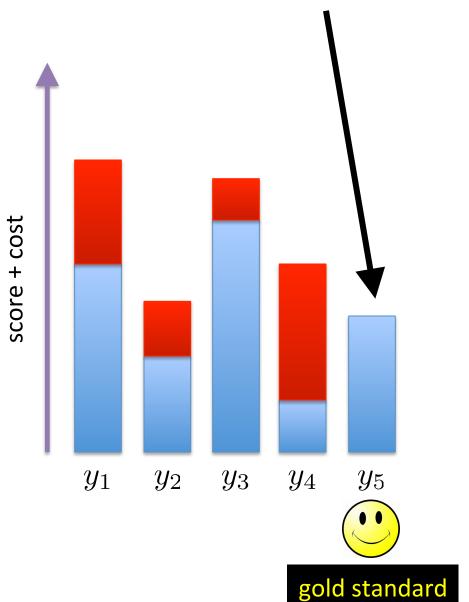
$$w_j \leftarrow w_j + \eta \left(f_j(\boldsymbol{x}, y) - f_j(\boldsymbol{x}, \text{classify}(\boldsymbol{x}, \mathbf{w})) \right)$$

• with L2 regularization:

$$w_j \leftarrow w_j + \eta \left(f_j(\boldsymbol{x}, y) - f_j(\boldsymbol{x}, \text{classify}(\boldsymbol{x}, \mathbf{w})) - 2\lambda w_j \right)$$

pushes weights closer to zero ("weight decay")

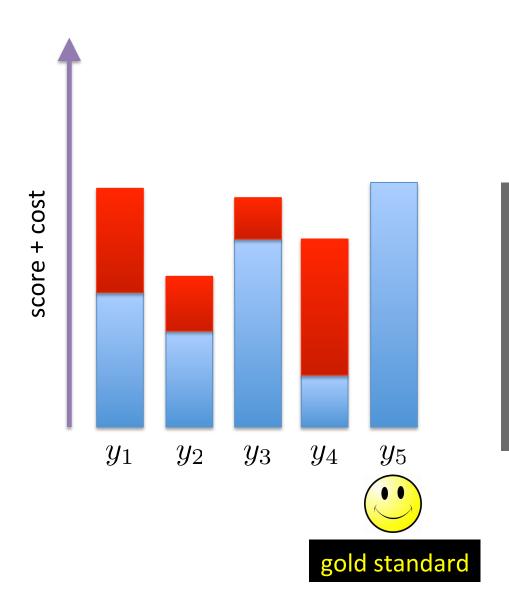
 $\operatorname{loss_{hinge}}(\boldsymbol{x}, y, \boldsymbol{w}) = -\operatorname{score}(\boldsymbol{x}, y, \boldsymbol{w}) + \max_{y' \in \mathcal{L}} \left(\operatorname{score}(\boldsymbol{x}, y', \boldsymbol{w}) + \operatorname{cost}(y, y')\right)$



 $\operatorname{loss_{hinge}}(\boldsymbol{x}, y, \boldsymbol{w}) = -\operatorname{score}(\boldsymbol{x}, y, \boldsymbol{w}) + \max_{y' \in \mathcal{L}} \left(\operatorname{score}(\boldsymbol{x}, y', \boldsymbol{w}) + \operatorname{cost}(y, y')\right)$ score + cost y_1 y_2 y_3 y_4 y_5 gold standard

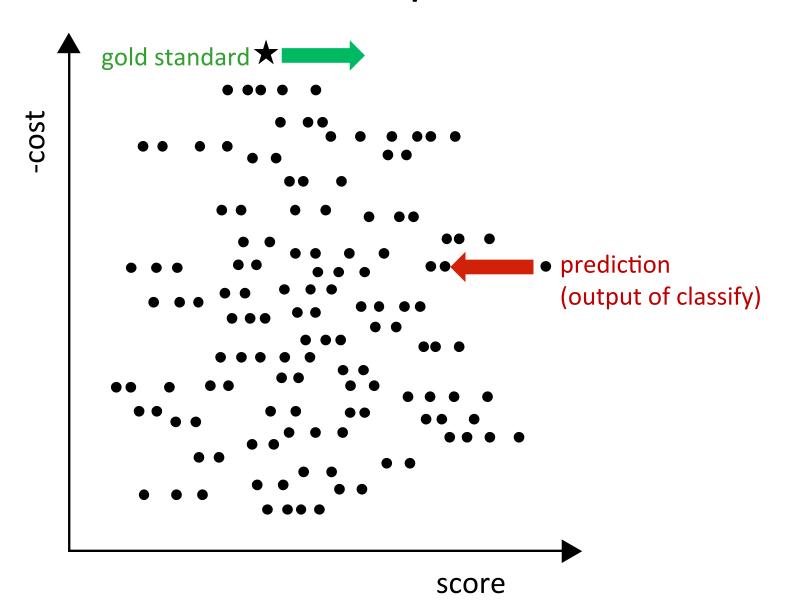
 $loss_{hinge}(\boldsymbol{x}, y, \boldsymbol{w}) = -score(\boldsymbol{x}, y, \boldsymbol{w}) + \max_{y' \in \mathcal{L}} (score(\boldsymbol{x}, y', \boldsymbol{w}) + cost(y, y'))$ score + cost effect of learning? y_1 y_2 y_3 y_4 y_5 gold standard

$$loss_{hinge}(\boldsymbol{x}, y, \boldsymbol{w}) = -score(\boldsymbol{x}, y, \boldsymbol{w}) + \max_{y' \in \mathcal{L}} (score(\boldsymbol{x}, y', \boldsymbol{w}) + cost(y, y'))$$

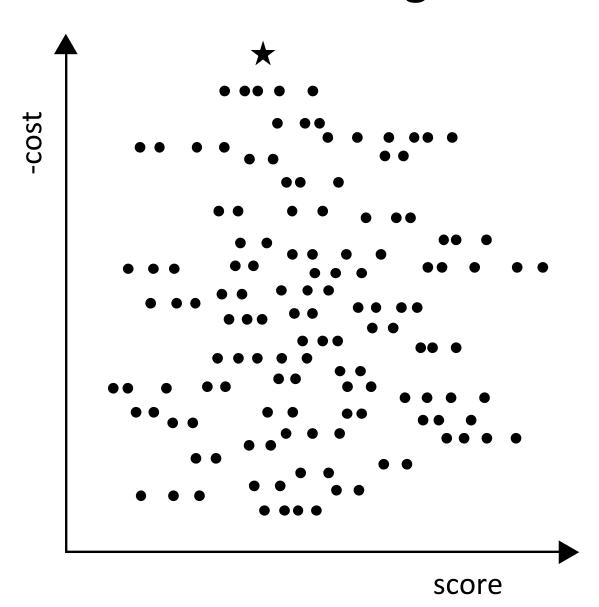


effect of learning:
score of gold standard
will be higher than
score+cost of all
others

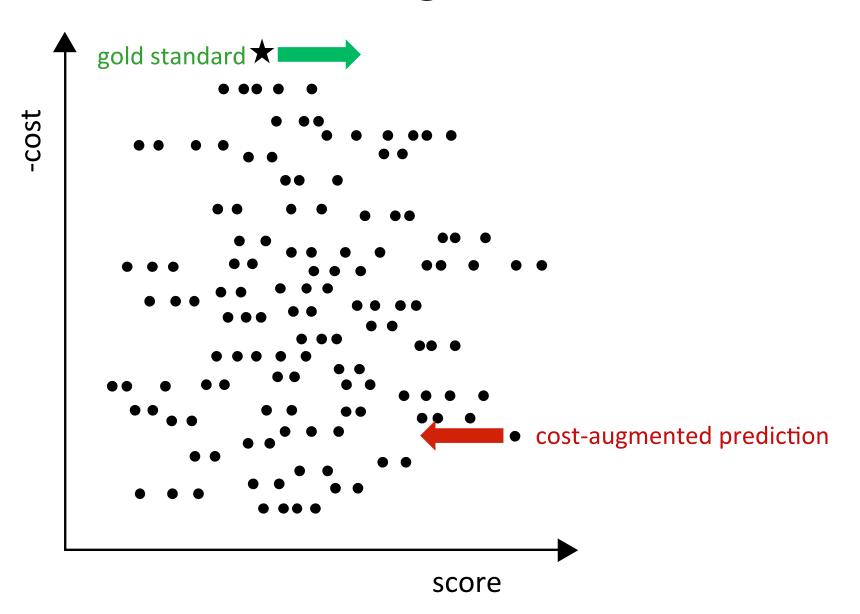
Perceptron Loss



Hinge Loss?



Hinge Loss



Perception → Hinge

$$loss_{perc}(\boldsymbol{x}, y, \mathbf{w}) = -\sum_{i} w_{i} f_{i}(\boldsymbol{x}, y) + \max_{y' \in \mathcal{L}} \sum_{i} w_{i} f_{i}(\boldsymbol{x}, y')$$

$$loss_{hinge}(\boldsymbol{x}, y, \mathbf{w}) = -\sum_{i} w_{i} f_{i}(\boldsymbol{x}, y) + \max_{y' \in \mathcal{L}} \left(\sum_{i} w_{i} f_{i}(\boldsymbol{x}, y') + cost(y, y') \right)$$

Loss Subgradients for Linear Models

hinge loss:

$$loss_{hinge}(\boldsymbol{x}, y, \mathbf{w}) = -\sum_{i} w_{i} f_{i}(\boldsymbol{x}, y) + \max_{y' \in \mathcal{L}} \left(\sum_{i} w_{i} f_{i}(\boldsymbol{x}, y') + cost(y, y') \right)$$

subderivative for a single parameter:

Loss Subgradients for Linear Models

hinge loss:

$$loss_{hinge}(\boldsymbol{x}, y, \mathbf{w}) = -\sum_{i} w_{i} f_{i}(\boldsymbol{x}, y) + \max_{y' \in \mathcal{L}} \left(\sum_{i} w_{i} f_{i}(\boldsymbol{x}, y') + cost(y, y') \right)$$

subderivative for a single parameter:

$$\frac{\partial loss_{hinge}(\boldsymbol{x}, y, \mathbf{w})}{\partial w_j} = -f_j(\boldsymbol{x}, y) + f_j(\boldsymbol{x}, costClassify(\boldsymbol{x}, y, \mathbf{w}))$$

Loss Subgradients for Linear Models

hinge loss:

$$loss_{hinge}(\boldsymbol{x}, y, \mathbf{w}) = -\sum_{i} w_{i} f_{i}(\boldsymbol{x}, y) + \max_{y' \in \mathcal{L}} \left(\sum_{i} w_{i} f_{i}(\boldsymbol{x}, y') + cost(y, y') \right)$$

subderivative for a single parameter:

$$\frac{\partial loss_{hinge}(\boldsymbol{x}, y, \mathbf{w})}{\partial w_j} = -f_j(\boldsymbol{x}, y) + f_j(\boldsymbol{x}, costClassify(\boldsymbol{x}, y, \mathbf{w}))$$

costClassify
$$(\boldsymbol{x}, y, \mathbf{w}) = \underset{y' \in \mathcal{L}}{\operatorname{argmax}} \left(\sum_{i} w_{i} f_{i}(\boldsymbol{x}, y') + \operatorname{cost}(y, y') \right)$$

"cost-augmented inference" or "cost-augmented decoding"

Feature count cut-off of zero?

perceptron loss update rule:

$$w_j \leftarrow w_j + \eta \left(f_j(\boldsymbol{x}, y) - f_j(\boldsymbol{x}, \text{classify}(\boldsymbol{x}, \mathbf{w})) \right)$$

 what do you expect to happen to weights of features with count 0 in the training data? (if they are initialized to 0)

Feature count cut-off of zero?

perceptron loss update rule:

$$w_j \leftarrow w_j + \eta \left(f_j(\boldsymbol{x}, y) - f_j(\boldsymbol{x}, \text{classify}(\boldsymbol{x}, \mathbf{w})) \right)$$

- what do you expect to happen to weights of features with count 0 in the training data? (if they are initialized to 0)
 - they will stay at zero or become negative

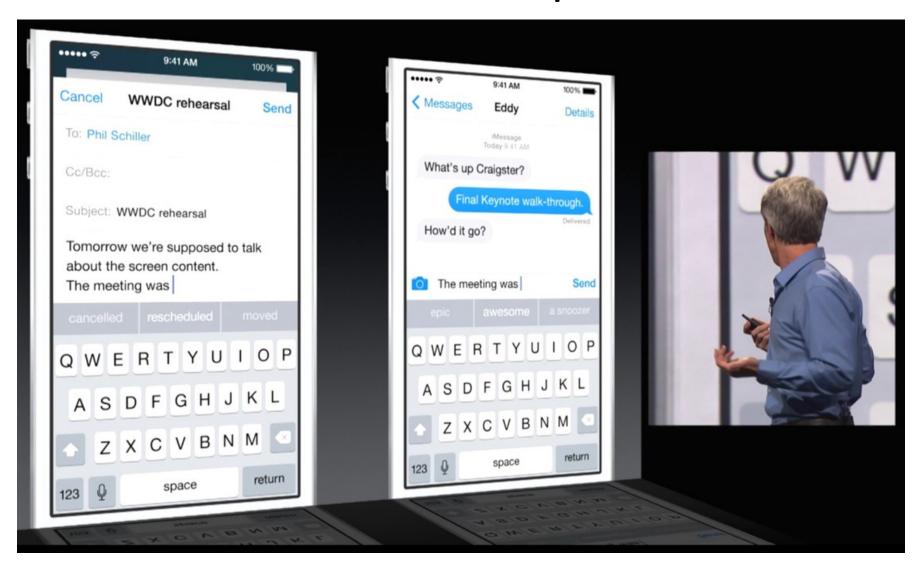
Roadmap

- words, morphology, lexical semantics
- text classification
- simple neural methods for NLP
- language modeling and word embeddings
- recurrent/recursive/convolutional networks in NLP
- sequence labeling, HMMs, dynamic programming
- syntax and syntactic parsing
- semantics, compositionality, semantic parsing
- machine translation and other NLP tasks

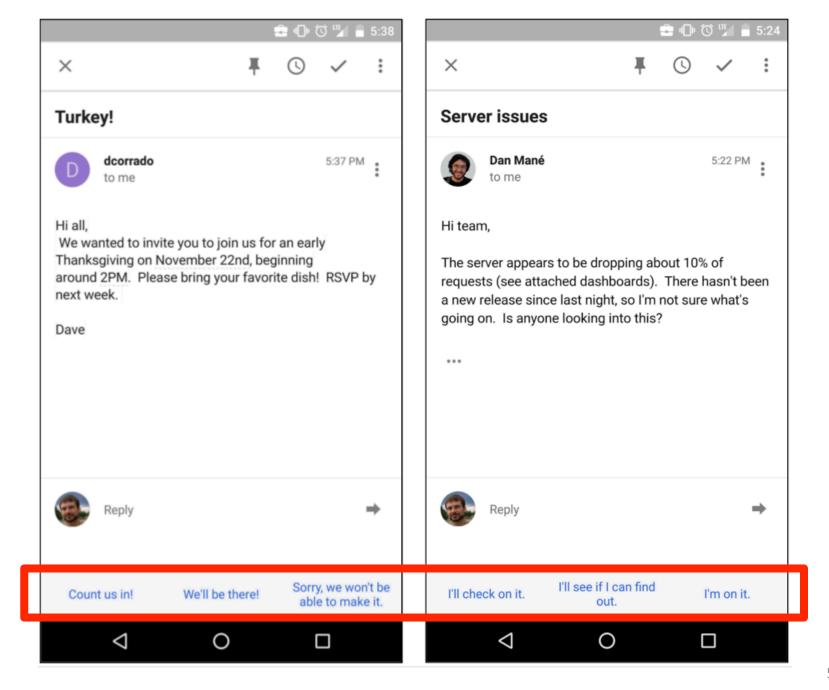
Probabilistic Language Models

- language modeling: assign probabilities to sentences
- Why?
 - machine translation:
 - P(high winds tonite) > P(large winds tonite)
 - spelling correction:
 - The office is about fifteen minuets from my house
 - P(about fifteen minutes from) > P(about fifteen minuets from)
 - speech recognition:
 - P(I saw a van) >> P(eyes awe of an)
 - summarization, question answering, etc.!

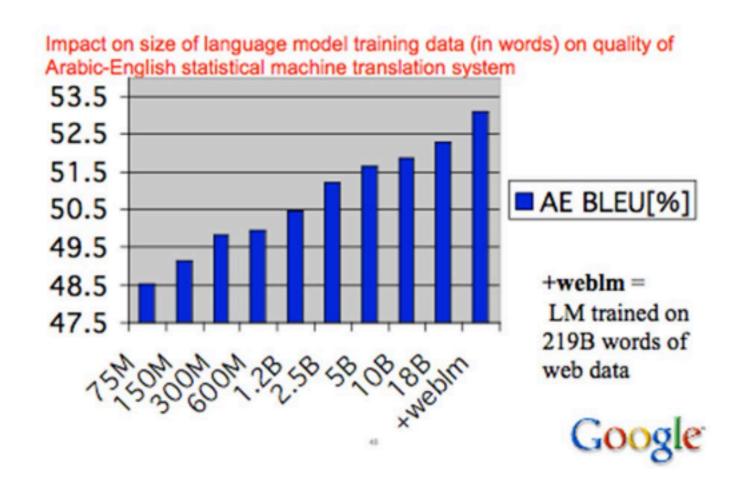
Automatic Completion



Automatic Completion



Language Modeling for Machine Translation



Probabilistic Language Modeling

goal: compute the probability of a sequence of words:

$$P(\mathbf{w}) = P(w_1, w_2, ..., w_n)$$

related task: probability of next word:

$$P(w_4 \mid w_1, w_2, w_3)$$

a model that computes either of these:

$$P(w)$$
 or $P(w_k \mid w_1, w_2, ..., w_{k-1})$

is called a language model (LM)

How to compute P(w)

How to compute this joint probability:

P(its, water, is, so, transparent, that)

 Intuition: let's rely on the Chain Rule of Probability

Reminder: Chain Rule

 factor joint probability into product of conditional probabilities:

$$P(w_1, w_2, ..., w_n) = P(w_1)P(w_2 \mid w_1)P(w_3 \mid w_1, w_2) ... P(w_n \mid w_1, w_2, ..., w_{n-1})$$

we have not yet made any independence assumptions

Chain Rule for computing joint probability of words in sentence

$$P(w_1, w_2, ..., w_n) = \prod_{i} P(w_i \mid w_1, w_2, ..., w_{i-1})$$

P("its water is so transparent") =

 $P(its) \times P(water \mid its) \times P(is \mid its water)$

× P(so | its water is) × P(transparent | its water is so)

How to estimate these probabilities

could we just count and divide?

P(the lits water is so transparent that) =
Count(its water is so transparent that the)
Count(its water is so transparent that)

- no! too many possible sentences!
- we'll never see enough data for estimating these

Markov Assumption

Andrei Markov

simplifying assumption:

 $P(\text{the lits water is so transparent that}) \approx P(\text{the lthat})$

or maybe:

 $P(\text{the }|\text{its water is so transparent that}) \approx P(\text{the }|\text{transparent that})$

Markov Assumption

• i.e., we approximate each component in the product:

$$P(w_i \mid w_1, ..., w_{i-2}, w_{i-1}) \approx P(w_i \mid w_{i-k}, ..., w_{i-2}, w_{i-1})$$

Simplest case: Unigram model

$$P(w_1, w_2, ..., w_n) = \prod_i P(w_i)$$

automatically generated sentences from a unigram model:

fifth an of futures the an incorporated a a the inflation most dollars quarter in is mass

thrift did eighty said hard 'm july bullish

that or limited the

Bigram model

condition on the previous word:

$$P(w_1, w_2, ..., w_n) = \prod_{i} P(w_i \mid w_{i-1})$$

automatically generated sentences from a bigram model:

texaco rose one in this issue is pursuing growth in a boiler house said mr. gurria mexico 's motion control proposal without permission from five hundred fifty five yen

outside new car parking lot of the agreement reached

this would be a record november

n-gram models

- we can extend to trigrams, 4-grams, 5-grams
- in general this is an insufficient model of language
 - because language has long-distance dependencies:

"The computer which I had just put into the machine room on the fifth floor crashed."

but we can often get away with n-gram models