TTIC 31190:
Natural Language Processing

Kevin Gimpel
Spring 2018

Lecture /:

Language Modeling, Smoothing,
Neural Language Models

 if you submitted assignment 1, | responded to
your email (let me know if you didn’t get a
response)

e assignment 2 has been posted, due in two
weeks from today

* | emailed the class Friday night after posting it
(let me know if you didn’t get the email)

 start thinking about your project, who you
might want to work with, etc.

short quiz at start of class Wed., April 18t

covering material up to and including Mon,,
April 9t

don’t stress about it
grading will be check-minus/check/check-plus

Roadmap

words, morphology, lexical semantics

text classification

language modeling

word embeddings
recurrent/recursive/convolutional networks in NLP
sequence labeling, HMMs, dynamic programming
syntax and syntactic parsing

semantics, compositionality, semantic parsing
machine translation and other NLP tasks

Automatic Completion

LIRS

941 AM

WWDC rehearsal M i

What's up Craigster?

WWDC rehearsal
How'd it go?
Tomorrow we're supposed to talk
about the screen content.

The meeting was! I8} The meeting was

QIWIEIR|T]Y|U] I]O|P QIWIEIRIT|Y|U|!I|O|P

ASDFGHJKL ASDFGHUJKL

Z XCVBNM

ZXCVBNM

space return

123 0
return

123 ¢ 8pace

X X © v :

Turkey!

e dcorrado PM

Hi all,

We wanted to invite you to join us for an early
Thanksgiving on November 22nd, beginning

around 2PM. Please bring your favorite dish! RSVP by
next week.

Dave

Sorry, we won't be
able to make it

Count us in! We'll be there!

X I © v

Server issues

Dan Mané 522PM
to me *

Hi team,

The server appears to be dropping about 10% of
requests (see attached dashboards). There hasn't been
a new release since last night, so I'm not sure what's
going on. Is anyone looking into this?

@ Reply =

I'll check on it. ll see ngncan find I'm on it.

Probabilistic Language Modeling

e goal: compute the probability of a sequence of words:
P(w) = P(wy,wa, ..., wy,)
* related task: probability of next word:
P(wy | w1, wa, w3)
* a model that computes either of these:
P(w) or P(wg|wy,ws,...,wk_1)

is called a language model (LM)

J&M/SLP3

Markov Assumption

* simplifying assumption:

Andrei Markov

P(the |its water 1s so transparent that) = P(the | that)

* Or maybe:

P(the l1ts water 1s so transparent that) = P(the | transparent that)

J&M/SLP3

Markov Assumption

* i.e., we approximate each component in the
product:

P(w; | wi, ...,wi—2, wi—1) = P(w; | Wi—g, ..., Wi—2, Wi—1)

J&M/SLP3

Simplest case: Unigram model

P(wy,wa, ..., wy) = HP(UJ@)

automatically generated sentences from a unigram model:

fifth an of futures the an incorporated a a the
inflation most dollars quarter in is mass

thrift did eighty said hard 'm july bullish

that or limited the

J&M/SLP3

Bigram model

condition on the previous word:
P(ws,wa,) = [Plws | wio)
1

automatically generated sentences from a bigram model:

texaco rose one in this issue is pursuing growth in a boiler
house said mr. gurria mexico ’'s motion control proposal
without permission from five hundred fifty five yen

outside new car parking lot of the agreement reached

this would be a record november

J&M/SLP3

Estimating bigram probabilities

* the maximum likelihood estimate (MLE)

count(w;_1, w;)

Plw; | wi—1) =
(UJ ‘UJ 1) Count(wi_l)

J&M/SLP3

An example

count (w;_1, w;)

Plw; | wi—1) =
(wi | wiza) count(w;_1)

<s>|am Sam </s>
<s>Sam |am </s>
<s> | do not like green eggs and ham </s>

= = .67 P(sam|<s>)=1=.33 P(am|I)
)=1=05 P(sam|am)=1=.5 P(do|I)

o= LI

||
L o

J&M/SLP3

More examples:
Berkeley Restaurant Project sentences

can you tell me about any good cantonese restaurants close by
mid priced thai food is what i’'m looking for

tell me about chez panisse

can you give me a listing of the kinds of food that are available
i’m looking for a good place to eat breakfast

when is caffe venezia open during the day

J&M/SLP3

Raw bigram counts

e counts from 9,222 sentences

e e.g., “i want” occurs 827 times

1 want | to eat chinese | food | lunch | spend
1 5 827 0 9 0 0 0 2
want 2 0 608 | 1 6 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 151 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

J&M/SLP3

Raw bigram probabilities

* normalize by unigram counts:

1 want | to eat chinese food lunch spend

2533 | 927 2417 | 746 158 1093 341 278
* bigram probabilities:

1 want | to eat chinese | food | lunch | spend

1 0.002 [0331]0 0.0036 | 0 0 0 0.00079
want 0.0022 |0 0.66 10.0011| 0.0065 |0.0065|0.0054 | 0.0011
to 0.00083 | O 0.001710.28 | 0.00083 | 0 0.00251 0.087
eat 0 0 0.00271 0 0.021 |0.0027[0.056 |0
chinese || 0.0063 | O 0 0 0 0.52 10.0063|0
food 0014 |0 0.014 |0 0.00092 | 0.0037 | O 0
lunch || 0.0059 |0 0 0 0 0.0029 | O 0
spend | 0.0036 | O 0.0036 | 0 0 0 0 0

J&M/SLP3

Bigram estimates of sentence probabilities

P(<s> I want english food </s>) =
P(I]| <s>)
x P(want | /)
x P(english | want)
x P(food | english)
x P(</s> | food)
= .000031

J&M/SLP3

Practical Issues

 we do everything in log space
—avoid underflow
—(also adding is faster than multiplying)

log(p1 X p2 X p3) = logp1 + log pa + log p3

J&M/SLP3

Language Modeling Toolkits

e SRILM
—http://www.speech.sri.com/projects/srilm/

e KenLM
— https://kheafield.com/code/kenim/

J&M/SLP3

Google N-Gram Release, August 2006

AUG All Our N-gram are Belong to You

Posted by Alex Franz and Thorsten Brants, Google Machine Translation Team

H

Here at Google Research we have been using word n-gram models for a variety of R&D projects,

That's why we decided to shére fhis enormous dataset _with everyone. We prbcess_ed 1,024,908,267.229 _words
of running text and are publishing the counts for all 1,176,470,663 five-word sequences that appear at least 40
times. There are 13,588,391 unique words, after discarding words that appear less than 200 times.

J&M/SLP3

¢ Sserve
* Sserve
* Sserve
* serve
* serve
* serve
¢ serve
¢ serve
¢ Sserve
¢ Sserve

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

as
as
as
as
as
as
as
as
as
as

Google N-Gram Release

the
the
the
the
the
the
the
the
the
the

incoming 92
incubator 99
independent 794
index 223
indication 72
indicator 120
indicators 45
indispensable 111
indispensible 40
individual 234

J&M/SLP3

Google Books Ngram Viewer

Graph these comma-separated phrases: l natural language processing,computational linguistics l case-insensitive

between 1955 and 2008 from the corpus English [C RGN Sl Search lots of books

0.0000220% -
0.0000200% -
0.0000180% A
0.0000160% -
0.0000140%
natural language processing
0.0000120% -
0.0000100% -
0.0000080% -
0.0000060% - computational linguistics
0.0000040% -

0.0000020% -

0.0000000% T T T T T T T T T T
1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

24

Google Books Ngram Viewer

Graph these comma-separated phrases: I natural language processing,NLP | case-insensitive

between 1955 and 2008 from the corpus English [RGN Sl Search lots of books

0.0000600% -
0.0000550%
0.0000500% -
0.0000450%
0.0000400% -
0.0000350%
0.0000300%
0.0000250% -
0.0000200%

NLP

0.0000150% —rr— natural language processing
0.0000100% -

0.0000050% -

0.0000000% T T T T T T T T T T
1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

25

Evaluation: How good is our model?

e does our language model prefer good
sentences to bad ones?
— assign higher probability to “real” or “frequently
observed” sentences
* than “ungrammatical” or “rarely observed” sentences?

J&M/SLP3

Extrinsic evaluation of N-gram models

* best evaluation for comparing models A and B
— put each model in a task
* spelling corrector, speech recognizer, MT system
— run the task, get an accuracy for A and for B
* how many misspelled words corrected properly
* how many words translated correctly
— compare accuracy for Aand B

J&M/SLP3

Difficulty of extrinsic evaluation of N-gram models

e extrinsic evaluation is time-consuming
— days or weeks depending on system

* 50, sometimes use intrinsic evaluation: perplexity
— bad approximation
* unless the test data looks just like the training data
* so generally only useful in pilot experiments
— but is helpful to think about

J&M/SLP3

Intuition of Perplexity

* the Shannon Game:
— how well can we predict the next word?

/- mushrooms 0.1
pepperoni 0.1

_ , anchovies 0.01
| always order pizza with cheese and <

The 33 President of the US was
fried rice 0.0001

| saw a

\ and 1e-100

— unigrams are terrible at this game (why?)

* a better model of a text is one which assigns a higher
probability to the word that actually occurs

J&M/SLP3

Probability of Held-out Data

e probability of held-out sentences:

1] P(w™)

()

* let’s work with log-probabilities:

log; H P(’w(i)) = Z log, P(’w(i))

e divide by number of words M in held-out
: 1 .
sentences: - ZlogzP(w“))

Probability -> Perplexity

* average log-probability of held-out words:
1 i
(= i ZlogQ P(w')

e perplexity:

PP =2¢

Perplexity as branching factor

* given a sentence consisting of random digits

» perplexity of this sentence under a model that
gives probability 1/10 to each digit?

1
= V7 logy P(w1,ws, ..., wnr)

1 Mo
=] il
MOgQEm

J&M/SLP3

Perplexity as branching factor

* given a sentence consisting of random digits

» perplexity of this sentence under a model that
gives probability 1/10 to each digit?

1
t = i logy P(w1, w2, ..., whr)

1 Mo
—] —
MOgQEm

PP = 2% = 10

J&M/SLP3

Lower perplexity = better model

e train: 38 million words
e test: 1.5 million words

mm

perplexity:

J&M/SLP3

Approximating Shakespeare

gram

gram

gram

gram

—To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have
—Hill he late speaks; or! a more to leg less first you enter

—Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.
—What means, sir. I confess she? then all sorts, he is trim, captain.

—Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
tis done.
—This shall forbid it should be branded, if renown made it empty.

—King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;
—It cannot be but so.

J&M/SLP3

Shakespeare as corpus

* 884,647 tokens, 29,066 types

* Shakespeare produced 300,000 bigram types
out of 844 million possible bigrams

— 99.96% of possible bigrams were never seen (have
zero entries in the table)

* 4-grams worse: what's coming out looks like
Shakespeare because it is Shakespeare

J&M/SLP3

Wall Street Journal

1 Months the my and issue of year foreign new exchange’s september

were recession exchange new endorsed a acquire to six executives
gram

Last December through the way to preserve the Hudson corporation N.
2 B. E. C. Taylor would seem to complete the major central planners one
gram point five percent of U. S. E. has already old M. X. corporation of living
on information such as more frequently fishing to keep her

They also point to ninety nine point six billion dollars from two hundred
3 four oh six three percent of the rates of interest stores as Mexico and
gram Brazil on market conditions

J&M/SLP3

The perils of overfitting

* N-grams only work well for word prediction if the
test corpus looks like the training corpus

— in real life, it often doesn’t
— we need to train robust models that generalize!
— one kind of generalization: Zeros!
 things that don’t ever occur in the training set
—but occur in the test set

J&M/SLP3

Zeros

training set: test set:
... denied the allegations ... denied the offer
... denied the reports ... denied the loan

... denied the claims
... denied the request

P(offer | denied the) =0

J&M/SLP3

Zero probability bigrams

* test set bigrams with zero probability > assign
0 probability to entire test set!

e cannot compute perplexity (can’t divide by 0)!

J&M/SLP3

Intuition of smoothing (from Dan Klein)

* When we have sparse statistics:

P(w | denied the)

3 allegations 2
2 reports -E
1 claims a0
9 ()
1 request = « -
S - 8
7 total & g =
© & ©O
* Steal probability mass to generalize better:
P(w | denied the)
2.5 allegations -
1.5 reports
0.5 claims « -
0.5 request '8
2 other Sl e GEJ
2| 5 S Q
7 total || 2|l 2| # c S L
ol E|Il 2| £ & 5
S| ® = © & ©O
= £ [[[[[

“Add-1" estimation

also called Laplace smoothing

pretend we saw each word 1 more time than we did
just add 1 to all counts!

MLE estimate:

count(w;_1, w;)

Pave(wi | wi-1) = count(w;_1)
i

Add-1 estimate:
count(w;_1,w;) + 1
count(w;_1) + |V

Paad—1(w; | wi—1) =

J&M/SLP3

Berkeley Restaurant Corpus:
Laplace smoothed bigram counts

1 want | to eat | chiese | food | lunch | spend
1 6 828 1 10 1 1 1 3
want 3 1 609 | 2 7 7 6 2
to 3 1 5 687 | 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese || 2 1 1 1 1 83 2 1
food 16 | 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

J&M/SLP3

Laplace-smoothed bigrams

Poga—1(w; | wi—1) =

count(w;_1,w;) + 1

count(w;_1) + |V|

1 want to eat chinese | food lunch spend
1 0.0015 0.21 0.00025| 0.0025 0.00025(0.00025| 0.00025| 0.00075
want 0.0013 0.00042| 0.26 0.00084| 0.0029 0.0029 0.0025 0.00084
to 0.00078 | 0.00026| 0.0013 0.18 0.00078 | 0.00026| 0.0018 0.055
eat 0.00046| 0.00046| 0.0014 0.00046| 0.0078 0.0014 0.02 0.00046
chinese || 0.0012 0.00062| 0.00062| 0.00062| 0.00062(0.052 0.0012 0.00062
food 0.0063 0.00039| 0.0063 0.00039| 0.00079| 0.002 0.00039| 0.00039
lunch 0.0017 0.00056| 0.00056| 0.00056| 0.00056(0.0011 0.00056| 0.00056
spend 0.0012 0.00058 | 0.0012 0.00058 | 0.00058| 0.00058| 0.00058| 0.00058

J&M/SLP3

Reconstituted counts

1 want | to eat chinese | food| lunch| spend
1 3.8 527 0.64 6.4 0.64 0.64| 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63| 44 133
eat 0.34| 0.34 1 0.34 5.8 1 15 0.34
chinese || 0.2 0.098| 0.098| 0.098| 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57| 0.19 0.19 0.19 0.19 038 0.19 0.19
spend 032 0.16 0.32 0.16 0.16 0.16| 0.16 0.16

J&M/SLP3

Compare with raw bigram counts

1 want | to eat chinese food | lunch spend
1 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15| 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0
1 want | to eat chinese| food| lunch| spend
1 3.8 527 0.64 6.4 0.64 0.64| 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 063 4.4 133
eat 0.34] 0.34 1 0.34 5.8 1 15 0.34
chinese 0.2 0.098| 0.098| 0.098| 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57| 0.19 0.19 0.19 0.19 0.38| 0.19 0.19
spend 0.32] 0.16 0.32 0.16 0.16 0.16 [0.16 0.16

Add-1 smoothing is a blunt instrument

* soadd-1isn’t used for N-grams:
— we’ll see better methods

* but add-1is used to smooth other NLP models
— text classification
— domains where the number of zeros isn’t so huge

J&M/SLP3

Backoff and Interpolation

sometimes it helps to use less context

— condition on less context for contexts you haven’t

learned much about

backoff:

— use trigram if you have good evidence, otherwise

bigram, otherwise unigram
interpolation:

— mixture of unigram, bigram, trigram (etc.) models

interpolation works better

J&M/SLP3

Linear Interpolation

* simple interpolation:

p(Wn’Wn—ZWn—l) — AflP(Wn‘Wn—ZWn—l) ZAZ —
+AP(wy|wy—1) i
—|-7L3P(Wn)

 |lambdas are functions of context:

p(wn"1')11—2"")11—1) — 7\'1 (W;I_Q)P(“ n‘“n 2Wh— l)

J&M/SLP3

How to set the lambdas?

* use a held-out corpus:

L Held-Out Test

* choose lambdas to maximize probability of held-out data:
— fix N-gram probabilities (on the training data)

— then search for As that give largest probability to held-out set:
log P(w;..w, | M (.. ,)) = Y 10g Py 5 (Wi 1w,,)

— subtlety: what happens if we use training data to learn As?

J&M/SLP3

Unknown words: open vs. closed vocabulary tasks

e if we know all the words in advance:
— vocabulary Vs fixed
— “closed vocabulary” task

» often we don’t know this
— out-of-vocabulary (OOV) words
— “open vocabulary” task

* 5o, create an unknown word token <UNK>
— at training time:
* randomly change some instances of rare words to <UNK>
* then estimate its probabilities like a normal word
— at test time:
* replace OOV words with <UNK>

J&M/SLP3

Huge web-scale n-grams

* how to deal with, e.g., Google N-gram corpus?
* pruning:

— only store N-grams with count > threshold.
* remove singletons of higher-order n-grams

— entropy-based pruning
e efficiency
— efficient data structures like tries
— bloom filters: approximate language models
— quantize probabilities (4-8 bits instead of 8-byte float)

J&M/SLP3

Google trillion word language model

en) More data is better data. ..

Impact on size of language model training data (in words) on quality of
Arabic-Englhish statistical machine translation system

53.5

52.5

o9
50.5
49.5 -
48.5 -
47.5

TR R DR P
AV PO

DTSI/ Service Cognitique Raobotique et Interaction

W AE BLEU[%]

+weblm =

LM trained on
219B words of
web data

Gox >8|C s

42

53

Smoothing for Web-scale N-grams

e “Stupid backoff” (Brants et al., 2007)
* no discounting, just use relative frequencies

count(w" . l-
(ll’l‘”) if count(w;_,)>0
S(w, lw;",)=4 count(w,,,
04S(w, lw_, otherwise
count(w:,
S(w,) = (w,)
N

J&M/SLP3

N-gram Smoothing Summary

* Add-1 estimation:
— OK for text categorization, not for language modeling

* most commonly used method:
— modified interpolated Kneser-Ney

* for very large N-gram collections like the Web:
— stupid backoff

J&M/SLP3

Advanced Language Modeling

e discriminative models:

— choose n-gram weights to improve a task, not
to fit the training set

* syntactic language models

e caching models
— recently used words are more likely to appear

P, (W history) = AP(w, lw_,w.)+ (1= 1) c(w € history)

| history |

— these perform very poorly for speech
recognition (why?)

J&M/SLP3

A Neural Probabilistic Language Model

Département d’Informatique et Recherche Opérationnelle
Centre de Recherche Mathématiques
Université de Montréal, Montréal, Québec, Canada

Journal of Machine Learning Research 3 (2003) 1137-1155 Submitted 4/02; Published 2/03

Yoshua Bengio BENGIOY @IRO.UMONTREAL.CA
Réjean Ducharme DUCHARME @IRO.UMONTREAL.CA
Pascal Vincent VINCENTP@IRO.UMONTREAL.CA
Christian Jauvin JAUVINC@IRO.UMONTREAL.CA

* idea: use a neural network for n-gram
language modeling:

PH(wt | Wt—n+1y -y Wt—2, wt—l)

57

A Neural Probabilistic Language Model

Département d’Informatique et Recherche Opérationnelle
Centre de Recherche Mathématiques
Université de Montréal, Montréal, Québec, Canada

Journal of Machine Learning Research 3 (2003) 1137-1155 Submitted 4/02; Published 2/03

Yoshua Bengio BENGIOY @IRO.UMONTREAL.CA
Réjean Ducharme DUCHARME @IRO.UMONTREAL.CA
Pascal Vincent VINCENTP@IRO.UMONTREAL.CA
Christian Jauvin JAUVINC@IRO.UMONTREAL.CA

* this is not the earliest paper on using neural

networks for n-gram language mode
the most well-known and first to sca

e see paper for citations of earlier wor

s, but it’s
e up

¢

Neural Probabilistic Language Models
(Bengio et al., 2003)

1.1 Fighting the Curse of Dimensionality with Distributed Representations

In a nutshell, the idea of the proposed approach can be summarized as follows:

1. associate with each word in the vocabulary a distributed word feature vector (a real-
valued vector in R™),

2. express the joint probability function of word sequences in terms of the feature vectors
of these words in the sequence, and

3. learn simultaneously the word feature vectors and the parameters of that probability
function.

59

What is a neural network?

just think of a neural network as a function
it has inputs and outputs

III

“neural” typically means one type of
functional building block (“neural layers”), but
the term has broadened

neural modeling is now better thought of as a
modeling strategy (leveraging “distributed
representations” or “representation

learning”), or a family of related methods

Classifier Framework

classify(x, w) = argmax score(x, y, w)
Y

e |inear model score function:
score(x, y, w) =w ' f(x,y) = Zwifi(may)

e we canh also use a neural network for the score
function!

Notation

a vector
entry / in the vector

a matrix

entry (i,j) in the matrix

a structured object

entry i in the structured object

neural layer = affine transform + nonlinearity

z(1) (U@X+b@)
o /

nonlinearity
affine transform

 thisis asingle “layer” of a neural network
* Input vectoris X

63

neural layer = affine transform + nonlinearity

2 = ¢ (U<0>X n b<o>)

nonlinearity
affine transform

 thisis asingle “layer” of a neural network
* Input vectoris X
e U® and b are parameters

64

neural layer = affine transform + nonlinearity

2 = ¢ (U<0>X n b<o>)

“hidden units”

» vector of “hidden units” is z(V
* think of these as features computed from X

65

Nonlinearities

20 =g (U<0>X n b<o>)

* most common: elementwise application of g
function to each entry in vector

* examples...

tanh:

X: 2.22044x10"

y: 2.22044%x107

67

(logistic) sigmoid:

1

ST exp{—x}

68

rectified linear unit (ReLU): y = max(0,)

..

69

Adding layers...

21 = ¢ (U<0>X n b<0>)

22 — g (U<1>Z<1> n b<1>)

* use output of one layer as input to next

Adding layers...

2 = g (UOx + b)) Heile 00 0 0

22 — g (U<1>Z<1> n b<1>)

* use output of one layer as input to next
» “feed-forward” and/or “fully-connected” layers

71

Neural Network for Sentiment Classification
Zmzﬂ(umx+b@)

s — UMz 4 pM

vector of label scores

Neural Network for Sentiment Classification
Zmzﬂ(umx+b@)

s — UMz 4 pM

 score(x, positive, w)
'score(x, negative, w)

Use softmax function to convert scores into probabilities

'score(x, positive, w)
'score(x, negative, w)

[exp{score(&,positive,W)} |

_ _ A4
P = SOftmaX(S) — | exp{score(X,negative, W)}

Z

7 = exp{score(x, positive, w)} 4+ exp{score(x, negative, w)}

Why nonlinearities?

network with ZuLZQOﬂmX+bwU

1 hidden layer:

s — UMWz 4 pD

e if gislinear, then we can rewrite the above as
a single affine transform

e can you prove this? (use distributivity of
matrix multiplication)

Learning with Neural Networks
ﬂU:g(U®X+b®)
s — ULz L p®

. score(x, positive, w)
~ |score(x, negative, w)

classify(ax, w) = argmax score(x, y, w)
y

e we can use any of our loss functions from before, as
long as we can compute (sub)gradients

 algorithm for doing this efficiently: backpropagation
* basically just the chain rule of derivatives

Computation Graphs

e a useful way to represent the computations
performed by a neural model (or any model!)

* why useful? makes it easy to implement
automatic differentiation (backpropagation)

* many neural net toolkits let you define your
model in terms of computation graphs
(PyTorch, TensorFlow, DyNet, Theano, etc.)

