TTIC 31190: Natural Language Processing

Kevin Gimpel Spring 2018

Lecture 9: Word Embeddings

Assignment 1

Assignment 2 due in one week

Roadmap

- words, morphology, lexical semantics
- text classification
- language modeling
- word embeddings
- recurrent/recursive/convolutional networks in NLP
- sequence labeling, HMMs, dynamic programming
- syntax and syntactic parsing
- semantics, compositionality, semantic parsing
- machine translation and other NLP tasks

Classifier Framework

classify
$$(\boldsymbol{x}, \boldsymbol{w}) = \underset{y}{\operatorname{argmax}} \operatorname{score}(\boldsymbol{x}, y, \boldsymbol{w})$$

linear model score function:

$$score(\boldsymbol{x}, y, \mathbf{w}) = \mathbf{w}^{\top} \mathbf{f}(\boldsymbol{x}, y) = \sum_{i} w_{i} f_{i}(\boldsymbol{x}, y)$$

 we can also use a neural network for the score function!

Neural Networks

$$\mathbf{z}^{(1)} = g\left(\mathbf{U}^{(0)}\mathbf{x} + \mathbf{b}^{(0)}\right)$$
$$\mathbf{z}^{(2)} = g\left(\mathbf{U}^{(1)}\mathbf{z}^{(1)} + \mathbf{b}^{(1)}\right)$$

- use output of one layer as input to next
- "feed-forward" and/or "fully-connected" layers

A Simple Neural Trigram Language Model

- given previous words w_1 and w_2 , predict next word
- input is concatenation of vectors (embeddings) of previous words:

$$\mathbf{x} = cat(emb(w_1), emb(w_2))$$

A Simple Neural Trigram Language Model

output vector contains scores of possible next words:

$$s = Ux$$

A Simple Neural Trigram Language Model

training: log loss

$$loss_{log}(\langle w_1, w_2 \rangle, w_3, \boldsymbol{\theta}) = -\log p_{\boldsymbol{\theta}}(w_3 \mid \langle w_1, w_2 \rangle)$$

$$p_{\theta}(w_3 \mid \langle w_1, w_2 \rangle) \propto \exp\{\text{score}(cat(emb(w_1), emb(w_2)), w_3, \mathbf{U})\}$$

Adding a Hidden Layer

Word Embeddings

Turian et al. (2010)

Collobert et al. (2011)

Journal of Machine Learning Research 12 (2011) 2493-2537

Submitted 1/10; Revised 11/10; Published 8/11

Natural Language Processing (Almost) from Scratch

Ronan Collobert*
Jason Weston†
Léon Bottou‡
Michael Karlen
Koray Kavukcuoglu§
Pavel Kuksa¶

NEC Laboratories America 4 Independence Way Princeton, NJ 08540 RONAN@COLLOBERT.COM
JWESTON@GOOGLE.COM
LEON@BOTTOU.ORG
MICHAEL.KARLEN@GMAIL.COM
KORAY@CS.NYU.EDU
PKUKSA@CS.RUTGERS.EDU

word2vec (Mikolov et al., 2013a)

Efficient Estimation of Word Representations in Vector Space

Tomas Mikolov

Google Inc., Mountain View, CA tmikolov@google.com

Greg Corrado

Google Inc., Mountain View, CA gcorrado@google.com

Kai Chen

Google Inc., Mountain View, CA kaichen@google.com

Jeffrey Dean

Google Inc., Mountain View, CA jeff@google.com

word2vec (Mikolov et al., 2013b)

Distributed Representations of Words and Phrases and their Compositionality

Tomas Mikolov

Google Inc.
Mountain View
mikolov@google.com

Ilya Sutskever

Google Inc. Mountain View ilyasu@google.com Kai Chen

Google Inc.
Mountain View
kai@google.com

Greg Corrado

Google Inc.

Mountain View
gcorrado@google.com

Jeffrey Dean

Google Inc.
Mountain View
jeff@google.com

Learning word vectors

- let's use our classification framework
- we want to use unlabeled text to train the vectors
- we can convert our unlabeled text into a classification problem!
- how? (there are many possibilities)

skip-gram training data (window size = 5)

corpus (English Wikipedia):

agriculture is the traditional mainstay of the cambodian economy. but benares has been destroyed by an earthquake.

. . .

inputs (x)	outputs (y)
agriculture	<s></s>
agriculture	is
agriculture	the
is	<s></s>
is	agriculture
is	the
is	traditional
the	is
•••	•••

CBOW training data (window size = 5)

corpus (English Wikipedia):

agriculture is the traditional mainstay of the cambodian economy. but benares has been destroyed by an earthquake.

...

inputs (x)	outputs (y)
{ <s>, is, the, traditional}</s>	agriculture
<pre>{<s>, agriculture, the, traditional}</s></pre>	is
{agriculture, is, traditional, mainstay}	the
{is, the, mainstay, of}	traditional
{the, traditional, of, the}	mainstay
{traditional, mainstay, the, cambodian}	of
{mainstay, of, cambodian, economy}	the
•••	•••

skip-gram model

classify
$$(x, \boldsymbol{w}) = \underset{y}{\operatorname{argmax}} \operatorname{score}(x, y, \boldsymbol{w})$$

• here's our data:

inputs (x)	outputs (y)
agriculture	<s></s>
agriculture	is
agriculture	the
is	< \$>

how should we define the score function?

skip-gram score function: dot product

- dot product of two vectors, one for each word
- subtlety: different vector spaces for input and output
- no interpretation to vector dimensions (a priori)

skip-gram parameterization

skip-gram score function

$$score(x, y, \boldsymbol{w}) = \mathbf{w}^{(in, x)} \cdot \mathbf{w}^{(out, y)}$$

 why use different vector spaces for input and output?

 also, what should we use as our final word embeddings?

What will the skip-gram model learn?

corpus:

an earthquake destroyed the city the town was destroyed by a tornado

sample of training pairs:

inputs (x)	outputs (y)
destroyed	earthquake
earthquake	destroyed
destroyed	tornado
tornado	destroyed
•••	

 output vector for destroyed encouraged to be similar to input vectors of earthquake and tornado

Modeling, Inference, and Learning for Word Vectors

 Inference: How do we efficiently search over the space of all outputs?

Modeling, Inference, and Learning for Word Vectors

 Inference: How do we efficiently search over the space of all outputs?

Modeling, Inference, and Learning for Word Vectors

Learning: How do we choose the weights w?

skip-gram

skip-gram objective: log loss

$$\min_{\mathbf{w}} \sum_{1 \le t \le |\mathcal{T}|} \sum_{-c \le j \le c, j \ne 0} -\log P_{\mathbf{w}}(x_{t+j} \mid x_t)$$

from score to probability:

$$P_{\mathbf{w}}(y \mid x) \propto \exp\{\operatorname{score}(x, y, \mathbf{w})\}$$

 $P_{\mathbf{w}}(y \mid x) \propto \exp\{\mathbf{w}^{(\operatorname{in}, x)} \cdot \mathbf{w}^{(\operatorname{out}, y)}\}$

$$\min_{\boldsymbol{w}} \sum_{1 \le t \le |\mathcal{T}|} \sum_{-c \le j \le c, j \ne 0} -\log P_{\boldsymbol{w}}(x_{t+j} \mid x_t)$$

normalization requires sum over what?

$$P\mathbf{w}(y \mid x) \propto \exp{\{\mathbf{w}^{(\text{in},x)} \cdot \mathbf{w}^{(\text{out},y)}\}}$$

$$\min_{\mathbf{w}} \sum_{1 < t < |\mathcal{T}|} \sum_{-c \le j \le c, j \ne 0} -\log P_{\mathbf{w}}(x_{t+j} \mid x_t)$$

normalization requires sum over entire vocabulary:

$$P_{\mathbf{w}}(y \mid x) = \frac{\exp\{\mathbf{w}^{(\text{in},x)} \cdot \mathbf{w}^{(\text{out},y)}\}}{\sum_{y'} \exp\{\mathbf{w}^{(\text{in},x)} \cdot \mathbf{w}^{(\text{out},y')}\}}$$

Hierarchical Softmax (Morin and Bengio, 2005)

- based on a new generative story for the probability $P_{\boldsymbol{w}}(y \mid x)$
- but the generative story is so simple!
 - just draw from the conditional distribution
- how can we make it more efficient?
 - see paper or advanced NLP course for details

Negative Sampling (Mikolov et al., 2013)

- rather than sum over entire vocabulary, generate samples and sum over them
- instead of a multiclass classifier, use a binary classifier:

$$\min_{\boldsymbol{w}} \sum_{1 \le t \le |\mathcal{T}|} \sum_{-c \le j \le c, j \ne 0} -\log \sigma(\operatorname{score}(x_t, x_{t+j}, \boldsymbol{w})) + \sum_{x \in \text{NEG}} \log \sigma(\operatorname{score}(x_t, x, \boldsymbol{w}))$$

 where sigma is logistic sigmoid function (see next slide)

(logistic) sigmoid:
$$\sigma(x) = \frac{1}{1 + \exp\{-x\}}$$

• $\sigma(\text{score})$ often used to turn a score function into a probabilistic binary classifier, because its outputs range from 0 to 1

Negative Sampling

(Mikolov et al., 2013)

$$\min_{\boldsymbol{w}} \sum_{1 \le t \le |\mathcal{T}|} \sum_{-c \le j \le c, j \ne 0} -\log \sigma(\operatorname{score}(x_t, x_{t+j}, \boldsymbol{w})) + \sum_{x \in \text{NEG}} \log \sigma(\operatorname{score}(x_t, x, \boldsymbol{w}))$$

- NEG contains 2-20 words sampled from some distribution
 - e.g., uniform, unigram, or smoothed unigram
 - smoothed: raise probabilities to power ¾,
 renormalize to get a distribution

Two Ways to Represent Word Embeddings

- \mathcal{V} = vocabulary , $|\mathcal{V}|$ = size of vocab
- 1: create $|\mathcal{V}|$ -dimensional "one-hot" vector for each word, multiply by word embedding matrix:

$$emb(x) = \mathbf{W}onehot(\mathcal{V}, x)$$

Two Ways to Represent Word Embeddings

- \mathcal{V} = vocabulary , $|\mathcal{V}|$ = size of vocab
- 1: create $|\mathcal{V}|$ -dimensional "one-hot" vector for each word, multiply by word embedding matrix:

$$emb(x) = \mathbf{W}onehot(\mathcal{V}, x)$$

 2: store embeddings in a hash/dictionary data structure, do lookup to find embedding for word:

$$emb(x) = lookup(\mathbf{W}, x)$$

Two Ways to Represent Word Embeddings

- \mathcal{V} = vocabulary , $|\mathcal{V}|$ = size of vocab
- 1: create $|\mathcal{V}|$ -dimensional "one-hot" vector for each word, multiply by word embedding matrix:

$$emb(x) = \mathbf{W}onehot(\mathcal{V}, x)$$

 2: store embeddings in a hash/dictionary data structure, do lookup to find embedding for word:

$$emb(x) = lookup(\mathbf{W}, x)$$

 These are equivalent, second can be much faster (though first can be fast if using sparse operations)

- we went through skip-gram in detail
- word2vec contains two models: skip-gram and continuous bag of words (CBOW)
- for CBOW: we can use the same loss and inference tricks as skip-gram, so we will just focus on the CBOW scoring function

CBOW training data (window size = 5)

corpus (English Wikipedia):

agriculture is the traditional mainstay of the cambodian economy. but benares has been destroyed by an earthquake.

...

inputs (x)	outputs (y)
{ <s>, is, the, traditional}</s>	agriculture
<pre>{<s>, agriculture, the, traditional}</s></pre>	is
{agriculture, is, traditional, mainstay}	the
{is, the, mainstay, of}	traditional
{the, traditional, of, the}	mainstay
{traditional, mainstay, the, cambodian}	of
{mainstay, of, cambodian, economy}	the
	•••

word2vec Score Functions

• skip-gram:

$$score(x, y, \boldsymbol{w}) = \mathbf{w}^{(in, x)} \cdot \mathbf{w}^{(out, y)}$$

inputs (x)	outputs (y)
agriculture	<s></s>
agriculture	is
agriculture	the

• CBOW:

word2vec Score Functions

skip-gram:

$$score(x, y, \boldsymbol{w}) = \mathbf{w}^{(in, x)} \cdot \mathbf{w}^{(out, y)}$$

inputs (x)	outputs (y)
agriculture	<s></s>
agriculture	is
agriculture	the

• CBOW:

$$score(\boldsymbol{x}, y, \boldsymbol{w}) = \left(\frac{1}{|\boldsymbol{x}|} \sum_{i} \mathbf{w}^{(\text{in}, x_i)}\right) \cdot \mathbf{w}^{(\text{out}, y)}$$

inputs (x)	outputs (y)
{ <s>, is, the, traditional}</s>	agriculture
<pre>{<s>, agriculture, the, traditional}</s></pre>	is
{agriculture, is, traditional, mainstay}	the

word2vec

- word2vec toolkit implements training for skipgram and CBOW models
- very fast to train, even on large corpora
- pretrained embeddings available

A simple way to investigate the learned representations is to find the closest words for a user-specified word. The *distance* tool serves that purpose. For example, if you enter 'france', *distance* will display the most similar words and their distances to 'france', which should look like:

Word	Cosine distance
spain	0.678515
belgium netherlands	0.665923 0.652428
italy	0.633130
switzerland luxembourg	0.622323 0.610033
portugal	0.577154
russia	0.571507
germany catalonia	0.563291 0.534176

Embeddings capture relational meaning!

vector(king) – vector(man) + vector(woman) \approx vector(queen) vector(Paris) – vector(France) + vector(Italy) \approx vector(Rome)

GloVe (Pennington et al., 2014)

GloVe: Global Vectors for Word Representation

Jeffrey Pennington, Richard Socher, Christopher D. Manning Computer Science Department, Stanford University, Stanford, CA 94305 jpennin@stanford.edu, richard@socher.org, manning@stanford.edu

Other Work on Word Embeddings

- active research area (probably too active)
- other directions:
 - multiple embeddings for a single word corresponding to different word senses
 - using subword information (e.g., characters) in word embeddings
 - tailoring embeddings for different NLP tasks

Other ways to learn word vectors

- aside: any labeled dataset can be used to learn word vectors (depending on model/features)
- how could you use your assignment 2 classifiers to produce word vectors?
- learned feature weights for a 5-way sentiment classifier (binary unigram features), for two words:

feel-good

label	weight
strongly positive	0.025
positive	0.035
neutral	-0.045
negative	0
strongly negative	-0.015

dull

label	weight
strongly positive	0
positive	0
neutral	-0.04
negative	0.015
strongly negative	0.025

Task-Driven Word Embeddings

Neural Network for Sentiment Classification

$$\mathbf{z}^{(1)} = g\left(\mathbf{U}^{(0)}\mathbf{x} + \mathbf{b}^{(0)}\right)$$
$$\mathbf{s} = \mathbf{U}^{(1)}\mathbf{z}^{(1)} + \mathbf{b}^{(1)}$$

vector of label scores

Neural Network for Sentiment Classification

$$\mathbf{z}^{(1)} = g \left(\mathbf{U}^{(0)} \mathbf{x} + \mathbf{b}^{(0)} \right)$$

$$\mathbf{s} = \mathbf{U}^{(1)} \mathbf{z}^{(1)} + \mathbf{b}^{(1)}$$

$$\mathbf{s} = \begin{bmatrix} \text{score}(\boldsymbol{x}, \text{positive}, \boldsymbol{w}) \\ \text{score}(\boldsymbol{x}, \text{negative}, \boldsymbol{w}) \end{bmatrix}$$

A Simple Neural Text Classification Model

- given a word sequence x, predict its label
- represent x by averaging its word embeddings:

A Simple Neural Text Classification Model

- represent x by averaging its word embeddings
- output is a score vector over all possible labels:

Averaging Word Embeddings

- effective encoder for text classification and many other tasks
- sometimes called a neural bag of words (NBOW) model (Kalchbrenner et al., 2014)
- or a deep averaging network (DAN), especially if hidden layers are used (lyyer et al., 2015)

Encoders

- encoder: a function to represent a word sequence as a vector
- simplest: average word embeddings:

$$\mathbf{f}_{\text{avg}}(\boldsymbol{x}) = \frac{1}{n} \sum_{i=1}^{n} emb(x_i)$$

- many other functions possible!
- lots of recent work on developing better ways to encode word sequences

Attention

- attention is a useful generic tool
- often used to replace a sum or average with an attention-weighted sum

Attention

- attention is a useful generic tool
- often used to replace a sum or average with an attention-weighted sum
- e.g., for a word averaging encoder:

$$\mathbf{f}_{\mathrm{att}}(\boldsymbol{x}) = \sum_{i=1}^{n} att(x_i, i, \boldsymbol{x}) emb(x_i)$$

"attention" function, returns a scalar

Attention

- attention is a useful generic tool
- often used to replace a sum or average with an attention-weighted sum
- e.g., for a word averaging encoder:

$$\mathbf{f}_{\mathrm{att}}(\boldsymbol{x}) = \sum_{i=1}^{n} att(x_i, i, \boldsymbol{x}) emb(x_i)$$

$$\sum_{i=1}^{n} att(x_i, i, \boldsymbol{x}) = 1$$

many attention functions are possible!

Encoders

 many neural network architectures have been designed for encoding sequences

Input is a sequence:

Input is a sequence:

Input is a sequence:

$$\mathbf{h}_t = \tanh\left(\mathbf{W}^{(x)}\mathbf{x}_t + \mathbf{W}^{(h)}\mathbf{h}_{t-1} + \mathbf{b}\right)$$

Disclaimer

- these diagrams are often useful for helping us understand and communicate neural network architectures
- but they rarely have any sort of formal semantics (unlike graphical models)
- they are more like cartoons