TTIC 31190:
Natural Language Processing

Kevin Gimpel
Spring 2018

Lecture 9:
Word Embeddings

Assignment 1

Assignment 2 due in one week

Roadmap

words, morphology, lexical semantics

text classification

language modeling

word embeddings
recurrent/recursive/convolutional networks in NLP
sequence labeling, HMMs, dynamic programming
syntax and syntactic parsing

semantics, compositionality, semantic parsing
machine translation and other NLP tasks

Classifier Framework

classify(x, w) = argmax score(x, y, w)
Y

e |inear model score function:
score(x, y, w) =w ' f(x,y) = Zwifi(may)

e we canh also use a neural network for the score
function!

Neural Networks

2 = g (UOx + b)) Heile 00 0 0

22 — g (U<1>Z<1> n b<1>)

* use output of one layer as input to next
» “feed-forward” and/or “fully-connected” layers

A Simple Neural Trigram Language Model
* given previous words w, and w,, predict next word

* input is concatenation of vectors (embeddings)
of previous words:

x 000 OO0O08

. '\ J
Y Y

emb(wy) emb(ws)

x = cat(emb(wy), emb(ws))

A Simple Neural Trigram Language Model

e output vector contains scores of possible next words:

A Simple Neural Trigram Language Model
0000000000000

s = Ux
X
I
Y Y
emb(w1) emb(ws)
* training: log loss
lossiog ((w1, we), w3, 8) = —log pe(ws | (w1, w2))

po(ws | (wy,ws)) ox exp{score(cat(emb(wy), emb(ws)),ws, U)}

Adding a Hidden Layer
s (000000000000 00

10

Word Embeddings

larcamall
right good big
clear strong
long
: possible
| higher bogh
ower likely recent
first
1997 seCopdrqg
final
Sunday (ks’
Saturday past
MondayFriday July late
Auquét |
eptember carnly
TuesTJP%"\ZSZaV 4 P Becember
ednesday Novendieber lastaxt

Turian et al. (2010)

11

Collobert et al. (2011)

Journal of Machine Learning Research 12 (2011) 2493-2537 Submitted 1/10; Revised 11/10; Published 8/11

Natural Language Processing (Almost) from Scratch

Ronan Collobert* RONAN@ COLLOBERT.COM
Jason Weston' JWESTON @ GOOGLE.COM
Léon Bottou* LEON @BOTTOU.ORG
Michael Karlen MICHAEL .KARLEN @GMAIL.COM
Koray Kavukcuoglu® KORAY @CS.NYU.EDU
Pavel Kuksa’ PKUKSA@CS.RUTGERS.EDU

NEC Laboratories America
4 Independence Way
Princeton, NJ 08540

word2vec (Mikolov et al., 20133)

Efficient Estimation of Word Representations in
Vector Space

Tomas Mikolov
Google Inc., Mountain View, CA

tmikolov@google.com

Greg Corrado
Google Inc., Mountain View, CA

gcorrado@google.com

Kai Chen
Google Inc., Mountain View, CA

kaichen@google.com

Jeffrey Dean
Google Inc., Mountain View, CA
jeff@google.com

13

word2vec (Mikolov et al., 2013b)

Distributed Representations of Words and Phrases
and their Compositionality

Tomas Mikolov Ilya Sutskever Kai Chen
Google Inc. Google Inc. Google Inc.
Mountain View Mountain View Mountain View
mikolov@google.com ilyasu@google.com kai@google.com
Greg Corrado Jeffrey Dean
Google Inc. Google Inc.
Mountain View Mountain View
gcorrado@google.com jeff@google.com

14

Learning word vectors

let’s use our classification framework

we want to use unlabeled text to train the
vectors

we can convert our unlabeled text into a
classification problem!

how? (there are many possibilities)

skip-gram training data (window size = 5)

corpus (English Wikipedia):
agriculture is the traditional mainstay of the cambodian economy .
but benares has been destroyed by an earthquake .

_____inputs() _____|____outputs (y)

agriculture <s>
agriculture is
agriculture the

IS <s>

is agriculture

is the

is traditional

the is

16

CBOW training data (window size = 5)

corpus (English Wikipedia):
agriculture is the traditional mainstay of the cambodian economy .
but benares has been destroyed by an earthquake .

__inputs() | outputs(y)

{<s>, is, the, traditional} agriculture
{<s>, agriculture, the, traditional} is
{agriculture, is, traditional, mainstay} the
{is, the, mainstay, of} traditional
{the, traditional, of, the} mainstay
{traditional, mainstay, the, cambodian} of

{mainstay, of, cambodian, economy} the

17

skip-gram model

classify(z, w) = argmax score(x, y, w)
Y

* here’s our data:

_inputs () _| outputs (y)

agriculture <s>

agriculture is

agriculture the
is <s>

e how should we define the score function?

18

skip-gram score function: dot product

vector for word vector for word
X as an input y as an output

N/

score(z, y, w) = wiin®) . wlouty)

e dot product of two vectors, one for each word
e subtlety: different vector spaces for input and output
* no interpretation to vector dimensions (a priori)

19

skip-gram parameterization

r N

0.4
-0.1
0.2
0.3
-0.6
-1.3
0.9

} wim:d09) — 50t vector for dog

} wiincat) input vector for cat

Input vectors

} wlout:dog) — outnut vector for dog

output vecfors

skip-gram score function

SCOI’G(CC, y, w) p— W(IH,CC) . W(OUtay)

* why use different vector spaces for input and
output?

e also, what should we use as our final word
embeddings?

What will the skip-gram model learn?

COrpus:
an earthquake destroyed the city
the town was destroyed by a tornado

sample of training pairs:

_inputs () _|_outputs)

destroyed earthquake
earthquake destroyed
destroyed tornado
tornado destroyed

output vector for destroyed encouraged to be similar
to input vectors of earthquake and tornado

Modeling, Inference, and Learning for Word Vectors

’inference: solve argmax ’ modeling: define score function

v

classify (x, w) = argmax score(x, y, w)
y

learning: choose w \

* Inference: How do we efficiently search over
the space of all outputs?

23

Modeling, Inference, and Learning for Word Vectors

inference: solve argmax odeling: define score function
DOPS over c olge NE
sew

* Inference: How do we efficiently search over
the space of all outputs?

24

Modeling, Inference, and Learning for Word Vectors

‘inference: solve argmax ’ modeling: define score function

v

classify (x, w) = argmax score(x, y, w)
y

’Iearning: choose w \

* Learning: How do we choose the weights w?

25

skip-gram

* skip-gram objective: log loss

min Z Z —log Pw (24 | @)

1<t<|T| —e<j<c,j#0

/

sum over
positions in
corpus

sum over context
words in window

26

min > > —log Pw(xiyj | xe)

1<t<|T| —e<j<e,j#0

from score to probability:

Pw(y | z) o< exp{score(z,y, w)}

Py (y |) oc exp{wi™®) . wiout)}

min > > —log Pu(xiyj | m4)

1<t<[T| —c<j<c,j7#0

normalization requires sum over what?

Py (y |) o< exp{w™®) . wlout:y)

min Z Z —log Pw (@14 | 2t)

1<t<|T| —e<j<e,j#0

normalization requires sum over entire vocabulary:

exp{w(in,az) . W(out,y)}
Zy/ eXp{W(in,az) . W(out,y’)}

Pw(y | x) =

Hierarchical Softmax
(Morin and Bengio, 2005)

* based on a new generative story for the
probability Py (y | x)
* but the generative story is so simple!

— just draw from the conditional distribution

e how can we make it more efficient?

— see paper or advanced NLP course for details

Negative Sampling
(Mikolov et al., 2013)

* rather than sum over entire vocabulary,
generate samples and sum over them

* instead of a multiclass classifier, use a binary
classifier:

mm Z Z log o (score(xy, Ty , w)) + Z log o(score(zs, x, w))

1<t<|T| —c<j3<¢c,j#0 reNEG

 where sigma is logistic sigmoid function (see
next slide)

(logistic) sigmoid: o(x)

1

1+ exp{—2x}

32

* o(score) often used to turn a score function
into a probabilistic binary classifier, because
its outputs range from O to 1

Negative Sampling
(Mikolov et al., 2013)

mm Z Z log o (score(xy, Ty , w)) + Z log o(score(zs, z, w))
1<t<|T| —c<j5<¢c,j#0 reNEG

 NEG contains 2-20 words sampled from some
distribution

— e.g., uniform, unigram, or smoothed unigram

— smoothed: raise probabilities to power %,
renormalize to get a distribution

Two Ways to Represent Word Embeddings

* V =vocabulary, | V| = size of vocab

e 1:create \V\ -dimensional “one-hot” vector for
each word, multiply by word embedding matrix:

emb(x) = Wonehot(V, x)

Two Ways to Represent Word Embeddings

* V =vocabulary, | V| = size of vocab

e 1:create \V\ -dimensional “one-hot” vector for
each word, multiply by word embedding matrix:

emb(x) = Wonehot(V, x)

e 2:store embeddings in a hash/dictionary data
structure, do lookup to find embedding for word:

emb(xz) = lookup(W, x)

Two Ways to Represent Word Embeddings

* V =vocabulary, | V| = size of vocab

e 1:create \V\ -dimensional “one-hot” vector for
each word, multiply by word embedding matrix:

emb(x) = Wonehot(V, x)

e 2:store embeddings in a hash/dictionary data
structure, do lookup to find embedding for word:

emb(xz) = lookup(W, x)
 These are equivalent, second can be much faster

(though first can be fast if using sparse
operations)

 we went through skip-gram in detalil

* word2vec contains two models: skip-gram and
continuous bag of words (CBOW)

 for CBOW: we can use the same loss and
inference tricks as skip-gram, so we will just
focus on the CBOW scoring function

CBOW training data (window size = 5)

corpus (English Wikipedia):
agriculture is the traditional mainstay of the cambodian economy .
but benares has been destroyed by an earthquake .

__inputs() | outputs(y)

{<s>, is, the, traditional} agriculture
{<s>, agriculture, the, traditional} is
{agriculture, is, traditional, mainstay} the
{is, the, mainstay, of} traditional
{the, traditional, of, the} mainstay
{traditional, mainstay, the, cambodian} of

{mainstay, of, cambodian, economy} the

39

word2vec Score Functions

e skip-gram:

- agriculture <s>

score(z, y, w) = win®) . wlouty) | .
agriculture is
agriculture the

* CBOW:

40

word2vec Score Functions

e skip-gram:

- agriculture <s>
score(z, y, w) = win®) . wlouty) | .
agriculture is
agriculture the
* CBOW:
score(x, Yy, w) = E win@i) | g out,y)
Iw!
inputs (x) outputs (y)
{<s>, is, the, traditional} agriculture
{<s>, agriculture, the, traditional} is

{agriculture, is, traditional, mainstay} the
41

word2vec

e word2vec toolkit implements training for skip-
gram and CBOW models

* very fast to train, even on large corpora
* pretrained embeddings available

A simple way to investigate the learned representations is to find the closest words for a user-specified word. The distance tool serves that
purpose. For example, if you enter 'france’, distance will display the most similar words and their distances to ‘france’, which should look like:

Word Cosine distance

spain 0.678515
belgium 0.665923
netherlands 0.652428
italy 0.633130
switzerland 0.622323
luxembourg 0.610033
portugal 0.577154
russia 0.571507
germany 0.563291
catalonia 0.534176

42

Embeddings capture relational meaning!

vector(king) — vector(man) + vector(woman) = vector(queen)

vector(Paris) — vector(France) + vector(/taly) = vector(Rome)

WOMAN

UNCLE

KING

MAN/ /

QUEEN

AUNT

QUEENS

KINGS \
\ QUEEN

KING

J&M/SLP3

GloVe
(Pennington et al., 2014)

GloVe: Global Vectors for Word Representation

Jeffrey Pennington, Richard Socher, Christopher D. Manning
Computer Science Department, Stanford University, Stanford, CA 94305
jpennin@stanford.edu, richard@socher.org, manning@stanford.edu

Other Work on Word Embeddings

e active research area (probably too active)
e other directions:

— multiple embeddings for a single word
corresponding to different word senses

— using subword information (e.g., characters) in
word embeddings

— tailoring embeddings for different NLP tasks

Other ways to learn word vectors

e aside: any labeled dataset can be used to learn word vectors
(depending on model/features)

* how could you use your assignment 2 classifiers to produce
word vectors?

* |earned feature weights for a 5-way sentiment classifier
(binary unigram features), for two words:

feel-good dull
strongly positive 0.025 strongly positive
positive 0.035 positive 0
neutral -0.045 neutral -0.04
negative 0 negative 0.015

strongly negative -0.015 strongly negative 0.025

Task-Driven Word Embeddings

Neural Network for Sentiment Classification
Zmzﬂ(umx+b@)

s — UMz 4 pM

vector of label scores

Neural Network for Sentiment Classification
Zmzﬂ(umx+b@)

s — UMz 4 pM

 score(x, positive, w)
'score(x, negative, w)

A Simple Neural Text Classification Model

* given a word sequence x, predict its label
* represent X by averaging its word embeddings:

50

A Simple Neural Text Classification Model

* represent x by averaging its word embeddings
e outputis a score vector over all possible labels:

s = Uf,(x)
s; = score(x, y;, w)

n

C %‘ fove(x) = - ; emb(x;)
\ i\

emb(x1) emb(xo) emb(x,,) st

Averaging Word Embeddings

effective encoder for text classification and
many other tasks

sometimes called a neural bag of words
(NBOW) model (Kalchbrenner et al., 2014)

or a deep averaging network (DAN), especially
if hidden layers are used (lyyer et al., 2015)

Encoders

encoder: a function to represent a word
sequence as a vector

simplest: average word embeddings:

n

1
fove () = - ; emb(x;)
many other functions possible!

lots of recent work on developing better ways
to encode word sequences

Attention

e attention is a useful generic tool

e often used to replace a sum or average with
an attention-weighted sum

Attention

e attention is a useful generic tool

e often used to replace a sum or average with
an attention-weighted sum

e e.g., for a word averaging encoder:

n

fare(x) = Z@ft(aﬁi, 7, a:j)emb(:cz-)
=1 Y

“attention” function,
returns a scalar

Attention

attention is a useful generic tool

often used to replace a sum or average with
an attention-weighted sum

e.g., for a word averaging encoder:

n

fare(x) = Z att(x;, i, x)emb(x;)

1=1
n

Z att(x;,i,x) =1

1=1

many attention functions are possible!

Encoders

* many neural network architectures have been
designed for encoding sequences

Recurrent Neural Networks

Input is a sequence:

Ti_1 Tt Lt+41

not too bad

Recurrent Neural Networks

Input is a sequence:

SO

Lt—1 Lt41
not too bad

Recurrent Neural Networks

Input is a sequence:

“hidden vector” @ ° @

Recurrent Neural Networks
h, = tanh W<x>xt+w h,_ 1+b

“hidden vector” @ ° @

Disclaimer

e these diagrams are often useful for helping us
understand and communicate neural network
architectures

* but they rarely have any sort of formal
semantics (unlike graphical models)

e they are more like cartoons

