
TTIC 31190: Natural Language Processing
Assignment 1: Text Classification

Kevin Gimpel
Assigned: Jan. 7, 2016

Due: 11:59 pm, Jan. 20, 2016
Due: 11:59 pm, Jan. 21, 2016

Submission: email to kgimpel@ttic.edu

Submission Instructions

Please include your write-up (in any file format) containing answers to the questions in Sections
1 and 2 below, as well as your report for Section 3. Package your write-up file and code in a single
zip file or tarball, name the file with your last name followed by “ hw1”, and email the file to
kgimpel@ttic.edu by 11:59 pm on Jan. 21, 2016.

Also, in your write-up, please include an estimate of approximately how many hours you
spent working on this assignment. This will help us better calibrate future assignments. It will not
affect your grade.

1 Data Collection

Brainstorm ways to collect naturally-occurring annotated data from the web for each of the fol-
lowing text classification tasks:

1. classify a news article as genuine or satirical

2. classify text as friendly, hostile, or neutral

3. classify text as written by a male or a female

4. classify whether a piece of text was written by a native English speaker or a non-native
English speaker

For each of the above tasks, briefly describe a procedure you could use to collect naturally-
occurring annotated data. You can assume the capability to crawl/scrape publicly-accessible
websites and also assume you have access to billions of tweets. The only thing you can’t do is
pay people to annotate the data for you.

2 Classifiers, Datasets, and Features

For each of the following, create a text classification training dataset (i.e., a set containing textual
inputs and their labels) that fits the given property. Hint: think small.

1

1. Create a nonempty training dataset that no classifier (as defined by Eq. 1) could ever classify
completely correctly. That is, all such classifiers would achieve a training accuracy that is
strictly less than 100%.

2. Suppose classifier A uses unigram binary features and classifier B uses bigram binary fea-
tures. Classifiers A and B are both defined by Eq. 1. Create a training dataset for which
classifier A could never reach 100% training accuracy, but for which classifier B would be
able to achieve 100% training accuracy.

3 Implementation and Experimentation with Linear Text Classifiers

You will implement and experiment with simple ways of building text classifiers.
Consider a classifier defined by the function classify:

classify(x,θ) = argmax
y∈L

score(x, y,θ) (1)

where L is the space of classification labels (classes) and where the score function is defined:

score(x, y,θ) =
∑
i

θifi(x, y) (2)

We will denote our dataset of training data by T = {〈x(i), y(i)〉}|T |
i=1, where y(i) ∈ L is the label

of instance x(i). I have prepared several text classification datasets that you can choose from.
Each is divided into training (TRAIN, also denoted T), development (DEV), and development test
(DEVTEST) portions. You should do optimization on TRAIN, tune hyperparameters and do prelim-
inary development on DEV, and report your final test results on DEVTEST. I didn’t give you any of
the official test sets for these tasks.

Features:

Implement unigram binary features for your text classifier. Use a feature count cutoff of 1. That
is, create a binary feature for each word in the vocabulary of the training set T , paired with its
observed label.

Learning:

Consider the perceptron loss function:

lossperc(x, y,θ) = −score(x, y,θ) + max
y′∈L

score(x, y′,θ) (3)

with subgradient entry j as follows:

∂lossperc(x, y,θ)

∂θj
= −fj(x, y) + fj(x, ŷ) (4)

where ŷ = classify(x,θ).
We want to minimize the perceptron loss function on training set T , i.e.:

θ̂ = argmin
θ

|T |∑
i=1

lossperc(x
(i), y(i),θ) (5)

Once you have an estimate θ̂, use it to classify the held-out data (DEV or DEVTEST) by calling
classify(x, θ̂) for each x in the held-out set.

2

Provided Data:

Four text classification datasets are provided to you. Choose two (2) of these four for your ex-
periments. Each contains files corresponding to TRAIN, DEV, and DEVTEST. Each line in each file
contains a textual input followed by a tab followed by an integer containing the gold standard
label. Below are the four datasets:

• senti.tar.gz: contains senti.{train,dev,devtest}; fine-grained sentiment analy-
sis of movie reviews (Socher et al., 2013); L ={strongly negative, negative, neutral, positive,
strongly positive}. Note that the train file contains labels for all constituents of the train-
ing sentences, while dev and devtest contain only full sentences. There is also a file with
suffix train.onlyfull containing only the full training sentences. (Training on train
usually works better than train.onlyfull.)

• trec.tar.gz: contains trec.{train,dev,devtest}; TREC question classification (Li
and Roth, 2002); L ={abbreviation, description, entity, human, location, numeric value}.

• subj.tar.gz: contains subj.{train,dev,devtest}; sentence subjectivity classifica-
tion (Pang and Lee, 2004); L ={objective, subjective}.

• CR.tar.gz: contains CR.{train,dev,devtest}; binary sentiment classification of cus-
tomer reviews of several products (Hu and Liu, 2004); L ={negative, positive}.

3.1 Required:

Perform the following sequence of steps. For steps 2 (experiments) and 3 (analysis), use two of the
provided text classification datasets.

1. Implement the classifier described above, including the unigram binary features, the classify
function used to make predictions, and the training procedure described above, using
stochastic subgradient descent (SSD) to solve the optimization problem in Eq. 5. Turn in
your code as part of your submission. Your code should be documented enough that we can
look at it briefly and figure out what’s going on.

2. Experiment with your implementation. Run SSD for N epochs over TRAIN (N = 50 is likely
enough), using a mini-batch size of 1 (i.e., online), and a fixed stepsize of 0.005. An epoch
is defined as processing |T | examples; on each epoch, you can either sample training exam-
ples with replacement |T | times or simply loop through TRAIN in order. After each epoch,
calculate the value of the loss function on TRAIN and compute the classification accuracy on
TRAIN and DEV. Each time you see a new highest DEV accuracy, compute the classification
accuracy on DEVTEST.

3. Analyze the results:

(a) Plot the loss function values on TRAIN as a function of training epochs.

(b) Plot TRAIN accuracy and DEV accuracy as a function of training epochs.

(c) Report the accuracy on DEVTEST corresponding to the single epoch that achieved the
best accuracy on DEV. This is often called early stopping. If multiple epochs had the
same DEV accuracy, choose one arbitrarily.

3

(d) Inspect the learned feature weights. For each label, print the 100 features with the
largest weights. Do the highest-weighted features make sense for the dataset? Is any-
thing surprising? You can also look at the features with the lowest (i.e., most negative)
weights, but they are often harder to interpret.

3.2 Your Choice

After doing the above, choose any one (1) of the three choices below. For whichever one you
choose, use both of your text classification datasets.

1. Modeling: perform the following feature exploration steps.

• Implement unigram count features. Compare them empirically with unigram binary
features. Is there much difference in performance?

• Implement bigram and trigram binary features. Experiment with each feature template
by itself and also combined with the unigram binary features. Do higher-order features
improve performance compared with unigram binary features alone? What is the effect
on runtime?

• Implement the ability to use different feature count cutoffs. Try combining different
count cutoffs with different feature templates. Do you see any improvement in perfor-
mance by using a cutoff other than 1?

• Brainstorm a new kind of feature template, implement it, and report the results.

2. Learning: compare perceptron loss and hinge loss.

• Let’s define hinge loss as follows:

losshinge(x, y,θ) = −score(x, y,θ) + max
y′∈L

(
score(x, y′,θ) + δI[y 6= y′]

)
(6)

where δ is a hyperparameter of the learning procedure.

• Derive/write out the subgradient of the hinge loss (as we did for the perceptron loss in
Eq. (4) above).

• Implement and experiment with minimizing hinge loss instead of perceptron loss.
Compare different values of δ, including values like 0, 0.5, 1, 5, and 10.

• What is the effect of increasing or decreasing δ on the training accuracy? What is the
effect on held-out accuracy?

• How does changing δ affect what you see when printing the highest-weighted features?

3. Analysis: error analysis and feature design.

• Print the errors made by your classifier on DEV.

• Look through them manually. After looking at a few, you will likely start to observe
certain patterns in the errors; define your own error classification scheme based on what
you observe and then manually categorize each error into one of the error categories.

• If there are too many errors to go through manually, go through a sample of at least 50.

• Based on your analysis, brainstorm a new feature template to address one of the error
categories you observed.

4

• Implement your new feature template and check its effect on the DEV instances in that
error category.

• Describe your error analysis, your new feature template, and report the results of your
experiments in your write-up.

• Repeat for the other dataset.

3.3 Extra Credit: Your Second Choice

If you’re interested in extra credit, do a second one of the three choices from Section 3.2.

References

Hu, M. and Liu, B. (2004). Mining and summarizing customer reviews. In Proceedings of KDD. [3]
Li, X. and Roth, D. (2002). Learning question classifiers. In Proceedings of COLING. [3]
Pang, B. and Lee, L. (2004). A sentimental education: Sentiment analysis using subjectivity sum-

marization based on minimum cuts. In Proceedings of ACL. [3]
Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A., and Potts, C. (2013). Recursive

deep models for semantic compositionality over a sentiment treebank. In Proceedings of EMNLP.
[3]

5

	Data Collection
	Classifiers, Datasets, and Features
	Implementation and Experimentation with Linear Text Classifiers
	Required:
	Your Choice
	Extra Credit: Your Second Choice

