TTIC 31190:
Natural Language Processing

Kevin Gimpel
Winter 2016

Lecture 11:

Recurrent and Convolutional
Neural Networks in NLP

Announcements

* Assignment 3 assigned yesterday, due Feb. 29

* project proposal due Tuesday, Feb. 16

* midterm on Thursday, Feb. 18

Roadmap

classification

words

lexical semantics

language modeling

sequence labeling

neural network methods in NLP
syntax and syntactic parsing
semantic compositionality
semantic parsing

unsupervised learning

machine translation and other applications

2-transformation (1-layer) network
2D = g (W<o>x b<0>)
s=g (Wu)z(l) n b<1>)

/

vector of label scores

we’ll call this a “2-transformation” neural
network, or a “1-layer” neural network

input vectoris x
scorevectoris S
one hidden vector z(1) (“hidden layer”)

1-layer neural network for sentiment classification

AD:gOy@w+b@)

Szgﬁmngn+yw)

l

5 — score(x, positive,)

'score(x, negative, 6)

Use softmax function to convert scores into probabilities

exp{si1}

Z'i, exp{s;}

softmax(s) =
exp{sq}

2 expisi}_

score(a, positive, 0)

S = .
score(x, negative, 0)

" exp{score(x,positive,0)} |

P = SOftmaX(S) — | exp{score(x,negative,0)}

Z

Z = exp{score(x, positive, 8)} + exp{score(x, negative, 0)}

Neural Networks for Twitter Part-of-Speech Tagging

other verb det noun pronoun
intj | pronoun | prep | adj | prep | verb

ikr smh he asked fir yo last name so he can
add u on fb lololol

verb prep intj adj = adjective
pronoun proper prep = preposition
noun intj = interjection

* in Assignment 3, you’ll build a neural network classifier
to predict a word’s POS tag based on its context

Neural Networks for Twitter Part-of-Speech Tagging

det
preq | al
sked fir| yo last nan

e e.g., predict tag of yo given context
 what should the input x be?

— it has to be independent of the label
— it has to be a fixed-length vector

Neural Networks for Twitter Part-of-Speech Tagging

det
preg | al
asked fir| yo llast nam

e e.g., predict tag of yo given context

 what should the input x be?

r=1[0401..09]"
NG /
Y

word vector for yo

Neural Networks for Twitter Part-of-Speech Tagging

det
preg | al
asked fir| yo last nam

e e.g., predict tag of yo given context

 what should the input x be?

r=1[-0.205 ..080401..09"
N VAN J
Y Y

word vector for fir word vector for yo

10

Neural Networks for Twitter Part-of-Speech Tagging

det
pref | al
isked fir| yo llast narr

 when using word vectors as part of input, we can also
treat them as more parameters to be learned!

* thisis called “updating” or “fine-tuning” the vectors
(since they are initialized using something like word2vec)

r=[-0205..08 0401 ..09"
N VAN /
Y Y

word vector for fir word vector for yo

11

Neural Networks for Twitter Part-of-Speech Tagging

det
preq |

3sked fir| yo

al

ast nanr

e |et’s use the center word + two words to the right:
r=1[04..0902..0703..06]"

& AN
Y

AN J
Y

vector for yo vector for last vector for name

* if name is to the right of yo, then yo is probably a form of your

* butourxabove uses separate dimensions for each position!

— i.e., name is two words to the right

— whatif name is one word to the right?

12

Features and Filters

e we could use a feature that returns 1 if name

is to the right of the center word, but that
does not use the word’s embedding

* how do we include a feature like “a word
similar to name appears somewhere to the
right of the center word”?

* rather than always specify relative position
and embedding, we want to add filters that
look for words like name anywhere in the
window (or sentence!)

Filters

 for now, think of a filter as a vector in the word
vector space

* the filter matches a particular region of the space
* “match” = “has high dot product with”

Convolution

e convolutional neural networks use a bunch of
such filters

e each filter is matched against (dot product
computed with) each word in the entire context
window or sentence

* e.g., asingle filter w is a vector of same length as
word vectors

Convolution

w

r=1[04..0902..0703..06]"
N VAN J W,
Y Y Y

vector for yo vector for last vector for name

Cl1 =W : xi1.d

16

Convolution

w

r=1[04..0902..0703..06]"
N VAN J W,
Y Y Y

vector for yo vector for last vector for name

Co =W * Ld41:2d

17

Convolution

w

r=1[04..0902..0703..06]"
N VAN J W,
Y Y Y

vector for yo vector for last vector for name

C3 = W * L2d+1:3d

18

Convolution

C = “feature map”, has an entry for each word position in context window / sentence

r=1[04..0902..0703..06]"
N VAN AN W,
Y Y Y

vector for yo vector for last vector for name

Cl =W - L4
Co =W * Ld41:2d
C3 =W * L2d+1:3d

19

Pooling

C = “feature map”, has an entry for each word position in context window / sentence

how do we convertthis into a fixed-length vector?
use pooling:
max-pooling: returns maximum value in ¢
average pooling: returns average of values in ¢

vector for yo vector for last vector for name

Cl1 =W : xi1.d
C2 = W - Ld41:2d
C3 = W * L24+1:3d

20

Pooling

C = “feature map”, has an entry for each word position in context window / sentence

how do we convertthis into a fixed-length vector?
use pooling:
max-pooling: returns maximum value in ¢
average pooling: returns average of values in ¢

vector for yo vector for last vector for name

Cl1 =W : xi1.d

then, this single filter qp produces a single feature
value (the output of some kind of pooling).

in practice, we use many filters of many different
lengths (e.g., n-grams rather than words).

21

Convolutional Neural Networks

convolutional neural networks (convnets or CNNs) use
filters that are “convolved with” (matched against all
positions of) the input

informally, think of convolution as “perform the same
operation everywhere on the input in some systematic
order”

“convolutional layer” = set of filters that are convolved
with the input vector (whether x or hidden vector)

could be followed by more convolutional layers, or by a
type of pooling

often used in NLP to convert a sentence into a feature
vector

Recurrent Neural Networks

Input is a sequence:

not too bad

Recurrent Neural Networks

Input is a sequence:

“hidden vector” @ a @

Recurrent Neural Networks

ht = tanh W(wh)xt + W p, 4 b(h))

“hidden vector” @ a @

Disclaimer

e these diagrams are often useful for helping us
understand and communicate neural network
architectures

* but they rarely have any sort of formal
semantics (unlike graphical models)

* they are more like cartoons

Long Short-Term Memory RNNs
(gateless)

o 6'0'@

Long Short-Term Memory RNNs (gateless)

hy = tanh (¢;) ' '

Long Short-Term Memory RNNs (gateless)
|Ect = Ct_1 + tanh (W(xc)xt + W(hc)ht—l 4+ b(c))

ht — tanh (Ct>

Long Short-Term Memory RNNs (gateless)

Experiment: text classification
Stanford Sentiment Treebank
* binary classification (positive/negative)
25-dim word vectors 20.6

50-dim cell/hidden vectors

classification layer on final hidden vector
AdaGrad, 10 epochs, mini-batch size 10
early stoppingon dev set

30

ttttttttttt

Output Gates

Output Gates

hy = tanh (¢;) 1 I

J Q'Q'@
hy = o tanh(cy)

33

Output Gates

ht — tanh (Ct)

i

hy = o tanh(cy)

f hi 1

this is pointwise
multiplication!
O+ IS a vector

34

Output Gates
0y = O (W(LL@)xt + W(h0>ht_1 14 W(CO)Ct + b(0)>

ht — tanh (Ct)

i

hy = o tanh(cy)

VA

this is pointwise
multiplication!
O+ IS a vector

35

Output Gates

logistic sigmoid, so/>

output ranges from
Otol

diagonal
matrix

i

hy = o tanh(cy)

36

ht — O¢ tanh(ct)

Output Gates

L

37

gateless 80.6
outputgates | 81.9
Ct+1

ht — O¢ tanh(

Output Gates

>

38

gateless

80.6

output gates

81.9

Inpu

T

Input Gates

Ct = C¢t—1 T tanh W(mc)aj + W(hc)ht L+ b(c)

ECHEONC

ct = C¢—1 + i tanh W(acc)xt + W(hc)ht L+ b(c))

/! \/

again, thisis
pointwise
multiplication

40

Input Gates

ct = ct—1 + 14 tanh W(mc)xt + W(hc)ht |+ b(c)

Q @

41

Input Gates
It = O (W(mi)xt + W(hi)ht_l + W(cz’)ct_l 4+ b(z’))

Q diagonal
()

42

Input Gates
=0 (W(wi)wt + WD+ W, g + b(i))

Output Gates

Or = 0 <W(£CO)ZC75 + W(ho) ht—l + W(CO)Ct + b(o))

difference

43

Input Gates

gateless 80.6
output gates | 81.9
input gates 84.4

44

Input and Output Gates

S
S

45

gateless 80.6
output gates 381.9
input gates 84.4
input & outputgates | 84.6

X
L&

Forget Gates

= fici—1 + tanh W<xc)x + W, |+ b(c)

@ @

47

Forget Gates
ft:O'< W@ g, 4 WhHp,_ 4+ Wehe,_ 1—|—b(f))

@ @

48

Forget Gates

gateless 80.6

output gates 381.9

input gates 84.4

forget gates 82.1

T
®
o

49

All Gates

= fici—1 + 14 tanh W($C>xt € W(hC)ht L+ b(c))

h: = o tanh(cy)

50

All Gates

gateless 80.6

output gates 381.9

input gates 84.4
input & outputgates 84.6
forget gates 82.1

input & forget gates 84.1
forget & output gates 82.6
input, forget, output gates 85.3

51

Backward & Bidirectional LSTMs

bidirectional:
if shallow, just use forward and backward LSTMs in parallel, concatenate
final two hidden vectors, feed to softmax

Backward & Bidirectional LSTMs

forward backward

gateless 80.6 80.3

output gates 81.9 83.7

Input gates 384.4 82.9

forget gates 82.1 83.4

input, forget, output gates 85.3 85.9

53

Backward & Bidirectional LSTMs

forward backward bidirectional

gateless 80.6 80.3 81.5

output gates 81.9 83.7 82.6

Input gates 384.4 82.9 83.9

forget gates 82.1 83.4 83.1

input, forget, output gates 85.3 85.9 85.1

54

=>
T
Vp)
—

Deep LSTM
(2-layer)

layer 2 <

CACAEACAE

shallow (50) 80.6
gateless
deep (30, 30) 80.8
shallow (50) 85.3
input, forget, output
deep (30, 30) ~85

Deep Bidirectional LSTMs

concatenate hiddenvectors of forward & backward LSTMs, connect each entry
to forward and backward hidden vectors in next layer

58

(logistic) sigmoid:

59

