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Applications of our Classifier Framework so far

task input (x) output (y) output space () size of [

text gold standard pre-defined, small

e a sentence label set (e.g., 2-10
classification

label for x

{positive, negative})

word sense
disambiguation

instance of a
particular word
(e.g., bass

its cont

learning skip-
gram word
embeddings

instance
word in a «

gold standard

pre-defined sense

exponential in size of input!

“structured prediction”

part-of-speech
tagging

a sentence

gold standard
part-of-speech
tags for x

all possible part-of-
speech tag sequences
with same length as x



Simplest kind of structured prediction: Sequence Labeling

Part-of-Speech Tagging

proper proper

determiner verb (past) prep. noun noun poss. adij. noun

Some questioned if Tim Cook ’s first product
proper

modal  verb det. adjective noun prep. houn  punc.

would be a breakaway hit for Apple

Named Entity Recognition

Some questioned if Tim Cook’s first product would be a breakaway hit for Apple.

PERSON ORGANIZATION



Hidden Markov Models

||

pe(x,y) = Hm% | yio1) p(Ti | ys)

transition parameters: D+ (yz ‘ yi—l)

emission parameters: Pn (:L’z ’ yz)



HMMs for Word Clustering
(Brown et al., 1992)

each y; € L isaclusterID
so, label spaceis £ = {1,2,...,100}
simplifying assumption:

each word is in exactly one cluster



HMMs for Word Clustering
(Brown et al., 1992)

given a set of sentences, how should we learn the
parameters of our model?

how about we use maximum likelihood estimation, e.g.:

N
argmax Y log po ¥, y¥)
o i
problem: we don’t have any y(i)’s!

we only have a set of unlabeled sentences: {1



 we want to maximize likelihood, but:
— our HMM defines pg(x, y)
— our data only contains @

* solution: marginalize out y
 this idea underlies most unsupervised learning

N
argmaleogpg (0) (D))

1=1

N
argmax > log ) pe(z'”, y)
1=1 Y



 we want to maximize likelihood, but:
— our HMM defines pg(x, y)
— our data only contains @

* solution: marginalize out y

 this idea underlies most unsupervised learning

N

a sum over an
exponentially-large set
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learning requires a sum over an exponentially-
large set (of all possible clusterings of the
words)

N
argma > log ) pe(z', y)
1=1 Y

it’s actually trivial for Brown clustering (why?)

for any clustering, we can easily compute the
log-likelihood of the data

problem: there are too many possible
clusterings to consider them all!



Algorithm for Brown Clustering

greedy algorithm:
* initialize each word as its own cluster
* greedily merge clusters to improve data likelihood

outputs hierarchical clustering



Brown Clusters as vectors

* by tracing order in which clusters are merged, we
can build a binary tree from bottom to top

 each word is represented by its binary string = path
from root to leaf

e each intermediate node is a cluster
 chairman is 0010, “months” = 01, verbs = 1:

11
000 101 walk

CEO 0010 0011 November October run sprint
chairman president



saw bought
peeped watched
SaWw ate

found
checked

figured

missed
loved

hated
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watching
watchin
watchn

seeing loving
finding enjoying
hearing liking

saw bought found  missed
peeped watched checked loved
SaWw ate figured hated
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watching

watchin

watchn seeing loving random
finding enjoying dirty

hearing liking common short  quick
tough simple
rough unique

saw bought found  missed
peeped watched checked loved
SaWw ate figured hated
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adjectives?

watching
watchin
watchn

seeing loving random

finding enjoying dirty

hearing liking common short  quick
tough simple
rough unique

saw bought found  missed

peeped watched checked Iloved

SaWw ate figured hated
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watching
watchin , ,
watchn >€€'N8 qumg random

inding  enjoying dirty

hearing liking common Sshort  quick
tough simple
rough unique

bought found migsed
watched checked Igved
figured ated

could be verbs or nouns, but
Brown clustering uses one-cluster-per-word constraint
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random ) =)
dirty

common short C]UiCk

tough simple

rough unique
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N
argma > log » pe(x',y)
1=1 Y

* though the summation is trivial for Brown
clustering, in general we need to be able to
compute summations over exponentially-large
sets for sequence models and other
structured prediction settings



Other Exponentially-Large Problems

inference: solve argmax

N

classify(x, 0) = argmax score(z,y, 0)
y

 when output is a sequence (or other

structure), this argmax requires iterating over
an exponentially-large set



Learning requires solving exponentially-hard
problems too!

loss entry j of (sub)gradient of loss for linear model
perceptron —fi(x,y) + fi(x,9), where § = classify(x, )
hinge —fi(z,y) + fi(x,y), where y # costClassity(x,y, 0)
log —fj(ilf,y) +]Epe(‘|m) [fj(wa)]

™\

computing each of these terms
requires iterating through every
possible output
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Inference in Structured Prediction

think of inference as “iterating over the output space”
specific inference problems:

— computing argmax in classify() for classification of test data

— computing argmax in classify() or costClassify() for minimizing
perceptron/hinge losses

— computing feature expectations when minimizing log loss (requires
summing over outputs)

when output space is exponentially-large (e.g., in structured
prediction), we need to be clever about how we do this

today, we’ll discuss dynamic programming for inference



Dynamic Programming (DP)

what is dynamic programming?
— a family of algorithms that break problems into smaller
pieces and reuse solutions for those pieces

— only applicable when the problem has certain properties
(optimal substructure and overlapping sub-problems)

in this class, we use DP to iterate over exponentially-
large output spaces in polynomial time

we focus on a particular type of DP algorithm:
memoization
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Implementing DP algorithms

e even if your goal is to compute a sum or a
max, focus first on counting mode (count the
number of unique outputs for an input)

* memoization = recursion + saving/reusing
solutions
— start by defining recursive equations

— “memoize” by creating a table to store all

intermediate results from recursive equations, use
them when requested



Implementing DP algorithms

* even though we start with counting mode, we
need to keep in mind how the model’s score
function decomposes across parts of the
outputs

—i.e., how “large” are the features? how many
items in the output sequence are needed to
compute each feature?



Lab

* we will now talk about dynamic programming
on the whiteboard and implement some
algorithms



Guide to designing/implementing DP algorithms

1. write down (or draw) all possible outputs for some small input sizes

2. identify subproblems that can be solved independently of the overall
problem (and confirm that solutions can be reused)

3. write down recursive formulas on paper for counting the number of outputs
given an input size

4. work out (by hand) solutions to your formulas for small inputs, confirm that
counts match your drawings from step 1

5. implement recursive formulas, confirm results match drawings, compute
counts for larger input sizes

6. implement memoization in your program: create a table T (e.g., a multi-
dimensional array) indexed by signatures of subproblems, save subproblem
solutions after computing them, use them when possible

7. confirm that solutions computed by memoization match those computed by
step 5 for larger input sizes (should be much faster to compute!)

8. finally, change the algorithm from counting to computing sum/max

28



Counting Sequences

# of binary sequences of length N
# of binary sequences of length N with no “00”
# of binary sequences of length N with no “010”

# of binary sequences of length N that contain at least
3 ones (not necessarily consecutive)

implement max over binary sequences using
backpointers (use a feature that counts instances of
“01” and give it a weight of 1)

extend any of the above to sequences of any alphabet
(not just binary)



