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Announcements

e on Thursday, class will be in Room 530 (the
room directly behind you)



Announcements

we will go over part of Assignment 1 today
(grades coming soon)

Assignment 2 was due Wed. Feb. 3, now due
Fri., Feb. 5

project proposal due Tuesday, Feb. 16
midterm on Thursday, Feb. 18



Other Naturally-Occurring Data

e quality of scientific journalism:

What Makes Writing Great? First Experiments on Article Quality
Prediction in the Science Journalism Domain

Annie Louis Ani Nenkova
University of Pennsylvania University of Pennsylvania
Philadelphia, PA 19104 Philadelphia, PA 19104
lannie@seas.upenn.edu nenkova@seas.upenn.edu
Abstract done before. The fawn, known as Dewey, was developing

normally and seemed to be healthy. He had no mother,
just a surrogate who had carried his fetus to term. He
had no father, just a “donor” of all his chromosomes. He
was the genetic duplicate of a certain trophy buck out

Great writing is rare and highly admired.
Readers seek out articles that are beautifully
written, informative and entertaining. Yet
information-access technologies lack capabil-

ities for predicting article quality at this level. of south Texas whose skin cells had been cultured in a
In this paper we present first experiments on laboratory. One of those cells furnished a nucleus that,
article quality prediction in the science jour- transplanted and rejiggered, became the DNA core of an
nalism domain. We introduce a corpus of egg cell, which became an embryo, which in time be-

great pieces of science journalism, along with came Dewey. So he was wildlife, in a sense, and in an-

typical articles from the genre. We imple- o lal i hetic Thic ic 1} :




Other Naturally-Occurring Data

* memorability of quotations:

You had me at hello: How phrasing affects memorability

Cristian Danescu-Niculescu-Mizil Justin Cheng Jon Kleinberg Lillian Lee
Department of Computer Science
Cornell University
cristian@cs.cornell.edu, jc882@cornell.edu, kleinber @cs.cornell.edu, llee@cs.cornell.edu

Abstract Building on a foundation in the sociology of diffu-
_ _ o _ sion [27, 31], researchers have explored the ways in
Understanding the ways in which information which network structure affects the way information

achieves widespread public awareness is a re-
search question of significant interest. We
consider whether, and how, the way in which
the information is phrased — the choice of

spreads, with domains of interest including blogs
[1, 11], email [37], on-line commerce [22], and so-
cial media [2, 28, 33, 38]. There has also been recent

words and sentence structure — can affect this research addressing temporal aspects of how differ-
process. To this end, we develop an analy- ent media sources convey information [23, 30, 39]
sis framework and build a corpus of movie and ways in which people react differently to infor-
quotes, annotated with memorability infor- mation on different topics [28, 36].

mation, in which we are able to control for
both the speaker and the setting of the quotes.

Beyond all these factors, however, one’s everyday
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Other Naturally-Occurring Data

e sarcasm (remove #sarcasm hash tag from tweets):

Contextualized Sarcasm Detection on Twitter

David Bamman and Noah A. Smith
School of Computer Science
Carnegie Mellon University

{dbamman,nasmith } @cs.cmu.edu

Abstract

Sarcasm requires some shared knowledge between
speaker and audience; it is a profoundly contextual phe-
nomenon. Most computational approaches to sarcasm
detection, however, treat it as a purely linguistic matter,
using information such as lexical cues and their corre-
sponding sentiment as predictive features. We show that
by including extra-linguistic information from the con-
text of an utterance on Twitter — such as properties of the
author, the audience and the immediate communicative
environment — we are able to achieve gains in accuracy
compared to purely linguistic features in the detection
of this complex phenomenon, while also shedding light
on features of interpersonal interaction that enable sar-
casm in conversation.

people who know each other well than between those who
do not.

In all of these cases, the relationship between author
and audience is central for understanding the sarcasm phe-
nomenon. While the notion of an “audience” is relatively
well defined for face-to-face conversations between two
people, it becomes more complex when multiple people
are present (Bell 1984), and especially so on social media,
when a user’s “audience” is often unknown, underspecified
or “collapsed” (boyd 2008; Marwick and boyd 2011), mak-
ing it difficult to fully establish the shared ground required
for sarcasm to be detected, and understood, by its intended
(or imagined) audience.

We present here a series of experiments to discern the ef-
fect of extra-linguistic information on the detection of sar-

cacm  roacanina abhaont foatnirec dorivied nat anlss fram the




Other Naturally-Occurring Data

* opening weekend movie revenue prediction from critic reviews:

Movie Reviews and Revenues: An Experiment in Text Regression™

Mabhesh Joshi Dipanjan Das Kevin Gimpel Noah A. Smith
Language Technologies Institute
Carnegie Mellon University
Pittsburgh, PA 15213, USA

{maheshj,dipanjan, kgimpel, nasmith}@cs.cmu.edu

Abstract

We consider the problem of predicting a
movie’s opening weekend revenue. Previous
work on this problem has used metadata about
a movie—e.g., its genre, MPAA rating, and
cast—with very limited work making use of
text about the movie. In this paper, we use
the text of film critics’ reviews from several
sources to predict opening weekend revenue.
We describe a new dataset pairing movie re-
views with metadata and revenue data, and
show that review text can substitute for meta-
data, and even improve over it, for prediction.

correlation between actual revenue and sentiment-
based metrics, as compared to mention counts of the
movie. (They did not frame the task as a revenue
prediction problem.) Zhang and Skiena (2009) used
a news aggregation system to identify entities and
obtain domain-specific sentiment for each entity in
several domains. They used the aggregate sentiment
scores and mention counts of each movie in news
articles as predictors.

While there has been substantial prior work on
using critics’ reviews, to our knowledge all of this
work has used polarity of the review or the number
of stars given to it by a critic, rather than the review




Other Naturally-Occurring Data

e predicting novel success from text of novels:

Success with Style: Using Writing Style to Predict the Success of Novels

Vikas Ganjigunte Ashok Song Feng Yejin Choi
Department of Computer Science
Stony Brook University
Stony Brook, NY 11794-4400

vganjiguntea, songfeng, ychoi@cs.stonybrook.edu

Abstract fore they are picked up by a publisher.!
Perhaps due to its obvious complexity of the prob-
Predicting the success of literary works is a lem, there has been little previous work that attempts
curious question among publishers and aspir- to build statistical models that predict the success of
ing writers alike. We examine the quantitative literary works based on their intrinsic content and

connection, if any, between writing style and

vality. Some previous studies do touch on the no-
successful literature. Based on novels over q Y P

several different genres, we probe the predic- tion of StyllStlf: as.pect.s in succgssful hf:erature, e.g.,
tive power of statistical stylometry in discrim- extensive studies in Literature discuss literary styles
inating successful literary works, and identify of significant authors (e.g., Ellegérd (1962), Mc-
characteristic stylistic elements that are more Gann (1998)), while others consider content char-
prominent in successful writings. Our study acteristics such as plots, characteristics of charac-




Project Proposal

due Feb. 16 (in two weeks)
1-2 pages

onhe per group

include the following:

— members of your group

— describe the task you are going to work on (could be a
new task you create or an existing task)

— describe the methods you will use/develop for the task

— give a brief review of related work; i.e., situate your
project with respect to the literature (www.aclweb.org
and Google Scholar are useful for this!)

— a proposed timeline




Project Proposal (cont’d)

your results do not have to beat the state-of-
the-art!

but your project does have to be carefully done,
so that you can draw conclusions

you are welcome to start by replicatingan NLP
paper (I can give suggestions if you need some)

during the week of Feb. 22, please schedule a
meeting with me to discuss your project
— details to follow



Class Presentations

final two class meetings (March 3" and March
8) will be mostly used for in-class
presentations

one presentation per group

10-15 minutes per presentation (will be
determined once | know how many groups
there are)

you will each take notes and email me
questions/feedback for the presenter, which |
will anonymize and send



Project

 final report due Thursday, March 17 (original
date of the final exam)

* so the presentation will be more like an
“interim progress report”



Roadmap

classification

words

lexical semantics

language modeling

sequence labeling

neural network methods in NLP
syntax and syntactic parsing
semantic compositionality
semantic parsing

unsupervised learning

machine translation and other applications



Simplest kind of structured prediction:Sequence Labeling

Part-of-Speech Tagging

proper proper

determiner verb(past) prep. noun noun poss. adj. noun

Some questioned if Tim Cook ’s first product
proper

modal verb det. adjective noun prep. nhoun punc.

would be a breakaway hit for Apple

14



Formulating segmentation tasks as sequence labeling
via B-1-O labeling:

Named Entity Recognition

O O O B-PERSON I-PERSON O O O
Some questioned if Tim Cook ’s first product
O @) @) @) @) O B-ORGANIZATION O

would be a breakaway hit for Apple
B = “begin”
| = “inside”

O = “outside”

15



e there are many downloadable part-of-speech
taggers and named entity recognizers:
— Stanford POS tagger, NER labeler
— TurboTagger, TurboEntityRecognizer
— lllinois Entity Tagger
— CMU Twitter POS tagger
— Alan Ritter’s Twitter POS/NER labeler



Stanford Named Entity Tagger

Classifier: | english.all.3class.distsim.crf.ser.gz %
Output Format: highlighted %
Preserve Spacing: no %

Please enter your text here:

Some questioned if Tim Cook’s first product would be a breakaway hit for
Apple.
Submit  Clear

Some questioned if [ili1 ®e4's first product would be a breakaway hit for Apple.

Potential tags:

ORGANIZATION
LOCATION

PERSON




Hidden Markov Models

||

pe(x,y) = pr(yz' | Yi—1) Pn(@i | yi)

transition parameters: P+ (yz ‘ Yi— 1)

emission parameters: pn(ZCi ‘ yz)



HMMs for Word Clustering
(Brown et al., 1992)

each y, € L isaclusterID
so, label spaceis £ = {1,2,...,100}



HMMs for Part-of-Speech Tagging

each y, € L isa part-of-speech tag
so, label space is £ = {noun, verb, ...}

what parameters need to be learned?

transition parameters: P+ (y@ ’ y¢_1)

emission parameters: Pn (xz ’ yz)



How should we learn the HMM parameters?

transition parameters: D+ (yz ‘ yi_l) pr(verb | noun)
p+(verb | adjective)

emission parameters: pn(%’ ‘ yz) pn(f()r” ’ Verb)
pn(walk | verb)



Supervised HMMs

* given a dataset of input sequences and annotated

OUtpUtS: proper proper prepo-
noun noun sition

* to estimate transition/emission distributions, use
maximum likelihood estimation (count and normalize):

count(y’ y) (x| 3) 4 count(y, )
count (1) Pt 19) 3

/ yi
pr(y 1Y) < count(y)

count(noun verb) count(verb, walk)

pr(verb | noun) <

pn(walk | verb) <

count(noun) count(verb)



Estimates of Tag Transition Probabilities

proper modal infinitive adjective noun adverb determiner

noun verb verb

NNP MD VB JJ NN RB DT
<§s > 0.2767 0.0006 0.0031 0.0453 0.0449 0.0510 0.2026
NNP 0.3777 0.0110 0.0009 0.0084 0.0584 0.0090 0.0025
MD 0.0008 0.0002 0.7968 0.0005 0.0008 0.1698 0.0041
VB 0.0322 0.0005 0.0050 0.0837 0.0615 0.0514 0.2231
JJ 0.0366 0.0004 0.0001 0.0733 0.4509 0.0036 0.0036
NN 0.0096 0.0176 0.0014 0.0086 0.1216 0.0177 0.0068
RB 0.0068 0.0102 0.1011 0.1012 0.0120 0.0728 0.0479
DT 0.1147 0.0021 0.0002 0.2157 0.4744 0.0102 0.0017

DTG The A transition probabilities P(t;|¢;—1) computed from the WSJ corpus without

smoothing. Rows are labeled with the conditioning event; thus P(VB|MD) is 0.7968.



Estimates of Emission Probabilities

Janet will back the bill
NNP 0.000032 0 0 0.000048 O
MD 0 0.308431 0O 0 0
VB 0 0.000028 0.000672 0 0.000028
JJ 0 0 0.000340 0.000097 O
NN 0 0.000200 0.000223 0.000006 0.002337
RB 0 0 0.010446 O 0
DT 0 0 0 0.506099 0

10Ty BN Observation likelihoods B computed from the WSJ corpus without smoothing.



Inference in HMMs

|
classify (, 8) = argmax pg(w,y) = argmax | | p-(yi | yi—1)pn(z: | vs)
v Yooi=1
* since the outputis a sequence, this argmax
requires iterating over an exponentially-large set

* |ast week we talked about using dynamic
programming (DP) to solve these problems

 for HMMs (and other sequence models), the for
solving this is called the Viterbi algorithm



Viterbi Algorithm

* recursive equations + memoization:

base case:
returns probability of sequence starting with label y for first word

v

V(1,y) =pn(z1 | y) pr(y | <s>)

V(m,y) =max ( pn(xm | y) pr(y | y) V(im —1,9"))

f y' el

recursive case:
computes probability of max-probability label
sequence thatends with label y at positionm

finalvalueisin: V(|x|+ 1, </s>)

26



Example:

Janet will back the bill

proper modal infinitive  determiner noun
noun verb verb

27



Janet will  back the  bill
proper modal infinitive  determiner noun
noun verb verb
NNP MD VB JJ NN RB DT
<s > 0.2767 0.0006 0.0031 0.0453 0.0449 0.0510 0.2026
NNP 0.3777 0.0110 0.0009 0.0084 0.0584 0.0090 0.0025
MD 0.0008 0.0002 0.7968 0.0005 0.0008 0.1698 0.0041
VB 0.0322  0.0005 0.0050 0.0837 0.0615 0.0514 0.2231
JJ 0.0366 0.0004 0.0001 0.0733 0.4509 0.0036 0.0036
NN 0.0096 0.0176 0.0014 0.0086 0.1216 0.0177 0.0068
RB 0.0068 0.0102 0.1011 0.1012 0.0120 0.0728 0.0479
DT 0.1147  0.0021 0.0002 0.2157 0.4744 0.0102 0.0017
Janet will back the bill
NNP 0.000032 0O 0 0.000048 0O
MD 0 0.308431 O 0 0
VB 0 0.000028 0.000672 0 0.000028
JJ 0 0 0.000340 0.000097 0O
NN 0 0.000200 0.000223 0.000006 0.002337
RB 0 0 0.010446 O 0
DT 0 0 0 0.506099 0
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Viterbi Algorithm

e space and time complexity?
e can be read off from the recursive equations:

space complexity:
size of memoizationtable, which is # of uniqueindices of recursive equations

length of number
sentence of labels

\/

= max (py(zm | y) pr(y | ) V(m = 1,9))

so, space complexityis O(|x]| |L])

30



Viterbi Algorithm

* space and time complexity?
e can be read off from the recursive equations:

time complexity:
size of memoizationtable * complexity of computing each entry

length of number " each entry requires
sentence of labels iterating through the labels

\/

= max ( py(zm | y) pr(y | ) V(m = 1,9))

so, time complexity is O(|x| |L| |L]) =O(|x]| |L]|?)

31



Linear Sequence Models

* |let’s generalize HMMs and talk about linear
models for scoring label sequences in our
classifier framework:

classify(ax, @) = argmax score(x,y, 0)
yeLl

score(x,y, 0 ZH fi(x,y)

* but first, how do we know that th|s scoring
function generalizes HMMs?



HMM as a Linear Model

||

HMM: pg £ y Hp‘r Yi | Yi— pn(:C’L ‘ yz)

linear model: SCOI‘e x,y,0 Z@ fj xr y

po(x,y) x exp{score(w, y,0)}
po(x,y) o< exp {Zj 0;f;(x, y)}

* what are the feature templates and weights?



HMM as a Linear Model

||

HMM: pg(x,y) = Hpq-(yi | Yi—1) Pn(Ti | yi)
i=1

linear model: score(x,y, 6 26’ filz,y)

feature templates and weights:

friy ) (@, y) = ZH[(yi—l =)A=y Ory ) =logpr (" | Y)

Faran(@y) = Ly =y) Az =2)]  Onyray) =



Linear Sequence Models

* 50, an HMM is:

— a linear sequence model

— with particular features on label transitions and label-
observation emissions

— and uses maximum likelihood estimation (count &
normalize) for learning

* but we could use any feature functions we like, and
use any of our loss functions for learning!



(Chain) Conditional Random Fields

Conditional Random Fields: Probabilistic Models
for Segmenting and Labeling Sequence Data

John Lafferty ™ LAFFERTY@CS.CMU.EDU
Andrew McCallum* T MCCALLUM@WHIZBANG.COM
Fernando Pereira*! FPEREIRA(@WHIZBANG.COM

*WhizBang! Labs—Research, 4616 Henry Street, Pittsburgh, PA 15213 USA
TSchool of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 USA
tDepartment of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104 USA

Abstract mize the joint likelihood of training examples. To define
a joint probability over observation and label sequences,
a generative model needs to enumerate all possible ob-
servation sequences, typically requiring a representation
in which observations are task-appropriate atomic entities,
such as words or nucleotides. In particular, it is not practi-
cal to represent multiple interacting features or long-range
dependencies of the observations, since the inference prob-
lem for such models is intractable.

We present conditional random fields, a frame-
work for building probabilistic models to seg-
ment and label sequence data. Conditional ran-
dom fields offer several advantages over hid-
den Markov models and stochastic grammars
for such tasks, including the ability to relax
strong independence assumptions made in those
models. Conditional random fields also avoid
a fundamental limitation of maximum entropy This difficulty is one of the main motivations for looking at
Markov models (MEMMSs) and other discrimi- conditional models as an alternative. A conditional model

36




(Chain) Conditional Random Fields

classify(ax, @) = argmax score(x,y, )
yeLl

score(x,y, 0 ZH fi(x,y)

linear sequence model
arbitrary features of input are permitted
test-time inference uses Viterbi Algorithm

learning done by minimizing log loss (DP
algorithms used to compute gradients)



Max-Margin Markov Networks

Max-Margin Markov Networks

Ben Taskar Carlos Guestrin Daphne Koller
{btaskar,guestrin koller} @cs.stanford.edu
Stanford University

Abstract

In typical classification tasks, we seek a function which assigns a label to a sin-
gle object. Kernel-based approaches, such as support vector machines (SVMs),
which maximize the margin of confidence of the classifier, are the method of
choice for many such tasks. Their popularity stems both from the ability to
use high-dimensional feature spaces, and from their strong theoretical guaran-
tees. However, many real-world tasks involve sequential, spatial, or structured
data, where multiple labels must be assigned. Existing kernel-based methods ig-
nore structure in the problem, assigning labels independently to each object, los-
ing much useful information. Conversely, probabilistic graphical models, such
as Markov networks, can represent correlations between labels, by exploiting
problem structure, but cannot handle high-dimensional feature spaces, and lack
strong theoretical generalization guarantees. In this paper, we present a new
framework that combines the advantages of both approaches: Maximum mar-
gin Markov (M®) networks incorporate both kernels, which efficiently deal with
high-dimensional features, and the ability to capture correlations in structured
data. We present an efficient algorithm for learning M® networks based on a

38



Maximum-Margin Markov Networks

classify(ax, @) = argmax score(x,y, )
yeLl

score(x,y, 0 ZH fi(x,y)

linear sequence model
arbitrary features of input are permitted
test-time inference uses Viterbi Algorithm

learning done by minimizing hinge loss (DP
algorithm used to compute subgradients)



Feature Locality

feature locality: roughly, how “big” are your
features?

when designing efficient inference algorithms
(whether w/ DP or other methods), we need to
be mindful of this

features can be arbitrarily big in terms of the
Input sequence

but features cannot be arbitrarily big in terms of
the output sequence!

the features in HMMs are small in both the input
and output sequences (only two pieces at a time)



Are these features big or small?

feature big or small?

feature that counts instances of “the” in the srmall
input sentence
feature that returns square root of sum of

. small
counts of am/is/was/were
feature that counts “verb verb” sequences small
feature that counts “determiner noun ,

7 pretty blg|
verb verb” sequences
feature that counts the number of nounsin a big, but we can
sentence design specialized
algorithms to handle
feature that returns the ratio of nounsto verbs | themifthey’re the
only big features

41



Learning with linear sequence models

|II

* given a linear sequence model with “smal
features, how should we do learning?



Loss functions for learning linear sequence models

loss entry j of (sub)gradient of loss for linear model
perceptron —fj (:13, y) + fj (:13, g), where @ — ClaSSify(:B, 9)
hinge —fi(x,y) + fij(x,y), where g # costClassify(x,y, 0)
log _fj(way) +Ep9(-|a3) [fj(wa)]

™\

same gradients/subgradients as
before, though computingthese
terms (inference) requires DP

algorithms
43



Implementing DP algorithms

e start with counting mode, but keep in mind
how the model’s score function decomposes
across parts of the outputs

— i.e., how “large” are the features? how many
items in the output sequence are needed to
compute each feature?



Neural Networks in NLP

neural networks

deep neural networks

neural language models

recurrent neural networks and LSTMs
convolutional neural networks



What is a neural network?

e just think of a neural network as a function
* it has inputs and outputs

e the term “neural” typically means a particular
type of functional building block (“neural

layers”), but the term has expanded to mean
many things






