TTIC 31210:
Advanced Natural Language Processing

Kevin Gimpel
Spring 2019

Lecture 10:

Inference & Learning
in Structured Prediction

Roadmap

structured prediction (4 lectures)
— introducing/formalizing structured prediction, categories of structures
— inference: dynamic programming, greedy algorithms, beam search
— inference with non-local features
— learning in structured prediction

generative models, latent variables, unsupervised learning,
variational autoencoders (2 lectures)

Bayesian methods in NLP (2 lectures)
Bayesian nonparametrics in NLP (2 lectures)
review & other topics (1 lecture)

Assignments

* Assignment 2 due today. Questions?

* Assignment 3 has been posted, due two weeks
from tomorrow

Inference with Structured Predictors

inference: solve argmax

classify(ax, @) = argmax score(x,y, 0)
Yy

Greedy Inference
Lower the lights

<s> J D N </s>

Gz = argmax pn(“lights” | y) p~(y | D) pr(</s> | y)
Yye

V D N
Lower the lights

Beam Search (beam size b = 2)
Lower the lights

score of
hypothesis
starting
hypothesis
low score high score

Extend Hypotheses

Lower the ights
. scores of extended hypotheses:
<52 pn(“Lower” | y) p,(y | <s>)score(hyp,,.,)
V
D
J
low score high score

Prune Hypotheses (b = 2)

Lower the lights
N keep top b hypotheses
<s>
V
D
J
low score high score

Prune Hypotheses (b = 2)

Lower the lights
<s> V
J
low score high score

<s>

b hypotheses
to extend

consider all

Extend Hypotheses

Lower

the

\Y

J

possible ways of
extending them

N

lights

scores of extended
hypotheses:

p,r’(llthe,, ‘ y)
X pr(Y | Yprev)

X score(hypprev)

Prune Hypotheses (b = 2)

Lower the lights
<s> V D
J D

note: due to the small size of HMM parts, these two
hypotheses will look identical going forward

we don’t need to keep both of them! (unless we’re
trying to return an n-best list)

Prune Hypotheses (b = 2)

Lower the lights
<s> V D
J D

note: due to the small size of HMM parts, these two
hypotheses will look identical going forward

we don’t need to keep both of them! (unless we’re
trying to return an n-best list)

we can use recombination

Recombination

Lower the lights
<s> V D
J D

recombination: combine hypotheses with identical final
labels, keep backpointer for higher-scoring hypothesis

Recombination

Lower the lights
<s> V D
J J

recombination can make better use of hypothesis set

above, we now have space to add another hypothesis
and increase label diversity at this position

Recombination with Ranked Backpointers

Lower the lights
<s> V 1 D
1
2
J J

we could keep both backpointers, distinguishing them
according to score rank

this adds overhead, but could help us later in beam search

commonly done if we want (approximate) n-best lists

Recombination in Beam Search

recombination has been successfully used in beam search for
phrase-based machine translation

incurs additional overhead, but improves hypothesis diversity
exact (lossless) recombination only feasible with small parts

as with other beam search components (extend hypotheses /
prune hypothesis set), recombination must be defined by
modeler for particular problem / score function in use

Beam Search for Phrase-Based Machine Translation

hypothesis sets are
separated based on how

many source words have
been translated

no word
translated

=

[|
‘ goes ’ does not

 H HEN
yes
one word two words three words
translated translated translated

e Hypothesis expansion in a stack decoder

— translation option is applied to hypothesis
— new hypothesis is dropped into a stack further down

Koehn: Statistical Machine Translation

Recombination for Phrase-Based Machine Translation

e Two hypothesis paths lead to hypotheses indistinguishable in subsequent search

— same number of foreign words translated
— same last two English words in output (assuming trigram language model)
— same last foreign word translated

— different scores
1T [H HN

peq HEEEN 0 N
it —»| does not

e Worse hypothesis is dropped

WLITTT
\.JIDI/
it

Koehn: Statistical Machine Translation

Recombination for Phrase-Based Machine Translation

e Two hypothesis paths lead to two matching hypotheses

— same number of foreign words translated
— same English words in the output
— different scores

this situation (“spurious ambiguity”)

sometimes arises in structured
prediction tasks

e Worse hypothesis is dropped

Koehn: Statistical Machine Translation

Gradient Descent for Inference

classify(ax, @) = argmax score(x,y, 0)
Yy

note: we're talking about using gradient descent for inference,
not learning

in solving this argmax, we are doing optimization (over a
discrete, structured space)

we can relax the output space from a discrete space to a
continuous one, then apply any optimization method we want
(e.g., gradient descent)

we just need ways to relax the discrete space and then ways to
convert the “continuous structured output” to a discrete one
after optimization

Relaxing Discrete Output Space for POS Tagging
<s> V D N </s>

Lower he lights

<s>
</s>

first, represent discrete, structured output using
one-hot vectors

g U <=

Relaxing Discrete Output Space for POS Tagging
<s> V D N </s>

Lower he lights

<s>
</s>

then, relax to vectors where sum of entries is 1
(treat them as distributions over tags)

g U <=

Relaxing Discrete Output Space for POS Tagging
<s> V D N </s>

Lower he lights

<s>
</s>

use gradient descent to optimize the pretrained
score function with respect to these vector entries

g U <=

Relaxing Discrete Output Space for POS Tagging
<s> V D N </s>

Lower he lights

<s>
</s>

at convergence, find largest value in each vector and
return it as the predicted POS tag at that position

g U <=

Gradient Descent for Inference

simple and general

easy to implement thanks to toolkits with
automatic differentiation

it does require a way to relax the output space
to be continuous

how well does it work?

Empirical Comparison

100
o\o 50 al \
= 80 : : # of gradient
§ 1) Vltert_)l descent iterations
S -=—(radient Descent
o 607
@)
< 5

40 I | I |
0 100 200 300 400

Time(s)

e sequence labeling task with 400 labels (CCG supertagging)
* model is a BLSTM-CRF
* gradient descent is much worse than Viterbi!

Tu & Gimpel (2019): Benchmarking Approximate Inference Methods for
Neural Structured Prediction

Inference Networks for Structured Prediction

* working in the relaxed continuous output
space, we can design a neural network
architecture to map from inputs to (relaxed)
outputs

e train the network to output a structure with
high score (similar to teacher-student
networks / knowledge distillation)

Tu & Gimpel (2018): Learning Approximate Inference Networks for Structured Prediction

Inference Networks for POS Tagging

<s> \V4 D N </s>

Lower he lights

<s>
</s>

use an LSTM (for example) to go from the sentence
to the POS tag distribution at each position

g U <=

Z >~ Qb

<s>
</s>

the lights </s>

Lower

<s>

g U <=

<s>
</s>

train these LSTM parameters to produce continuous

structured outputs with high score under pretrained
structured score function

<s> Lower the lights </s>

Inference Networks
E@ (7 y*) E@ (xa(D (X)) <

computing energy on

computing > inference network
> energy on gold output
standard output -
J
J e hY
r) continuous
softmax
! one-hot vectors
vectors
Inference
noun|| prep 1A<I> (x) Network
N v J it
y* thanks 4 following

J/

Y

Tu & Gimpel (2018): Learning Approximate Inference Networks for Structured Prediction

Empirical Comparison

100£
—~ * 100
o\o 50 a \
= 807 _ : # of gradient
§ 1 . V'tert_)l descent iterations
3 60! -=Gradient Descent
8 * Inference Network
< 5
40 | | l '
0 100 200 300 400
Time(s)

* sequence labeling task with 400 labels (CCG supertagging)
* model is a BLSTM-CRF
* inference network shows a much better speed/accuracy trade-off

Tu & Gimpel (2019): Benchmarking Approximate Inference Methods for
Neural Structured Prediction

Integer Linear Programming

e we can often formulate inference as
optimizing an integer linear program

* we can then use off-the-shelf ILP solvers

e sometimes we can relax the ILP to an LP
(remove integer constraints), then solve the

LP which can be done efficiently, then convert
the relaxed structure to a discrete one

Inference: Summary

exact DP algorithms if parts are small

beam search
— can improve with heuristics (“heuristic search”)
— can handle non-local features / large parts

— recombination can help, though not with large
parts

coarse-to-fine

gradient descent for inference
inference networks

linear programming / ILP

Learning in Structured Prediction

classify(x, 8) = argmax score(x,y, 0)
Y /
learning: choose 6

most loss functions used in structured prediction have the
same form as those used in multi-class classification

part that changes: now structured inference is required for
computing gradients

we can use any inference strategy we discussed in the context
of learning

there are also new inference problems that arise for certain
loss functions

Cost Functions

cost function: how different are these two structures?
cost : V X JV — R>g

typically used to compare predicted structure to gold standard
should reflect evaluation metric for task

usual conventions: cost(y,y) = 0

cost(y,y") = cost(y', y)

Cost Functions

* typical cost for multi-class classification:

cost(y,y') =lly # ¢/]
* how about for sequences? cost :)V XV — R>g

Y|
— “Hamming cost”: Cost y y ZH yt # ?Jt

— “0-1 cost”: cost(y, y’) —]I[y 7£ y/]

Empirical Risk Minimization

A

0 = argmin Z cost(y, predict(x, 0))
0 (zyep

predict(ax, @) = argmax score(x,y,)
Yy

* this is intractable so we typically minimize a surrogate
loss function instead

L0ss Functions for Structured Prediction

name loss where used

o) cost(y, predict(z, 0)) MERT (Och, 2003)

Loss Functions for Structured Prediction
name loss where used
cost .
(“0-17) cost(y, predict(x, 9)) MERT (Och, 2003)
d
petrcep- —score(x, y, 0) + max score(x,y’, 0) ;terrlé;t:trrin
ron y (Collins, 2002)

L0ss Functions for Structured Prediction

name loss where used
cost .
(“0-17) cost(y, predict(x, 9)) MERT (Och, 2003)
, structured
pircep' —SCOIG(ZB, 'y, 9) _I_ ma;X SCOI"G(CE, y , 9) perceptron
ron (7]

(Collins, 2002)

, , structured SVMs
hinge —score(x, y, 0) + H,}!a;x (score(x,y’, 0) + cost(y,y')) | (Taskaretal,

inter alia)

Max-Margin Markov Networks

Max-Margin Markov Networks

Ben Taskar Carlos Guestrin Daphne Koller
{ btaskar,guestrin koller } @cs.stanford.edu
Stanford University

Abstract

In typical classification tasks, we seek a function which assigns a label to a sin-
gle object. Kernel-based approaches, such as support vector machines (SVMs),
which maximize the margin of confidence of the classifier, are the method of
choice for many such tasks. Their popularity stems both from the ability to
use high-dimensional feature spaces, and from their strong theoretical guaran-
tees. However, many real-world tasks involve sequential, spatial, or structured
data, where multiple labels must be assigned. Existing kernel-based methods ig-
nore structure in the problem, assigning labels independently to each object, los-
ing much useful information. Conversely, probabilistic graphical models, such
as Markov networks, can represent correlations between labels, by exploiting
problem structure, but cannot handle high-dimensional feature spaces, and lack
strong theoretical generalization guarantees. In this paper, we present a new
framework that combines the advantages of both approaches: Maximum mar-
gin Markov (M®) networks incorporate both kernels, which efficiently deal with
high-dimensional features, and the ability to capture correlations in structured
data. We present an efficient algorithm for learning M® networks based on a

42

Maximum-Margin Markov Networks

parts function contains parts on consecutive
labels (“bigram parts”)

arbitrary features of input are permitted
test-time inference uses Viterbi Algorithm
learning done by minimizing hinge loss
(inference algorithms used to compute
subgradients)

A New Structured Inference Problem

e test-time inference:

argmax score(x,y,0)
Yy

e “cost-augmented” inference includes cost function:

max (score(@,y',0) + cost(y.y')

— only used during training

— we can use all the same argmax inference algorithms as
for the test-time inference problem as long as the cost
function parts are not too big

L0ss Functions for Structured Prediction

name loss where used
cost .
(“0-17) cost(y, predict(x, 9)) MERT (Och, 2003)
, structured
pircep' —SCOIG(ZB, 'y, 9) _I_ ma;X SCOI"G(CE, y , 9) perceptron
ron (7]

(Collins, 2002)

, , structured SVMs
hinge —score(x, y, 0) + H,}!a;x (score(x,y’, 0) + cost(y,y')) | (Taskaretal,

inter alia)

Visualizing Losses for Binary Classification

*, —0-1: mx I(z<0)
3 \ ‘0’ - P t . (O —)
N “ erceptron: max(0, —z
\ ,
S U Hinge: max(0,m — z)
N
o \ *e
D2 .,
= AN *
: N ™
E W
7)) \ %
0 \ *e
S ‘
— 1 ¢ 2
\ *e
\ e
\ %
\ %
\ *e
\ s
X *
O m
[
-3 -2 -1 0 1 2 3

this is for binary classification, so y is either -1 or 1
m = cost multiplier
z = classifier score (the larger it is, the more confident the classifier is)

L0ss Functions for Structured Prediction

name loss where used
cost ,
(“0-17) cost(y, predict(x, 9)) MERT (Och, 2003)
ercep.- , structured
ptronp —S(;()re(:lj7 vy, 9) —+ ma;x SCOI"e(ZE, Yy, 9) perceptron
y (Collins, 2002)
, , structured SVMs
hinge —score(z, y, 0) + H,}!a;x (score(x,y",0) + cost(Y,Y'))| (Taskar etal,
inter alia)
g —score(x, y, 0) + log Z exp {score(x,y’,0)} CRFs (Lafferty et

y/

al., 2001)

(Chain) Conditional Random Fields

Conditional Random Fields: Probabilistic Models
for Segmenting and Labeling Sequence Data

John Lafferty™ LAFFERTY(@CS.CMU.EDU
Andrew McCallum*T MCCALLUM@WHIZBANG.COM
Fernando Pereira*! FPEREIRA@WHIZBANG.COM

*WhizBang! Labs—Research, 4616 Henry Street, Pittsburgh, PA 15213 USA
TSchool of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 USA
tDepartment of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104 USA

Abstract mize the joint likelihood of training examples. To define
a joint probability over observation and label sequences,
a generative model needs to enumerate all possible ob-
servation sequences, typically requiring a representation
in which observations are task-appropriate atomic entities,
such as words or nucleotides. In particular, it is not practi-
cal to represent multiple interacting features or long-range
dependencies of the observations, since the inference prob-
lem for such models is intractable.

We present conditional random fields, a frame-
work for building probabilistic models to seg-
ment and label sequence data. Conditional ran-
dom fields offer several advantages over hid-
den Markov models and stochastic grammars
for such tasks, including the ability to relax
strong independence assumptions made in those
models. Conditional random fields also avoid
a fundamental limitation of maximum entropy This difficulty is one of the main motivations for looking at
Markov models (MEMMs) and other discrimi- conditional models as an alternative. A conditional model

48

(Chain) Conditional Random Fields

parts function contains parts on consecutive
labels (“bigram parts”)

arbitrary features of input are permitted
test-time inference uses Viterbi Algorithm

learning done by minimizing log loss (DP
algorithms used to compute gradients)

L0ss Functions for Structured Prediction

name loss where used
cost ,
(“0-17) cost(y, predict(x, 9)) MERT (Och, 2003)
ercep.- , structured
ptronp —S(;()re(:lj7 vy, 9) —+ ma;x SCOI"e(ZE, Yy, 9) perceptron
y (Collins, 2002)
, , structured SVMs
hinge —score(z, y, 0) + H,}!a;x (score(x,y",0) + cost(Y,Y'))| (Taskar etal,
inter alia)
g —score(x, y, 0) + log Z exp {score(x,y’,0)} CRFs (Lafferty et

y/

al., 2001)

Visualizing Losses for Binary Classification

3%
— Hinge: max(0,m — 2)
Log: log(1 +exp(—=z))
—0-1
2
ge
<
=
=
)
L=
n
3
= 1
O | | | | | |
-3 -2 -1 0 1 2 3

Classifier Score x True y

this is for binary classification, so y is either -1 or 1
m = cost multiplier
z = classifier score (the larger it is, the more confident the classifier is)

L0ss Functions for Structured Prediction

name loss where used
cost ,
(“0-17) cost(y, predict(x, 9)) MERT (Och, 2003)
, structured
percep- —score(x,y,0) + max score(x,y’,) oerceptron
tron y (Collins, 2002)
, , structured SVMs
hinge —score(x, y, 0) + H,}!a;x (score(x,y’, 0) + cost(y,y')) | (Taskaretal,
inter alia)
| —score(x, y, 0) + log Z exp {score(x,y’,0)} CRFs (Lafferty et
8 " al., 2001)
Povey et al.
softmax | —score(x, y, 0) + log Z exp {score(z,y", 0) + cost(y,y')}| (2008) éimpel &
margin ’

y/

Smith (2010)

Relationships Among Losses
—score(z, y, 0) +nba;x score(z,y',) —score(x, y, 0) +logz exp {score(zx,y’,0)}

y/
perceptron loss [l max to softmax» log loss

o o

add COSt add COSt
funCﬁon funcﬁon

. 2

max-margin [l max to softmax » softmax-margin
—score(x,y,0) + Hly87X (score(x,y’, 0) + cost(y,y’))

—score(x,y, 0) + log Z exp {score(x,y’, 0) + cost(y,y')}
y/

