TTIC 31210:
Advanced Natural Language Processing

Kevin Gimpel
Spring 2019

Lecture 11:
Finish Learning in Structured Prediction;

Probabilistic Modeling and Latent
Variables



Roadmap

structured prediction (4.5 lectures)
— introducing/formalizing structured prediction, categories of structures
— inference: dynamic programming, greedy algorithms, beam search
— inference with non-local features
— learning in structured prediction

generative models, latent variables, unsupervised learning,
variational autoencoders (1.5 lectures)

Bayesian methods in NLP (2 lectures)
Bayesian nonparametrics in NLP (2 lectures)
review & other topics (1 lecture)



Assignments

e Assignment 1 grades were sent out today (sorry
for the multiple emails)

* any questions about Assignment 37

» after the break, we’ll go over Assignment 2
solutions briefly



Inference: Summary

exact DP algorithms if parts are small
beam search

coarse-to-fine

gradient descent for inference
inference networks

linear programming / ILP



Learning in Structured Prediction

classify(x, 8) = argmax score(x,y, 0)
Yy

learning: choose @

most loss functions used in structured prediction have the
same form as those used in multi-class classification

part that changes: now structured inference is required for
computing gradients

we can use any inference strategy we discussed in the context
of learning

there are also new inference problems that arise for certain
loss functions



Cost Functions

* cost function: how different are these two structures?
cost : V XV — R>g

e typically used to compare predicted structure to gold standard
* should reflect evaluation metric for task



Cost Functions

* typical cost for multi-class classification:
cost(y,y') =1Ily # y]

* how about for sequences? cost : YV X JV — R>g

Y|
— “Hamming cost”:  cost(y, y ZH Y # ?Jt

— “0-1cost”:  cost(y,y’) =1y # ¢']



Empirical Risk Minimization

A

0 = argmin Z cost(y, predict(x, 0))
0 (xyep

predict(ax, @) = argmax score(x,y, )
Yy

* this is intractable so we typically minimize a surrogate
loss function instead



Loss Functions for Structured Prediction

a, y form a structured input/output pair in the training data

name loss where used

t
(«cocisln) cost(y, predict(x, 9)) MERT (Och, 2003)




Loss Functions for Structured Prediction

a, y form a structured input/output pair in the training data

name loss where used
cost .
(“0-17) Cost(y7 predlct(w, 9)) MERT (Och, 2003)
ercen- , structured
ptronp —score(x,y, 0) + max score(x,y , 0) perceptron
y (Collins, 2002)
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Loss Functions for Structured Prediction

a, y form a structured input/output pair in the training data

name loss where used
cost .
(“0-17) Cost(y7 predlct(w, 9)) MERT (Och, 2003)
ercen- , structured
ptronp —score(x,y, 0) + max score(x,y , 0) perceptron
y (Collins, 2002)
, , structured SVMs
hinge —score(x, y, 0) + max (score(x,y’, 0) + cost(y,y’)) (Taskar et al.,

y/

inter alia)
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Visualizing Losses for Binary Classification
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z = Classifier Score x Truey

m = cost multiplier

this is for binary classification, so true y is either -1 or 1
the larger the classifier score is, the more confident the classifier is



Visualizing Losses for Binary Classification
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z = Classifier Score x Truey

with 0-1 loss: if classifier is correct, what is the loss?




Visualizing Losses for Binary Classification
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z = Classifier Score x Truey

with 0-1 loss: if classifier is correct, what is the loss? 0




Visualizing Losses for Binary Classification
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with perceptron loss:

if classifier is correct, what is the loss?
if classifier is incorrect, what is the loss?




Visualizing Losses for Binary Classification
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with perceptron loss:

if classifier is correct, what is the loss? O

if classifier is incorrect, what is the loss? classifier score




Visualizing Losses for Binary Classification
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with hinge loss:

if classifier is correct, what is the loss?

if classifier is incorrect, what is the loss?



Visualizing Losses for Binary Classification
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with hinge loss:
if classifier is correct, what is the loss? O if classifier score bigger than

m, else m minus classifier score
if classifier is incorrect, what is the loss? classifier score + m




Loss Functions for Structured Prediction

a, y form a structured input/output pair in the training data

name loss where used
cost . ]
(“0-17) Cost(y’ predlct(w, 9)) MERT (Och, 2003)
ercen- , structured
ptronp —score(x, Yy, 0) + max score(z,y’, 0) perceptron
y (Collins, 2002)
, , structured SVMs
hinge |—score(x,y,0) + max (score(x,y’, 0) + cost(y,y")) |  (Taskaretal,
Y inter alia)
log —log pe (y ’ w) CRFs (Lafferty et

al., 2001)
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Loss Functions for Structured Prediction

a, y form a structured input/output pair in the training data

name loss where used
cost .

(“0-1”) Cost(y7 predlct(w, 0)) MERT (Och, 2003)
ercen- , structured

ptronp —score(x,y, 0) + H:}Ja;x score(x,y , 0) perceptron

(Collins, 2002)

structured SVMs

hinge —score(x, y,0) + H:]l-Ja;X (score(wx, Yy, @) + cost(y, y/)) (Taskar et al.,

inter alia)
exp{score(x,y,0)} CRFs (Lafferty et
log —logpe(y | ) = —log ., 2001
Zy, exp{score(x,y’,0)} al., )
= —score(x,y, 0) + log Z exp{score(x,y’,0)}

Yy
note: this uses the usual softmax transformation to convert scores
to probabilities, but the summation is over all output structures




New Inference Problem: Summing

—score(x,y, 0) + log Z exp {score(x,y’,0)}
y/

* to compute gradients of this loss, we need to
sum over all structured outputs

e for certain structures, we can do this
efficiently using DP algorithms



Viterbi Algorithm for HMMs

V(1,y) =py(z1|y) pr(y | <s>)

V(m,y) = max ( py(zm | y) pr(y | y') V(m—1,9"))

Viterbi efficiently iterates over all label
sequences in polynomial time

can we repurpose this algorithm to
efficiently sum over all label sequences?
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Viterbi > “Forward” Algorithm

V(1,y) =py(z1|y) pr(y | <s>)

V(m,y) = max (pn(zm |y) pr(y | y) V(im—1,9))

just change max to sum!

F(1 y)—pn 1| y) pr(y | <s>)

= pn(@m | W) e y) Fim—1,%)

y' eL



Forward-Backward Algorithm?

* we used to derive a second algorithm (“backward”
or “outside”) and use both algorithms to compute
expected counts/posteriors/gradients

* now, we just implement the forward DP algorithm
with memoization directly using computation
graphs, then use autodifferentiation

* this is not new, though for many years it was not
mainstream

see Eisner (2016): Inside-Outside and Forward-Backward
Algorithms Are Just Backprop



Summing Over Structures

when parts are small, we can repurpose max DP
algorithms for summing

how about when parts are big or DP is too slow?

“approximate summing” is much trickier than
approximate argmax

depending on what you want to do in the
summation, you may have to be careful about
bias (e.g., if you're estimating expectations)



Loss Functions for Structured Prediction

a, y form a structured input/output pair in the training data

name loss where used
cost ,
(“0-17) Cost(y’ predlct(w, 9)) MERT (Och, 2003)
, structured
p‘zrce'o' —score(x, Yy, 0) + max score(z,y’, 0) perceptron
ron Y (Collins, 2002)
, , structured SVMs
hinge |—score(x,y,0) + max (score(x,y’, 0) + cost(y,y")) |  (Taskaretal,
Y inter alia)
o —score(x, y, 0) + log Z exp {score(x,y’,0)} CRFs (Lafferty et
5 m al., 2001)
) ) Povey et al.
softmax | —score(z, y, 0) + log » _ exp {score(z,y’,0) + cost(y,y")}| (2008), Gimpel &
margin

y/

Smith (2010)
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Relationships Among Losses

—score(x,y,0) + mya;x score(x,y’, 0) —score(x,y, 0) + logz exp {score(x,y’,0)}

y/
perceptron loss [l max to softmax» log loss

o o

add COSt add COSt
funCtion function

T

max-margin [l max to softmax» softmax-margin

_Score(w7 vy, 0) —|— I’I:lyal,X (SCOI'e(,’I)7 y’7 0) —|— C()St(:y7 ,y/))

—score(x,y, 0) + log Z exp {score(x,y’, 0) + cost(y,y')}
y/



Results: Named Entity Recognition

Perceptron Log Loss

F1:85.27 F1: 85.54

Max-Margin Softmax-Margin

F1:85.55 F1: 86.03




Visualizing Losses for Binary Classification
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z = Classifier Score x True y
m = cost multiplier
this is for binary classification, so true y is either -1 or 1
the larger the classifier score is, the more confident the classifier is



New Inference Problem: Cost-Augmented Summing

—score(x, y, 0) + log Z exp {score(x,y’, 0) + cost(y,y’)}
y/
* if cost function decomposes additively like the
score function (i.e., if cost and score functions
use same parts), we can use same algorithms

as for log loss



Visualizing Losses for Binary Classification

pep——— Log; log(l + eXp(_Z))

Softmax-Margin: log(1 4+ exp(m — 2))

o N
O \‘\.\ —(0-1: m X I(z < 0)
=, N
8 Ns, === Perceptron: max(0, —2z)
g \\\0
" SN RN 1 Hinge: max(0, m — 2)
N NS
Q SON
— 1 —
N\
N\
\
S
0 S el LTVY="F

- these 4 surrogate loss functions are convex

- good for optimization, but any potential problems?




Visualizing Losses for Binary Classification
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- these 4 surrogate loss functions are convex

- good for optimization, but:
- loose approximations to 0-1 loss
- may be sensitive to outliers



Non-Convex Surrogate Losses

* risk (also called Bayes risk)



Risk
e expectation under the model of the cost function

* has been used for speech & machine translation
(Kaiser et al., 2000; Smith & Eisner, 2006)

4:]99 (y’|x) [COSt(yv y/)]

where model probability is produced
using a softmax over structured outputs,
just like with log loss:

exp{score(x,y,0)}
, exp{score(x,y’,0)}

Yy



Visualizing Risk for Binary Classification
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z = Classifier Score x True y

risk is non-convex and tracks 0-1 loss more closely than the
convex losses



By ) [c058(y, )

Zcost exp{score(x,y’,0)}
y,) Dy €xpiscore(z,y”, 0)}

how can we compute gradients for optimizing this?
for log loss, we only needed a summing algorithm

for risk, we need to compute expectations of products
(intuitively: need to track pairs of parts)

there are DP algorithms that can be used to efficiently
compute gradients for risk (and related quantities)

Li & Eisner (2009): First- and second-order expectation semirings
with applications to minimum-risk training on translation forests

Xiong et al. (2009): Minimum tag error for discriminative training of
conditional random fields



Minimum Risk Training for Machine Translation

e used for MT by Smith & Eisner (2006) and neural
MT by Shen et al. (2016)

* found effective in large-scale comparison by
Edunov et al. (2018)

* most use a cost function related to BLEU score
e approximate sums using n-best lists:

exp{score(x,y’,0)}

Epy (y|2) [cost(y, y')] = Y cost(y,y’) >

y’ Y

N

sums approximated
using n-best lists

, exp{score(x,y”,0)}



Loss Functions for Structured Prediction

name loss where used
cost .
(“0-17) cost(y, predict(x, 0)) MERT (Och, 2003)
ercen- , structured
ptronp —score(x, Yy, 0) + max score(z,y’, 0) perceptron
y (Collins, 2002)
, , structured SVMs
hinge |—score(z,y,0) + max (score(x,y’, 0) + cost(y,y")) |  (Taskaretal,
Y inter alia)
o —score(x, y, 0) + log Z exp {score(x,y’,0)} CRFs (Lafferty et
& m al., 2001)
) ) Povey et al.
Sr‘:]‘:rmi""n" —score(x,y, 0) +log Y  exp {score(z, y’,0) + cost(y,y')}| (2008), Gimpel &
g Y’ Smith (2010)
exp{score(zx,y’,0)} Kaiser et al.,
risk (2000); Smith &

D cost(y,y)
y/

>y exp{score(, ", 0)}

Eisner (2006)




Non-Convex Surrogate Losses

* risk

* ramp



Ramp Loss

 what is this loss doing?

— max score(z,y”, 0) + max (score(x, y’, @) + cost(y,y’))
y// y/

Do et al. (2008): Tighter bounds for structured estimation

e second form of ramp loss:

—max (score(x,y”,0) — cost(y,y")) + maxscore(x,y’, )
y// y/
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Ramp Losses for Binary Classification

Ramp: min(m, max(0,m — z))
= === Shifted Ramp: min(m,max(0, —2z))

------ Extended Ramp: min(2m,max (0, m — z))

Loss Incurred

-3 -2 -1 0 1 2
z = Classifier Score x True u
m = cost multiplier
this is for binary classification, so true y is either -1 or 1
the larger the classifier score is, the more confident the classifier is



New Inference Problem: Cost-Diminished Inference

—max (score(x,y”,0) — cost(y,y")) + maxscore(x,y’, )
y// y/

e can use same algorithms as cost-augmented
inference



Learning in Structured Prediction: Summary

* |osses have same form as in multi-class
classification

* two things change:

— structured inference is required during learning,
and it can take various forms

— cost function usually defined to decompose across
parts of structured output

* in multi-class classification, cost is much simpler



Learning in Structured Prediction: Summary

 computational bottleneck in learning is inference

e various forms of inference:
— perceptron: argmax inference
— hinge: cost-augmented inference
— log: summation over structures
— softmax-margin: cost-augmented summation
— risk: expectations of products
— ramp: cost-augmented/cost-diminished inference

* argmax inference is easier/faster than summing

inference, so perceptron/hinge losses are
commonly used in structured prediction



Roadmap

generative models, latent variables, unsupervised learning,
variational autoencoders (1.5 lectures)

Bayesian methods in NLP (2 lectures)
Bayesian nonparametrics in NLP (2 lectures)
review & other topics (1 lecture)



* NLP historically has had a lot of probabilistic
modeling with latent variables

* sometimes supervised, sometimes unsupervised

* unsupervised learning in NLP often takes the
form: “consider the unseen output as a latent

variable”



Prototypical Latent-Variable Model: Clustering
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Latent-Variable Modeling

why would we want to introduce latent
variables in our models?

we may want to assume there is some unseen
(“latent” or “hidden”), underlying structure in
the data-generating process

this latent structure can help us in defining the
generative model of the data

e.g., clustering



“Brown Clustering”

Class-Based n-gram Models of Natural

Language
Peter F. Brown* Vincent J. Della Pietra’
Peter V. deSouza® Jenifer C. Lai’

Robert L. Mercer

Friday Monday Thursday Wednesday Tuesday Saturday Sunday weekends Sundays Saturdays
June March July April January December October November September August

people guys folks fellows CEOs chaps doubters commies unfortunates blokes

down backwards ashore sideways southward northward overboard aloft downwards adrift
water gas coal liquid acid sand carbon steam shale iron

great big vast sudden mere sheer gigantic lifelong scant colossal

Computational Linguistics, 1992



HMMs for Word Clustering
(Brown et al., 1992)

each y, € L isaclusterID
so, label spaceis £ = {1,2,...,100}



Topics

gene 0.04
dna 0.02
genetic 0.01

Topic Modeling

Documents

Topic proportions and
assignments

Seeking Life’s Bare (Genetic) Necessities
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Blei et al. (2003)




Word Alignment

parallel sentences are observed, word

alighnments are latent variables:

1 2 3 4 5 6
And the | | programme | | has | | been | | implemented
Le | | programme éteé mis en || application
1 2 4 5 6 7

Brown et al. (1990)
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Part-of-Speech Tagging

proper proper

determiner verb (past) prep. noun noun poss. adj. noun

Some questioned if Tim Cook ’s first product
proper

modal verb det. adjective noun prep. nhoun punc.

would be a breakaway hit for Apple
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Unsupervised Part-of-Speech Tagging

1 2 4 3 3 z 5 2

’

Some questioned if Tim Cook ’'s first product

2 4 1 5 2 4 2 1
would be a breakaway hit for Apple

sentences are observed, part-of-speech tags
are treated as latent variables
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Unsupervised Part-of-Speech Tagging

1 2 4 3 3 4 5 2
Some questioned if Tim Cook ’s first product

2 4 1 5 2 4 2 1
would be a breakaway hit for Apple

1-to-1 accuracy:

1 = determiner
2 = verb
3 = noun
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Unsupervised Part-of-Speech Tagging

1 2 4 3 3 4 5 2
Some questioned if Tim Cook ’s first product

2 4 1 5 2 4 2 1
would be a breakaway hit for Apple

1-to-1 accuracy: many-to-1 accuracy:
1 = determiner 1 = determiner
2 = verb 2 = noun

3 = noun 3 = noun
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Unsupervised Dependency Parsing

sentences are observed, dependency parse
trees are treated as latent variables:

$ could you translate it ?

VW

Klein & Manning
Smith & Eisner
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Latent Syntactic Categories for Parsing

* split Penn Treebank syntactic categories into

finer subcategories

NNP
NNP-0 Jr. Goldman INC.
NNP-1 Bush Noriega Peters
NNP-2 J. E. L.
NNP-3 York Francisco Street
NNP-4 Inc Exchange Co
NNP-5 Inc. Corp. Co.
J(:m lo:es M:,,y RB-0 recently previously still
RB-1 here back Nnow
RB-2 very highly relatively
RB-3 SO too as
RB-4 also now still
RB-5 however Now However

Petrov (2009)




Morphological Segmentation

Word
M1 M2
/\
MIl  MI2 le/\Mzz
T | | T~
s a | l i n e S S

Figure 1: The parse tree generated by the metagrammar
of depth 2 for the word saltiness.

Sirts & Goldwater (2013)



Morphological Segmentations, POS, and Syntactic Trees

NN DT AC CC NN DT AC DN VB NN PRP

-(ﬁxn NNY DT N n*nivs NT2 N2

1\’.:..'\!\" k\,o n.’,ja.z. 3\ n./m.lr—( .-ex.: }\,&\.:

"y
ve,
.......
--------
"""""""""""
.......

NN DTCC NN DT DNDT VB NN DT PRP

Snyder & Barzilay



Generative Stories

* we hypothesize latent variables through which
data are generated

e define “generative story” that describes how

latent variables are generated, then how data
is generated using latent variables



Expectation Maximization (EM)

max H Zp(:v(i), z | 0)

* EM is an algorithmic template that finds a
local maximum of the marginal likelihood of
the observed data



Expectation Maximization (EM)

max H Zp(:v(i), z | 0)

e working instead with the log-likelihood:

Zlog Zp(:v(i), 2| 0)
_Zlogzq@ m(z) Z)| 0)

* where g, is some distribution over values for z



Expectation Maximization (EM)

max H Zp(:v(i), z | 0)

e working instead with the log-likelihood:

Zlog Zp(:v(i), 2| 0)
_Zlogzq@ 33(7“) Z)| 0)

: (%)
Yla Jens.en S > S: S: C]z(Z) log p(x s 2 ‘ 9)

inequality %(2)




Expectation Maximization (EM)
m@axHZp(x(i),z | 6)

* maximize lower bound of the log-likelihood:

.2 6)
> > a2 lg qi(2)

e alternate between optimizing wrt g and theta



EM
e “E” step:

— compute posteriors over latent variables:

for each i, g;(z) = p(z | 'V, 6)



EM
e “E” step:

— compute posteriors over latent variables:

for each i, g;(z) = p(z | 'V, 6)

e “M” step:

— update parameters given posteriors:

(2) 0’
6 = argmaxy S‘ qi(z log plz ’(Z)| )
qi\z




EM for Structured Prediction

e to compute posteriors, we need to sum over
all output structures



EM Today

* today we don’t always need to do the alternating
steps of EM

* just like summing inference for structured
prediction, we can implement the summing
algorithm using computation graphs, then use
autodifferentiation

e parameterize categorical distributions using a
“softmax parameterization” (i.e., do optimization in
the logits, not probabilities)



