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Roadmap

 Bayesian methods in NLP (2 lectures)
e Bayesian nonparametrics in NLP (2 lectures)
* review & other topics (1 lecture)



Assignments

e any questions about Assighment 3?



Additional Reading

e for this segment of the
course, the optional
text is Cohen (2016,
2019)

* there is a copy of the
second edition (2019)
in the TTIC library

* readings will be drawn
from this book for the
next few lectures
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Motivation

* in most neural NLP, we assume parameters
and architectures are fixed

* consider a one-hidden-layer MLP:

oy — | a) = E2S 1o (Wo(z)

* now let’s be more explicit about what we’re
conditioning on:
exp{w, tanh (Wg(x))}
Z

note: the notation above suggests that we can think of parameters
as random variables; this is not uncontroversial.

plY =y |x,0={w,W}) =



Motivation

oY =y | 2.0 = {w, W}) = “PWy tanh (Wy(x)))

A

* how do we get backto p(Y =y | x)?



Motivation

oY =y | 2.0 = {w, W}) = “PWy tanh (Wy(x)))

A

* how do we get backto p(Y =y | x)?
* marginalize over new random variables:

p<Y=y\m>:Ap<Y=y,@={w,W}\w)d@



Motivation

exp{w, tanh (Wg(x))}

plY =y |xz,0={w,W}) = -
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Motivation

oY =y | 2.0 = {w, W}) = “PWy tanh (Wy(x)))

A

* how do we get backto p(Y =y | x)?
* marginalize over new random variables:

p<Y=y\m>:Ap<Y=y,@={w,W}\w)d@

* intuitively: don’t commit to a single set of
parameter values; use them all (with a
suitable prior distribution)



Going Further...

* marginalize over architectures & parameters:
exp{w, tanh (Wg(x))}
A

pY =yl @)= [ pY = 5.4 = MLP(w, W) | 2)aA

pY =y |x,A=MLP(w,W)) =




Going Further...

* marginalize over architectures & parameters:
exp{w, tanh (Wg(x))}
A

pY =yl @)= [ pY = 5.4 = MLP(w, W) | 2)aA

pY =y |x,A=MLP(w,W)) =

* the Bayesian framework gives us a vocabulary
to discuss this kind of thing and methods for
approximating these computations



Why “Bayesian”?

Likelihood

Probability of collecting

this data when ou
hypothesis is true

r

Bill Howe, UW

Prior
The probability of the

P(DIH) P(H) hypothesis being true

before collecting data

P(H|D) =

Posterior

The probability of our
hypothesis being true given
the data collected

P(D)

Marginal
What is the probability of

collecting this data under
all possible hypotheses?
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Bayesian NLP

typically used with unsupervised learning:
— we have data

— we hypothesize some latent variables through
which the data are generated

— we define the “generative story” that describes
how latent variables are generated, then how
data is generated using latent variables

— new: we parameterize the distributions & add the
parameters themselves to the generative story



Generative Story Template

1: Draw a set of parameters 6 from p(©)
2: Draw a latent structure z from p(Z | 0)
3: Draw the observed data x from p(X | z,0)

the above generative story implies the
following factorization of the joint distribution:

p(z,2,0) = p(@)p(z | O)p(x | 2,0)
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Categorical Distribution

 parameterized by a vector of probabilities,
one for drawing each outcome

* i.e., prob. of drawing outcome j for variable X:

* when we want to draw from this distribution,
we will write:

r ~ Categorical(6)



Categorical vs. Multinomial

III

* “multinomial” is used frequently to mean
categorical in this literature, so we’ll use them
interchangeably

* a multinomial is actually more general
(permits more than 1 instance of an event)



Vector Form of Categorical Distribution
 form we saw earlier:

pX=z;10)=60;, iel{l,...,K}

* we can also write the categorical distribution
as a (one-hot) vector random variable Y:
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Vector Form of Categorical Distribution

e form we saw earlier:

pX=z;10)=60;, iel{l,...,K}

* we can also write the categorical distribution
as a (one-hot) vector random variable Y:

Y; = I[X =i Y € {0,1}*

K

p(Y =y |0)=]] o}

1=1



The 2-Simplex

e consider a categorical distribution with 3 outcomes

* e.g., adistribution over words using a vocabulary

of size 3:
cat

dog UNK
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The 2-Simplex

e a point on this simplex represents a categorical
distribution over the 3 outcomes

e a uniform distribution:
cat

dog UNK
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The 2-Simplex
e adistribution that puts most probability on UNK:

cat

dog UNK
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The 2-Simplex

e a categorical distribution with K outcomes has K-1
parameters

cat

dog UNK
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Categorical Parameters lie in (K-1)-Simplex

source: https://en.wikipedia.org/wiki/Simplex#t/media/File:Simplexes.jpg 25



Latent Dirichlet Allocation

David M. Blei BLEI@CS.BERKELEY.EDU
Computer Science Division

University of California
Berkeley, CA 94720, USA

Andrew Y. Ng ANG@CS.STANFORD.EDU
Computer Science Department

Stanford University
Stanford, CA 94305, USA

Michael I. Jordan JORDAN@CS.BERKELEY.EDU
Computer Science Division and Department of Statistics

University of California

Berkeley, CA 94720, USA

e generative model for document collections
using latent variables that can be interpreted
as “topics”

e |earns a multinomial distribution over words
for each topic



Topic proportions and

Topics Documents assignments
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Blei (2012): Probabilistic Topic Models

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and full citation on
the first page. Copyright for components of this work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/
or fee. Request permission to publish from permissions@acm.org or fax (212) 869-0481.

The Digital Library is published by the Association for Computing Machinery. Copyright © 2012 ACM, Inc



Latent Dirichlet Allocation

(Blei et al., 2003)

categorical distributions over words for four topics:

“Arts” “Children” “Education”
NEW MILLION CHILDREN SCHOOL

FILM TAX WOMEN STUDENTS
SHOW PROGRAM PEOPLE SCHOOLS
MUSIC BUDGET CHILD EDUCATION
MOVIE BILLION YEARS TEACHERS
PLAY FEDERAL FAMILIES HIGH
MUSICAL YEAR WORK PUBLIC

BEST SPENDING PARENTS TEACHER
ACTOR NEW SAYS BENNETT
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Generative Story for Simple LDA

simplified LDA, and only showing generative story for 1 document:

1: Draw a multinomial topic distribution 6 from some distribution p(O)
2: For each position 7 in document:
a: Draw a topic z; ~ Multinomial(6)

b: Draw a word w; ~ Multinomial(/,,)
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Generative Story for Simple LDA

simplified LDA, and only showing generative story for 1 document:

1: Draw a multinomial topic distribution 6 from some distribution p(O)
2: For each position 7 in document:
a: Draw a topic z; ~ Multinomial(6)

b: Draw a word w; ~ Multinomial(/,,)

/

multinomial distribution over words for topic z;
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Generative Story for Simple LDA

simplified LDA, and only showing generative story for 1 document:

1: Draw a multinomial topic distribution 6 from some distribution p(O)
2: For each position 7 in document:
a: Draw a topic z; ~ Multinomial(6)

b: Draw a word w; ~ Multinomial(3,,)

what should we keep in mind
when choosing this distribution?
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Dirichlet Distribution

e distribution over vectors with entries that are
all positive and sumto 1

e 50 it’s kind of like a “distribution over
(categorical) distributions”

p(@=9\a)=%&)1—[9§“_1

1

normalization term that depends on &



Dirichlet Distribution

 parameterized by a positive vector «

pO=00) = g []or!

1

0 ~ Dirichlet(«)



e categorical = point on the simplex
cat

dog UNK

* Dirichlet = distribution over the simplex
cat

dog UNK
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[see Jupyter Notebook]



Generative Story for Simple LDA

simplified LDA, and only showing generative story for 1 document:

1: Draw a multinomial topic distribution 6 from some distribution p(O)
2: For each position 7 in document:
a: Draw a topic z; ~ Multinomial(6)

b: Draw a word w; ~ Multinomial(/,,)
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Generative Story for Simple LDA

simplified LDA, and only showing generative story for 1 document:

1: Draw a multinomial topic distribution 6 ~ Dirichlet(«)
2: For each position ¢ in document:
a: Draw a topic z; ~ Multinomial(6)

b: Draw a word w; ~ Multinomial(/., )
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Generative Story for LDA

1: For each topic, draw a multinomial word distribution 3; ~ Dirichlet(n)

2: For each document d:
a: Draw a multinomial topic distribution 6 ~ Dirichlet(«)
b: For each position ¢ in document d:
i: Draw a topic z; ~ Multinomial(6)

ii: Draw a word w; ~ Multinomial(/3,,)

* now we show explicitly the generation of the word
multinomials (once for the document collection)

* where should the hyperparameters (alpha and psi)
come from?



Graphical Model for LDA
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