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Roadmap

 Bayesian methods in NLP (2 lectures)
e Bayesian nonparametrics in NLP (1.5 lectures)
e research tips & other topics (0.5 lectures)



Assignments

 we'll go over Assignment 3 today

* Assignment 4 has been posted; due in 2 weeks



Motivation

* in neural NLP, we typically assume parameters
and architectures are fixed

e 1-layer MLP:

oy — | a) = E2S 1o (Wo(z)

* now, include parameters as random variables
and condition on them:
exp{w, tanh (Wg(x))}

plY =y |x,0={w,W}) = —




Motivation

oY =y | 2.0 = {w, W}) = “PWy tanh (Wy(x)))

A

* how do we get backto p(Y =y | x)?
* marginalize over new random variables:

p<Y=y\m>:Ap<Y=y,@={w,W}\w)d@

* intuitively: don’t commit to a single set of
parameter values; use them all (with a
suitable prior distribution)



Going Further...

* marginalize over architectures & parameters?
exp{w, tanh (Wg(x))}
A

pY =yl @)= [ pY = 5.4 = MLP(w, W) | 2)aA

pY =y |x,A=MLP(w,W)) =




Generative Story Template

1: Draw a set of parameters 6 from p(©)
2: Draw a latent structure z from p(Z | 0)
3: Draw the observed data x from p(X | z,0)

the above generative story implies the
following factorization of the joint distribution:

p(z,2,0) = p(@)p(z | O)p(x | 2,0)



Latent Dirichlet Allocation
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e generative model for document collections
using latent variables that can be interpreted
as “topics”

e |earns a multinomial distribution over words
for each topic
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Dirichlet Distribution

 parameterized by a positive vector «

¢ ~ Dirichlet(a)

pO©=10|a)= HC“_1



e categorical = point on the simplex
cat

dog UNK

* Dirichlet = distribution over the simplex
cat

dog UNK
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Compare Categorical and Dirichlet

categorical:

vector form of
categorical:

Dirichlet:

x ~ Categorical(6)

Y; = I[X = i Y € {0,1}*
K

p(Y =y |0)=]]6"
1=1
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Posterior over Categorical Parameters?
K

p(Y =y|6)=]]6"

1=1

p(O@=0]a)= —) Heai—l

posterior (given a single observation y):
p(0 |y, a)



Posterior over Categorical Parameters?

K

p(Y =y|6)=]]6"
7,:11 K

p(@:“a):B—a)g

posterior:

p(0 |y, ) < p(6 | a)p(y | 0) o



Posterior over Categorical Parameters?

K
plY =y|0) :H@%ﬁ
i=1
| K
_ B o1
p(@—ﬁla)— Ba)Hez

posterior: - i
p(0 |y, ) o p(6 [ c)p(y | 0) (H 9?”) x (H H?i)



Posterior over Categorical Parameters?

K
plY =y|0) :H@%ﬁ
i=1
| K
_ B o1
p(@—ﬁla)— Ba)Hez

posterior: - i
p(0 |y, ) o p(6 [ c)p(y | 0) (H 9?”) x (H H?i)



Posterior over Categorical Parameters?

ozz—l

prior: p(© =0 | «)

||Ex

nosterior: p(f | y, @) x Heaﬁyz

posterior has form of another Dirichlet distribution!

posterior parameters: o = a +y
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Conjugate Priors

Dirichlet is (simplest) conjugate prior to multinomial
— Dirichlet parameters are like “pseudo-observations”

definition: “posterior obtained from a given prior in the
prior family and a given likelihood function belongs to
the same prior family”

result of “algebraic similarity” between prior family and
likelihood

often leads to tractability & closed-form analytic
solutions for posterior



Generative Story Template

1: Draw a set of parameters 6 from p(©)
2: Draw a latent structure z from p(Z | 0)
3: Draw the observed data x from p(X | z,0)

the above generative story implies the
following factorization of the joint distribution:

p(z,2,0) = p(@)p(z | O)p(x | 2,0)
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* using a prior distribution over
parameters (not even really Bayesian)

1:| Draw a set of parameters 6 from p(0 | a)
less 5

Bayesian

: Draw a latent structure z from p(z | )

3: Draw the observed data x from p(x | z, 0)

p(x,2,0 | o) =p(0 | a) p(z | 0) p(x | 2,0)
more
Bayesian



* using a prior distribution over
parameters (not even really Bayesian)

* computing posterior over parameters

less instead of using a point estimate

Bayesian

more
Bayesian



e computing posterior over parameters instead of
using a point estimate

p(z,2,0 | a) =p(0 | a)p(z]|0)p(z|z2,0)

data is a set of samples: :,13(1), x(z), e 7

n)

joint: p(z™, 2™ 20 ) g )

posterior with 1 . X
point estimate: P(Z( )y ey 2 | 't >a--->$(n)79704)

posterior: p(z(l), vy 20 | PN ...,m(”),oz)



* using a prior distribution over
parameters (not even really Bayesian)

* computing posterior over parameters

less instead of using a point estimate
Bayesian . . L g
* integrating out parameters (with fixed
parameters for prior)
more

Bayesian



* integrating out parameters (with fixed parameters
for prior)

p(z,2,0 | a) =p(0 | a)p(z]|0)p(z|z2,0)

2)

data is a set of samples: :,13(1), .CC( S aees x(”)

joint: p(z™, 2™ 20 ) g )

posterior: p(z(l), vy 20 | AN ...,x(”),oz)

collapsed posterior: p(zV, ..., 2" | 1) 2™ )



less
Bayesian

more
Bayesian

using a prior distribution over

parameters (not even real
computing posterior over

y Bayesian)
narameters

instead of using a point estimate

integrating out parameters (with fixed

parameters for prior)

integrating out parameters while
estimating parameters of prior

(“Empirical Bayes”)

integrating out parameters and prior
parameters (using a “hyperprior”)



Inference

* inference roughly means “calculate statistical
guantities of interest”

* examples:

— compute the mode of some random variables
when conditioning on some and marginalizing out
others

— compute marginals of some random variables
(variable posteriors when marginalizing out
everything else)

— compute posterior distribution over some subset
of random variables



Learning?

* in Bayesian NLP, there’s often no “learning”

* thereis only “inference”
* just define model and do inference to calculate

what we want to calculate
— no parameters are being estimated from data*

— we are not optimizing any loss function*
— there is no gradient descent*

* but sometimes we do learn some latent variables
(certain parameters or hyperparameters), and
infer or marginalize over others * typically



Markov Chain Monte Carlo (MCMC)

MCMC algorithms are widely used in Bayesian
modeling but also useful more generally

can be used to generate samples from
distributions that are hard to sample from

samples can be used to estimate quantities of
Interest

these estimates are unbiased



Gibbs Sampling

* Gibbs sampling is the simplest and most
widely-used MCMC algorithm (at least in NLP)



Gibbs Sampling Template

Ui, ...,U, = latent variables
U_, = all latent variables other than U,
X = all observed data and hyperparameters

Gibbs sampling:
initialize all U; to values u;
repeat until convergence:
sample u from p(U; | u—_;, X)
set U; < u



Gibbs Sampling Template

Gibbs sampling:
initialize all U; to values u;
repeat until convergence:
sample u from p(U; | u—;, X)
set U, < u

At convergence, each time we update any value of any random
variable in U1, ..., U, , we have another sample from the posterior

these samples can be used to estimate any quantity of interest
while offering some nice theoretical properties



Disadvantages of Gibbs Sampling?

Gibbs sampling:
initialize all U; to values u;
repeat until convergence:
sample u from p(U; | u—;, X)
set U, < u

nearby samples are not necessarily uncorrelated, so it can take many
samples for good estimates, especially of rare events

guarantees are at convergence

“burn-in” time can be hard to estimate & depends on initialization



Gibbs sampling is simple and has nice guarantees,
but it can be tricky to derive for NLP models

why? we just need to sample each random
variable conditioned on all the others

in certain kinds of NLP models, hard to define the
random variables!

even when we can do this, the sampler might be
very slow to converge (“mix slowly”)



Example: Phrase Alignments in Machine Translation

Gracias
lo
haré
de
muy
buen
grado

Thank , Ishall gladly.

you do so
(b) example phrase alignment

DeNero et al. (2008): Sampling Alignment Structure
under a Bayesian Translation Model
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Example: Phrase Alignments in Machine Translation

_| I
W1~
(a) SWAP (b) FLIP
(¢) TOGGLE — :.:
(d) FLIP TWO H‘—’.‘—’ H
\__/"
(e) MOVE H.H ! «

Figure 2: Each local operator manipulates a small portion
of a single alignment. Relevant phrases are exaggerated
for clarity. The outcome sets (depicted by arrows) of each
possible configuration are fully connected. Certain con-

Current State The boys are eating

Includes segmentations o @ O

and alignments for all

sentence pairs Ellos
Y o

l |
[Apply the FLIP operatorj COtER

to English position 1

Markov Blanket .
Freezes most of the 92 9
segmentations and : :
alignments, along with
the alignment count

L

~ Compute the conditional
varobability of each outcome

QOutcomes

An exhaustive set of
possibilities given
the Markov blanket

Tl o
3 =3

Finally, select a new state proportional
t to its conditional probability

Figure 3: The three steps involved in applying the FLIP
operator. The Markov blanket freezes all segmentations



Graphical Models in NLP?

* Gibbs sampling is easy to apply to graphical
models, but graphical models are not a good
fit for certain tasks/models in NLP:

— segmentation

— context-free grammars (see case-factor diagrams;
McAllester et al., 2007)

— finite-state automata
— models over paths in graphs
— models over hyperpaths in hypergraphs



Example: Lattice for Phrase-Based Machine Translation

sie es uibersetzen : you translate it

ubersetzen :

sie : you translate

konnten : could

konnten sie : could you es Ubersetzen : translate it

- libersetzen : .
fM@ konnten : could @ translate ’Q—M

start ﬁnal
H . . .o ()
state German input: konnten sie es libersetzen

English reference: could you translate it ?

es : it

es : it

e thisis a finite-state transducer: a directed graph where each edge
consumes part of the input and outputs a string
* each edge has a score (not shown)

e atranslationis a path from the start state to a final state



Phrase Lattice - Graphical Model

 each edge in the phrase lattice is a binary random
variable in the graphical model

sie es ubersetzen /:Xou translate it

\_/
, iiberse‘izen ,
. Si€ : you translate
konnten : could /\Y 15

es ubersetzen : translate it

konnten sie : could you

. . ubersetzen :
SIC . you konnten : could es 1t translate
YR VAR
\_/ W, N




e consider what happens when we set a variable to 1 (green)

sie es ubersetzen /:Xou translate it
\_/

ubersetzen :
translate
N\

konnten : could sie : you
Y ~

konnten sie : could you es Ubersetzen : translate it

: . ubersetzen :
sie : you konnten : could es 11t tra%s\late
O @, O



sie es ubersetzen : gou translate it

ubersetzen :

konnten : could sie : you translate

konnten sie : could you es Ubersetzen : translate it

- . ubersetzen :
SIC . you konnten : could es 1t translate
O ~O
\__/ \_/

* just by setting one variable to 1, many other variables are
forced to be 0 or 1 to obey path legality constraints



* long-distance, deterministic dependencies among variables

* known to be problematic for certain inference algorithms
(Gibbs sampling and belief propagation)

sie es ubersetzen : gou translate it

ubersetzen :

konnten : could sie : you translate

konnten sie : could you es Ubersetzen : translate it

- . ubersetzen :
SIC . you konnten : could es 1t translate
O ~O
\__/ \_/




Graphical Models for Dependency Parsing

ROOT

—AANAIT

A hearing is scheduled today

* define a binary random variable for each pair
of words in the sentence

* global tree constraint among all random
variables (special handling for this constraint)

Smith & Eisner (2008): Dependency Parsing by Belief Propagation



Summary: Graphical Models in NLP

we can often come up with a way to define
random variables for structured NLP tasks

downside: every variable may have an edge to
all others! (global constraints)

global, deterministic potentials can cause
issues with certain general-purpose inference
algorithms in graphical models

it’s better to use specialized algorithms
designed for the global constraints



LDA Generative Story

1: For each topic k£ = 1...K, draw multinomial word distribution ), ~ Dirichlet(1)
2: For each document s
a: Draw a multinomial topic distribution () ~ Dirichlet(c)
b: For each position j in document ::
i: Draw a topic z(*) ~ Multinomial(§'¥)

ii: Draw a word w("7) ~ Multinomial(5,¢.5))

K = # topics
N = # documents
M = # words in each document

V = # words in vocabulary




Graphical Model for LDA

HC}Q\B k

OFO+0—@

o o) Z w N




Gibbs Sampling for LDA

Z+3) | everything else ~ Multinomial(8'” © B win)

9 ¢ RX
5 c RKXV



Q)
B

Gibbs Sampling for LDA

everything else ~ Multinomial(6") ® B. wii)

everything else ~ Dirichlet(ac + m?)
everything else ~ Dirichlet(¢) + ny)

m,(:) = # words in doc ¢ from topic k

nk.» = # of times word v appears with topic £ in any document



e we now have a way to generate samples from
the posterior for the LDA model

* how should we do the following?

— get topic assignments for each word in the
document collection?

— get topic distribution for a document?

— get estimates of topic-word distributions for each
topic?



