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Kevin Gimpel
Spring 2019

Lecture 15:
Finish Inference in Bayesian NLP,
Start Bayesian Nonparametrics



Roadmap

 Bayesian methods in NLP (2 lectures)
e Bayesian nonparametrics in NLP (1.5 lectures)
e research tips & other topics (0.5 lectures)



Assignments

* questions about Assighment 47



Generative Story Template

1: Draw a set of parameters 6 from p(©)
2: Draw a latent structure z from p(Z | 0)
3: Draw the observed data x from p(X | z,0)

the above generative story implies the
following factorization of the joint distribution:

p(z,2,0) = p(@)p(z | O)p(x | 2,0)



e categorical = point on the simplex
cat

dog UNK

* Dirichlet = distribution over the simplex
cat

dog UNK



Posterior over Categorical Parameters?
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posterior (given a single observation y):
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Posterior over Categorical Parameters?

ozz—l

prior: p(© =0 | «)

||Ex

nosterior: p(f | y, @) x Heaﬁyz

posterior has form of another Dirichlet distribution!

posterior parameters: o = a +y



Gibbs Sampling Template

Ui, ...,U, = latent variables
U_, = all latent variables other than U,
X = all observed data and hyperparameters

Gibbs sampling:
initialize all U; to values u;
repeat until convergence:
sample u from p(U; | u—_;, X)
set U; < u



LDA Generative Story

1: For each topic k£ = 1...K, draw multinomial word distribution ), ~ Dirichlet(1)
2: For each document s
a: Draw a multinomial topic distribution () ~ Dirichlet(c)
b: For each position j in document ::
i: Draw a topic z(*) ~ Multinomial(§'¥)

ii: Draw a word w("7) ~ Multinomial(5,¢.5))

K = # topics
N = # documents
M = # words in each document

V = # words in vocabulary




Graphical Model for LDA
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Gibbs Sampling for LDA

Z+3) | everything else ~ Multinomial(8'” © B win)
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Gibbs Sampling for LDA

everything else ~ Multinomial(6") ® B. wii)

everything else ~ Dirichlet(ac + m?)
everything else ~ Dirichlet(¢) + ny)

m,(:) = # words in doc ¢ from topic k

nk.» = # of times word v appears with topic £ in any document



LDA

Generative Story:
), ~ Dirichlet(1))
9 ~ Dirichlet()
7(3) ~ Multinomial(0®)

Posteriors:

B | everything else ~ Dirichlet(¢) + ny)

(%) | everything else ~ Dirichlet(a + m(i))

7(1,3) | everything else ~ Multinomial(Q(i) © B. i)



e we now have a way to generate samples from
the posterior for the LDA model

* how should we do the following?

— get topic assignments for each word in the
document collection?

— get topic distribution for a document?

— get estimates of topic-word distributions for each
topic?



Key Quantities
p(z, 2,0 | a) =p(0 | a)p(z|0)p(z | z0)

Our data is a set of samples: 513(1), 513(2), e z(")

posterior: p(z, 2 0 2 2™ a)

collapsed posterior: p(zV), ..., 2" | 1) 2™ @)




Collapsed Gibbs Sampling for LDA

Posterior: Z“9) | Z=(43) 9 8 w, o, 1) ~ Multinomial(#') @ B wiid)
Collapsed: Z\49) | =3 4w, o, 9p ~ 2

* the collapsed posterior is tricky to work with
because all latent variables become coupled

* i.e., we now have fewer independence
assumptions to help us simplify things
e [on board]



Collapsed Gibbs Sampling for LDA

Posterior: Z ("7 | Z=0:9) 9 8 w,a, Y ~ Multinomial(e(i) ® B. i)
Y+ [N, 5) k) wd) " o+ [m_g ]k

Collapsed: p(Z(i’j) | Z‘“’”,w,a,w) = Vo +S [n (i) 5] Ka+) ./ m_ .)]k,
v —(2,7),R]V k’ —\%J



Roadmap

e Bayesian nonparametrics in NLP (1.5 lectures)
e research tips & other topics (0.5 lectures)



“Nonparametric”?

nonparametric does not mean “no parameters”

it means that “the number of parameters grows as
the data grows”

for our purposes, think of it as “some component of
the model permits an unbounded set of something”



Parametric or Nonparametric?

Parametric or

Model :
Nonparametric?

*parametric if vocab fixed



Parametric or Nonparametric?

Parametric or

bifeeisd Nonparametric?
Gaussian Mixture Model (GMM) parametric
Hidden Markov Model (with GMM emissions) parametric

Hidden Markov Model (for part-of-speech tagging,

: . . . nonparametric*®
with multinomial emissions) P

n-gram language models nonparametric*
LDA nonparametric*
LSTM language model nonparametric*

parametric (assuming

character-level LSTM language model fixed set of characters)

*parametric if vocab fixed



* “nonparametric modeling” in terms of vocab has
a lot of simple engineering solutions:

— use UNK for unknown words, do smoothing of high-
order n-grams, etc.

* in this case, unbounded part of model is mostly
determined by observed data, heuristics are
useful

* modeling gets more interesting when unbounded
part of model relates to latent variables



 when might you want to permit an
unbounded set of latent items in a model?



Infinite Mixture Model

* number of mixture components is unbounded
(grows depending on the data)

e e.g.,, LDA with an unbounded set of topics



“Infinite” HMM

HMMs permit infinite sequences already
what’s new here?
infinite number of hidden states:
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Beal et al. (2002), Teh et al. (2005) =



“Infinite” PCFG

* PCFGs can already handle infinite-length derivations
e “infinite” here means an infinite number of nonterminals:

HDP-PCFG
B ~ GEM(«) [draw top-level symbol weights]
For each grammar symbol z € {1,2,... }: o
T ~ Dirichlet(aT) [draw rule type parameters] e
dF ~ Dirichlet(aE ) [draw emission parameters]
»B ~ DP(a?, 387T) [draw binary production parameters] e e
For each node 7 in the parse tree:
t; ~ Multinomial (¢, ) [choose rule type]
If t; = EMISSION: ‘
xT; ~ Multinomial((szi) [emit terminal symbol] ) e e
If £; = BINARY-PRODUCTION: - =
(2L(3)s ZR(3)) ~ Multinomial(qﬁg) [generate children symbols]

Figure 2: The definition and graphical model of the HDP-PCFG. Since parse trees have unknown structure,
there is no convenient way of representing them in the visual language of traditional graphical models.
Instead, we show a simple fixed example tree. Node 1 has two children, 2 and 3, each of which has one
observed terminal child. We use L () and R(7) to denote the left and right children of node 1.

Liang et al. (2007), Finkel et al. (2007) 2



 when might you want to permit an
unbounded set of latent items in a model?

— # topics in LDA

— # Gaussians in a Gaussian Mixture Model

— # hidden states in an HMM

— # nonterminals in a PCFG

— morph lexicon for morphological segmentation
— lexicon for Chinese word segmentation

— # coreference chains in coreference resolution

— # senses for a word when learning sense-specific
word embeddings

— # dimensions in an embedding (?!)



 we need priors over distributions that permit
an unbounded set of items



LDA Generative Story

1: For each topic k£ = 1...K, draw multinomial word distribution ), ~ Dirichlet(1)
2: For each document s
a: Draw a multinomial topic distribution () ~ Dirichlet(c)
b: For each position j in document :: T
i: Draw a topic z(*¥) ~ Multinomial(§®)

ii: Draw a word w"7) ~ Multinomial(53, .5 )

|

dimensionality of alpha
must be K (the number of topics)

K = # topics
N = # documents
M = # words in each document

V = # words in vocabulary




Dirichlet Process (DP)

“distribution over distributions”

unlike Dirichlet distribution, DP does not
require pre-specifying number of components

we’ll now describe how a DP generates a
distribution over an unbounded set of items



Running Example

e |let’s say we're trying to segment words into
morphological units without any supervision:

— walking = walk + ing
— restarted =2 re + start + ed

e what is the unbounded set of latent items
here?

— |lexicon of possible morphological units



Dirichlet Process (DP)

* contains a “base distribution” G|,

* simple example base distribution for our
morph lexicon:

m|

GO (m) — plen(‘m‘) Hpchar<mi)

1=1
e e.g., probability of “ing”:

GO(”ing”) — plen(g) Pchar (1) pchar(n) pchar(g)



Dirichlet Processes

e our unbounded distribution over items will

choose its items by sampling from the base
distribution

* base distribution typically has an infinite set of

items with nonzero probability, as in our
example:

m|

Go (m) — plen(‘m‘) Hpchar(mz')

1=1



ltems and Probabilities

base distribution provides the items
(“atoms”), as many as we want

where do their probabilities come from?

we need an infinite set of probabilities that
sumto 1l

DPs have another parameter: concentration
(strength) parameter s



Stick-Breaking Process

* the betas form an infinite sequence that sums to 1
* they provide probabilities for an infinite set of items!

35



Stick-Breaking Process

v, ~ Beta(1, s)
k—1
B =wi [ [(1—1)
j=1
* the betas form an infinite sequence that sums to 1
* they provide probabilities for an infinite set of items!

36



v, ~ Beta(l, s) Beta Distribution

24
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Stick-Breaking with High Concentration (s = 10)

Sullstick

v, ~ Beta(1, s)

38



Stick-Breaking with High Concentration (s = 10)

* high concentration = more of probability mass
preserved for other pieces in the stick

39



Stick-Breaking with Low Concentration (s = 0.1)

Sullstick

v, ~ Beta(l,s)

k—1
Be=uvr | [ (1 - 1)
j=1

40



Stick-Breaking with Low Concentration (s = 0.1)

* low concentration = stronger power law
effects in resulting probabilities

41



A Draw G from a DP

draw infinite probabilities from

/ stick-breaking process with parameter s
1: B ~ GEM(s)

draw atoms from base distribution
2: 917 (927 vee GO /
o . . . atoms can be repeated!
3: the distribution  is defined as:

G(0) =) Brllf = 4]
k=1

42



A Draw G from a DP

draw infinite probabilities from

/ stick-breaking process with parameter s
1: B ~ GEM(s)

draw atoms from base distribution
2: 917 (927 vee GO /
. atoms can be repeated!
3: the distribution  is defined as:

=Y Bl =
=1

G(”ing”) Zﬁkﬂ “ing” = 0]

43



* the stick-breaking construction of the DP is
useful for specifying models and defining
inference algorithms



Dirichlet Process Mixture Model

e generative story for dataset =),z .. (") :

1: 8 ~ GEM(s)

2: 01,05, ... ~ G
3:fori=1..n,2% ~ 8
4: fori=1..n, 2 ~ p(zD | 0, 4)

what should the base distribution be?

e each x is generated from a single mixture component

* the number of mixture components is unbounded



