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Roadmap

deep learning for NLP (5 lectures)

structured prediction: sequence labeling, syntactic and
semantic parsing, dynamic programming (4 lectures)

generative models, latent variables, unsupervised learning,
variational autoencoders (2 lectures)

Bayesian methods in NLP (2 lectures)
Bayesian nonparametrics in NLP (2 lectures)
review & other topics (1 lecture)



Today

* brief review of neural language modeling
* neural similarity modeling
* |oss functions for similarity modeling



Probabilistic Language Modeling

e goal: compute the probability of a sequence of words:
P(w) = P(wy,wa, ..., wy,)
* related task: probability of next word:
P(wy | w1, wa, w3)
* a model that computes either of these:
P(w) or P(wg|wy,ws,...,wk_1)

is called a language model (LM)

J&M/SLP3



Markov Assumption

* only use the last k words to predict the next:

P(w; | wi, ...,wi—2, wi—1) = P(w; | Wi—g, ..., Wi—2, Wi—1)

J&M/SLP3



Bigram model

condition on the previous word:
P(ws,wa, ) = [ Plws | wio)
1

automatically generated sentences from a bigram model:

texaco rose one in this issue is pursuing growth in a boiler
house said mr. gurria mexico ’'s motion control proposal
without permission from five hundred fifty five yen

outside new car parking lot of the agreement reached

this would be a record november

J&M/SLP3



A Neural Probabilistic Language Model

Département d’Informatique et Recherche Opérationnelle
Centre de Recherche Mathématiques
Université de Montréal, Montréal, Québec, Canada

Journal of Machine Learning Research 3 (2003) 1137-1155 Submitted 4/02; Published 2/03

Yoshua Bengio BENGIOY @IRO.UMONTREAL.CA
Réjean Ducharme DUCHARME @IRO.UMONTREAL.CA
Pascal Vincent VINCENTP@IRO.UMONTREAL.CA
Christian Jauvin JAUVINC@IRO.UMONTREAL.CA

* idea: use a neural network for n-gram
language modeling:

PH(wt | Wt—n+1y -y Wt—2, wt—l)



What is a neural network?

just think of a neural network as a function
it has inputs and outputs

III

“neural” typically means one type of
functional building block (“neural layers”), but
the term has broadened

neural modeling is now better thought of as a
modeling strategy (leveraging “distributed
representations” or “representation

learning”), or a family of related methods



A Simple Neural Trigram Language Model

* given previous words w, and w,, predict next word



A Simple Neural Trigram Language Model
* given previous words w, and w,, predict next word

* input is concatenation of vectors (embeddings)
representing previous words:

x 000 OO0O08

. '\ J
Y Y

emb(wy) emb(ws)

x = cat(emb(wy), emb(ws))

12



Notation

a vector

entry / in the vector

a matrix

entry (i,j) in the matrix

a structured object

item 7 in the structured object



Two Ways to Represent Word Embeddings

* V =vocabulary, | V| = size of vocab

e 1:create \V\ -dimensional “one-hot” vector for
each word, multiply by word embedding matrix:

emb(x) = Wonehot(V, x)



Two Ways to Represent Word Embeddings

* V =vocabulary, | V| = size of vocab

e 1:create \V\ -dimensional “one-hot” vector for
each word, multiply by word embedding matrix:

emb(x) = Wonehot(V, x)

e 2:store embeddings in a hash/dictionary data
structure, do lookup to find embedding for word:

emb(xz) = lookup(W, x)



Two Ways to Represent Word Embeddings

* V =vocabulary, | V| = size of vocab

e 1:create \V\ -dimensional “one-hot” vector for
each word, multiply by word embedding matrix:

emb(x) = Wonehot(V, x)

e 2:store embeddings in a hash/dictionary data
structure, do lookup to find embedding for word:

emb(xz) = lookup(W, x)
* these are equivalent; second may be much faster
(first can be fast with sparse operations)



A Simple Neural Trigram Language Model

e output vector contains scores of possible next words:

U e R’

(handout)
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A Simple Neural Trigram Language Model

e output vector contains scores of possible next words:

18



A Simple Neural Trigram Language Model

e output vector contains scores of possible next words:

N emb (w1 ) emb(ws)
score of predicting

word type i given
previous words w,

and w, ) score((w1,wsz),1,0) =U; 1.4%

>s; = score({w1,ws),1,0)

19



A Simple Neural Trigram Language Model

e output vector contains scores of possible next words:

U e R|V\><d

A ¥, wecaninterpret
4 Y U as another word
emb(w)) emb(ws) embedding matrix!

s; = score({w1,ws),1,0)

score((w1,wsz),1,0) =U; 1.4%

20



Training for Neural Language Models
OO0

000010000
\a )\ J
Y Y

emb(w1) emb(ws)

* most common way to train: log loss

losslog(<w17w2>7i76) — —lngg(i | <w17w2>)

po (i | (w1, ws)) o exp{score({wy,ws),1,0)}

21



Adding a Hidden Layer
s (000000000000 00
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Recurrent Neural Networks

Input is a sequence: = emb(wy)

“hidden vector” @ ° @

h, = tanh (W(x)xt +WMh, , + b)



Notation

a vector
entry / in the vector
a matrix

entry (i,j) in the matrix



 we often use RNNs to encode sentences or
longer text sequences

e common for sentence classification, machine
translation, question answering, etc.

 but RNNs are also frequently used for
generating sequences



“Output” Recurrent Neural Networks
h; = tanh W(x)xt +WWMh, | + b)

“hidden vector”

IH

“output symbo

Yy = argmax emb(y Tht
yeO



y is a symbol, not a vector Networks
O is the “output” vocabulary

we have new parameters emb(y) for
each element of O

emb(y) could be the same as the
“input” embeddings used to define
each x (for applications like language
modeling/generation)

III

“output symbo

y; = argmax emb(y) ' hy
yeO
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“output symbol” @ @ @

y; = argmax emb(y) ' hy
yeO

P(Y;) = softmax (Why,)

W = [emb(y1) ' ; emb(y2) ';...; emb(yjo)) ']

28



For language modeling:

* emb(y) are often same as input embeddings

* but could be entirely new parameters that are learned (as
in your first assignment)

“output symbol” @ “ @

P(Y;) = softmax (Wh;)

W = [emb(y1) " emb(y2) " ;...; emb(y0)) ' |

29



Language Modeling

if car ...

the

* input: a word sequence

e output?

30



Language Modeling

if car ...

the
car

, .
M

runs ...

e target output at each position:

next word in the sequence



Language Modeling: Training

car ...

.. if the

—log P(Y;—1 =7



Language Modeling: Training

car ...

the

—log P(Y;_1 = “the”) —log P(Y; = “car”) ..



* while we showed this for simple RNNSs, it’s
easy to instead use LSTMs, GRUs, etc.

* LSTMs/GRUs still produce a hidden vector at
each position in the sequence, just like RNNs

* it’s common to discuss models using RNN
abstraction that produces a hidden vector at
each time step, but you can always substitute
In GRU, LSTM, etc.



Neural Similarity Learning

e A common need:
compute similarity/affinity of two things

— maybe two things of the same type,

— two things with different types being mapped to
same space, or

— two things with different types being mapped to
different spaces, but being compared with a
learned similarity function

 Examples?



Example: Classification

similarity between
y; = argmax emb(y) hy hidden vector and
yeO output symbol
P(Y;) = softmax (Wh,) embedding (using
dot product)

36



Neural Similarity Modeling

“Siamese networks” (Bromley et al., 1993)
— these typically share parameters

|r|put ]

77
)‘ 5:7:‘:7
203"

"{:nv: crafted metrics

37



Similarity Modeling

e Siamese networks typically share parameters
across the two networks

e butit’s also common to not share parameters
when the items have different types, but we
still want to relate them in some way

— whether map to same space + compute similarity

or map each to some other space + compute
similarity



Synonym Pairs

 from WordNet, paraphrase resources like the Paraphrase Database, etc.
* Faruqui et al. (2014), Wieting et al. (2015), inter alia

contamination pollution

converged convergence

captioned subtitled
outwit thwart
bad villain
broad general

permanent permanently
bed sack

carefree reckless

absolutely urgently




Lexical Translation Pairs

* from bilingual dictionaries, automatically extracted from bitext, etc.
* Haghighi et al. (2008), Mikolov et al. (2013), Faruqui and Dyer (2014)

dog hund
man mann
woman frau
city stadt
person man
the der
the die
the das




Paraphrase Pairs

this was also true for pompeii , where the temple of jupiter that
was already there was enlarged and made more roman when
the romans took over .

this held true for pompeii , where the previously existing temple
of jupiter was enlarged and romanized upon conquest .

WIKIPEDIA WIKIPEDIA

The Free Encyclopedia Simple English



Images and Captions

Compositional Sentence Vectors Multi-Modal Image Vector Representation

Representations

A small child sits on a cement wall near white flower.

//—Q~\mf

A man wearing a helmet jumps on his bike near a beach.

_—

A man jumping his downhill bike.

e

Two airplanes parked in an airport.

Socher et al. (2014): Grounded Compositional Semantics
For Finding And Describing Images With Sentences

42




Images and Captions

Multimodal space SC-NLM Decoder

' content

;MNN“V/"

ESteam ship at the dock :

CNN - LSTM Encoder

..........................................

. structure
1]

Figure 2: Encoder: A deep convolutional network (CNN) and long short-term memory recurrent
network (LSTM) for learning a joint image-sentence embedding. Decoder: A new neural language
model that combines structure and content vectors for generating words one at a time in sequence.

Kiros et al. (2014): Unifying Visual-Semantic Embeddings
with Multimodal Neural Language Models



Images and Annotations

Image

One-vs-Rest

WSABIE

surf, bora, belize, sea
world, balena, wale,

delfini, orca, dol-
phin, mar, delfin,
dauphin, whale, can-

tahiti, delfini, surf- .
ing, in ahjemanllli St 31;,1 (liqller whale, sea
eiffel tower, tour :igg towrfll('),lestat:;,
iffel, board, ; i
illu: sk;nowerg;;re toneliana, la tour
state building, luxor, flffel’ lor;)dra, gctv
eiffel,  lighthouse, ovlver, 18 “q,
jump, adventure tc(:;l‘:;rrava, tokyo
falco, barack, daniel ggai(l:(k gg:z:’
craig, obama, barack | . 1 husseir;
obama, kanye west, | oo .o barack

pharrell williams, 50
cent, barrack obama,
bono

obama, james mars-
den, jay z, obama,
nelly, falco, barack

Weston et al. (2011): WSABIE: scaling up to large vocabulary /mage

annotation




Questions and Answers

Score S(q,a) How the candidate answer
9 fits the question

A
™~

embedaing of the | . B | Cocccing of the
‘ question f(q) i U ﬁ subgraph g(a)
Dot product - -
Embedding matrix W

Embedding matrix W
T

] D—I—LLI—I_] Binary encoding of
. the subgraph ¢/(a)

Binary encoding of
| the question dl(g{ 7 El:l I I I
( — .. - 1987 \I
. Questiong | " K.Preston = Y |
“Who did Clooney marry in 1987?" !‘/o — | \ |
| Subgraph of a candidate | { Model
answer a (here K. Preston) | ] Travolta l

Detection of Freebase
entity in the question

Bordes et al. (2014): Question Answering with Subgraph Embeddings
lyyer et al. (2014): A Neural Network for Factoid Question Answering

over Paragraphs
45



Entities in Knowledge Bases

Table 5: Example predictions on the FB15k test set using TransE. Bold indicates the test triplet’s
true tail and italics other true tails present in the training set.

INPUT (HEAD AND LABEL) PREDICTED TAILS

J. K. Rowling influenced by G. K. Chesterton, J. R. R. Tolkien, C. S. Lewis, Lloyd Alexander,
Terry Pratchett, Roald Dahl, Jorge Luis Borges, Stephen King, lan Fleming

Anthony LaPaglia performed in Lantana, Summer of Sam, Happy Feet, The House of Mirth,

Unfaithful, Legend of the Guardians, Naked Lunch, X-Men, The Namesake

Camden County adjoins Burlington County, Atlantic County, Gloucester County, Union County,
Essex County, New Jersey, Passaic County, Ocean County, Bucks County

The 40-Year-Old Virgin nominated for MTV Movie Award for Best Comedic Performance,

BFCA Critics’ Choice Award for Best Comedy,
MTV Movie Award for Best On-Screen Duo,
MTV Movie Award for Best Breakthrough Performance,
MTYV Movie Award for Best Movie, MTV Movie Award for Best Kiss,
D. F. Zanuck Producer of the Year Award in Theatrical Motion Pictures,
Screen Actors Guild Award for Best Actor - Motion Picture

Costa Rica football team has position Forward, Defender, Midfielder, Goalkeepers,
Pitchers, Infielder, Outfielder, Center, Defenseman
Lil Wayne born in New Orleans, Atlanta, Austin, St. Louis,
Toronto, New York City, Wellington, Dallas, Puerto Rico
WALL-E has the genre Animations, Computer Animation, Comedy film,

Adventure film, Science Fiction, Fantasy, Stop motion, Satire, Drama

Bordes et al. (2013): Translating Embeddings for Modeling Multi-
relational Data 46



Entities in Commonsense Knowledge Bases

given: (cake, UsedFor, satisfy hunger) and (cake, IsA, dessert)
predict: (dessert, UsedFor, satisfy hunger)

Li et al. (2016): Commonsense Knowledge Base Completion

47



Stories and Endings

* story:

Jennifer has a big exam tomorrow. She got so stressed,
she pulled an all-nighter. She went into class the next
day, weary as can be. Her teacher stated that the test is
postponed for next week.

e ending:
Jennifer felt bittersweet about it.

Source: ROC Story Corpus (Mostafazadeh et al., 2016)



other examples/applications?

sometimes direction matters, sometimes not

sometimes there is a particular kind of
relation being named for each pair,
sometimes not (i.e., just one kind)



* why don’t we just view these tasks as
classification? (Q2 on handout)

— we are only given examples of similar things

— may be infeasible to iterate over the space of
dissimilar things (“negative examples”) because the
space is unbounded or very large

— there may be multiple things that are similar to
something but may not be in our dataset

contamination pollution

converged convergence

captioned subtitled

broad general

permanent | permanently

50




* why don’t we just view these tasks as
generation? (i.e., given something, generate the
other thing)

— generation is difficult to model and may be more
time-consuming to train

— we may not need to generate anything at test time;
we may only need to compute similarities



Similarity Functions

* many choices for similarity functions
 we’ll go over some in the next few slides

* throughout, keep in mind:
— output range
— symmetric? sim(x,y) = sim(y, X)
— introduces new parameters?
— connections among similarity functions?
— notes/tips on using these



Dot Product

sim(X,y) =Xy

e

range? R
symmetric or asymmetric? symmetric
introduces parameters? no

53



Cosine Similarity

stm(x,y) = cos(X,y)

x| = \/Zx
range? |[—

symmetrlc or asymmetrlc? symmetric

introduces parameters? no

generalizes anything? dot product when vectors
have norm 1




Cosine Similarity = Cosine of angle between vectors

1

0.5}

50 00 150 200 250 300 350

-0.5¢

At

e -1: vectors point in opposite directions
* +1: vectors point in same directions
* 0: vectors are orthogonal

J&M/SLP3



Bilinear Function

stm(X,y) = XTWy

N

range? R

symmetric or asymmetric? asymmetric in general
introduces parameters? yes

generalizes anything? dot product if W is identity

56



Notes on Using Bilinear Functions
sim(x,y) =x' Wy

similarity can depend on relation by using different
bilinear weight matrices for different relations:

sim(x,r,y) =x' W,y

potential issue: W might have a lot of parameters



* with bilinear similarity functions, there may be
too many parameters to learn in W, especially
when using large dimensionalities and separate
matrices for each relation

* how should we handle this? (Q3 on handout)

— initialize W to the identity matrix and regularize
back to it

— use a low-rank matrix factorization parameterization
(next slide)



Concise Parameterizations of the Bilinear Matrix

sim(x,y) =x' Wy

e.g., we can parameterize W as the outer product
of two vectors and only learn the two vectors

59



(Negative) Squared L2 Distance

sim(x,y) = —||x — y|l3

Ixfls = [x] = \/Z 2
7

range? R<g
symmetric or asymmetric? symmetric
introduce parameters? no



Multi-Layer Perceptron (MLP)
stm(x,y) = MLP(cat(x,y))

concatenate vectors, pass to MLP, use scalar for final output:




Multi-Layer Perceptron
stm(x,y) = MLP(cat(x,y))

range? depends on nonlinearity
symmetric? asymmetric
introduces parameters? yes
generalizes anything? yes, can represent any function!

62



Notes on MLP Similarity Functions

similarity can easily depend on relation:

63



Notes on MLP Similarity Functions

can handle different dimensionalities of the two
items:

64



Notes on MLP Similarity Functions

since MLPs are so expressive and not constrained, things could
go horribly wrong. in practice, often pass additional quantities:




Notes on MLP Similarity Functions

since MLPs are so expressive and not constrained, things could
go horribly wrong. in practice, often pass additional quantities:

when will these be helpful?
(Q4 on handout)



When are these terms helpful?

e helpful:

— when we have identical or tied parameters for the
two encoders

— when we want them to be in the same space

* not necessarily helpful if:
— no tied parameters in the encoders of the two items
— the two items have different dimensionalities
— we don’t care if they are in the same space



e we talked about similarity functions and
functional architectures

* now let’s move on to learning
* we have pairs of structured objects

(€1, x2)



Notation

a vector
entry / in the vector
a matrix

entry (i,j) in the matrix



Notation

a vector

entry / in the vector

a matrix

entry (i,j) in the matrix

a structured object

entry i in the structured object



e we talked about similarity functions and
functional architectures

* now let’s move on to learning
* we have pairs of structured objects

(€1, x2)



Learning for Similarity

We want to learn input representation
function fg as well as any parameters of
similarity function

We’'ll just write all these parameters as 6
How about this loss? (Q5 on handout)

min Z —sim(fo(x1), fo(x2))

V)
(x1,x2)ET

Any potential problems with this?



