TTIC 31210:
Advanced Natural Language Processing

Kevin Gimpel
Spring 2019

Lecture 4:

Subword Modeling and
Contextualized Word
Embeddings

Roadmap

deep learning for NLP (5 lectures)

structured prediction: sequence labeling, syntactic and
semantic parsing, dynamic programming (4 lectures)

generative models, latent variables, unsupervised learning,
variational autoencoders (2 lectures)

Bayesian methods in NLP (2 lectures)
Bayesian nonparametrics in NLP (2 lectures)
review & other topics (1 lecture)

Today

 modeling subword structure in words
* contextualized word embeddings

Recap

 on Monday we briefly reviewed some models
and loss functions for word embeddings

Other Work on Word Embeddings

e using subword information (e.g., characters)
in word embeddings

* multiple embeddings for a single word type
corresponding to different word senses

* tailoring embeddings using particular
resources or for particular NLP tasks

Other Work on Word Embeddings

e using subword information (e.g., characters)
in word embeddings

* multiple embeddings for a single word type
corresponding to different word senses

* tailoring embeddings using particular
resources or for particular NLP tasks

Subword Modeling for Word Embeddings

e Using word embeddings has limitations:
— closed vocabulary (100k-300k words is typical)
— large number of parameters! (100k * 300)

— for morphologically-rich languages, using a
separate vector for each word type is “obviously”
wrong

e Solution: character-level modeling

— open vocabulary, fewer parameters, often similar
or better performance

Early Neural Methods

morphological analyzer + recursive neural network:

unfortunatelyg
Wi, b

unfortunateqry, lygyr

Wi, by

unpge fortunateg,

Figure 1: Morphological Recursive Neural Net-
work. A vector representation for the word “un-
fortunately” 1s constructed from morphemic vec-
tors: un,,., fortunateg.,, ly.,s. Dotted nodes are
computed on-the-fly and not in the lexicon.

Luong et al. (2013): Better Word Representations with Recursive Neural Networks
for Morphology

unsupervised morphological analysis
& vector addition:

imperfection = i 4 Z on
p) m + geffe_% + ion
perfectly = perfect + ly.

We include the surface form of a word as a factor it-
self. This accounts for noncompositional constructions

7 7 7 _)
(greenhouse = greenhouse + green + house), and makes
the approach more robust to noisy morphological segmen-
tation. This strategy also overcomes the order-invariance

of additive composition (hangover # overhang).

Botha & Blunsom (2014): Compositional Morphology for
Word Representations and Language Modelling

visualization of learned morpheme vectors:

ing

S
d

7/ ers)
p Cists / .
er o) antltion ment ness
i un :
. t .. interUfikation
ism in ies -
iy . Isation
dis * ous trans
.mis jal 10U3 »
e tala y ities
s iselm ariyd ative 'O
=y ably ~pre
= ised AW opfe
' poBl®
y , sub
ily

intra

be ‘supra
re multi
super

/ ized
- izing
ization

Figure 6. English morpheme vectors learnt by CLBL++.

Botha & Blunsom (2014): Compositional Morphology for
Word Representations and Language Modelling

10

e 2013-2014: morphological analyzers + define
composition function on morphemes + learn
embeddings for morphemes

* today, researchers use one of the following:

— RNNs on character sequences (Ling et al., 2015; Ballesteros
et al., 2015)

— CNNs on character sequences (dos Santos and Zadrozny,
2014; Zhang et al., 2015; Kim et al., 2016)

— represent words as bags of character n-grams,
learn embeddings for character n-grams

11

Bidirectional LSTM over Characters

Character
Lookup
Table
BI-LSTM &
000
Q0 Ling et al. (2015):
Finding Function in
00 Form: Compositional
Character Models for
e — Open Vocabulary

embeddings
© O @/ 1o word cats' Word Representation

Convolutional Neural Network over Character Sequence

»qr} s

Highway network

4 s Max-over-time
max{-} pooling layer

Convolution layer
with multiple filters
of different widths

I

|

Concatenation
. of character Kim et al. (2016):

_ embeddings Character-Aware

..........................)) Neural Language
moment the absurdlty is recognized Models

Convolutional Neural Networks

* convolutional neural networks (CNNs) use
filters that are “convolved with” (matched
against all positions of) the input

* informally, think of convolution as “perform
the same operation over multiple parts of the
input in some systematic order”

e CNNs are often used in NLP to convert a word
or sentence into a feature vector

Filters

 for now, think of a filter as a vector in the word
embedding space

* the filter matches a particular region of the space

* “match” = “has high dot product with”

Convolution

& = not that great

x=1[04..09 02..0.7 03..0.6]"
_ VAN J J
Y Y Y

vector for not vector for that vector for great

consider a single convolutional filter W &]Rd

16

Convolution
compute dot product of filter and each word vector:

& = not that great
W

x=1[04..09 02..0.7 03..0.6]"
. VAN AN J
Y Y Y

vector for not vector for that vector for great

C1 = WTX1:d

17

Convolution

compute dot product of filter and each word vector:

& = not that great
\" 4

0.4...09 0.2..0.7 03..06]"
. AN AN)
Y Y Y

X

vector for not vector for that vector for great

C1 = WTX1:d

T
Co = W Xd+1:2d

18

Convolution
compute dot product of filter and each word vector:

& = not that great
W

0.4...09 0.2..0.7 03..06]"
. AN AN)
Y Y Y

X

vector for not vector for that vector for great

C1 = WTX1:d
T
Co = W Xd+1:2d

T
C3 = W X94+1:3d

19

Convolution

& = not that great

x=1[04..09 02..0.7 03..0.6]"
. VAN AN J
Y Y Y

vector for not vector for that vector for great

C1 — WTX1:d
-
C2 = W Xg+1:2d
T
C3 = W X2d+41:3d
Note: it’'s common to add a bias b and use a nonlinearity g:

c1=4y¢ (WTXLd +b)

20

Convolution

& = not that great

x=1[04..09 02..0.7 03..0.6]"
. VAN AN J
Y Y Y

vector for not vector for that vector for great
C1 — WTX1:d
e |
C2 = W Xg+1:2d

T
C3 = W X94+1:3d

C = “feature map” for this filter,

has an entry for each position in input (in this case, 3 entries)

21

Pooling

& = not that great

how do we convert this into a fixed-length vector?
use pooling:
max-pooling: returns maximum value in C
average pooling: returns average of values inc

CT \ A T

T
Co = W Xdj+1:2d

T
C3 = W X94+1:3d

C = “feature map” for this filter,
has an entry for each position in input (in this case, 3 entries)

22

~

Pooling

& = not that great

how do we convert this into a fixed-length vector?
use pooling:

max-pooling: returns maximum value in C
average pooling: returns average of values inc

CT \ A T

T
Co = W Xd+1:2d

then, this single filter w produces a single feature
value (the output of some kind of pooling).

in practice, we use many filters of many different
lengths (e.g., n-grams rather than words).

les)

23

Convolutional Neural Networks

“convolutional layer” = set of filters that are convolved
with the input vector (whether x or hidden vector)

could be followed by more convolutional layers, or by
a type of pooling

filters of varying n-gram lengths commonly used (1- to
5-grams)

CNNs commonly used for character-level processing;
filters look at character n-grams

Convolutional Neural Network over Characters

»qr} s

Highway network

4 s Max-over-time
max{-} pooling layer

Convolution layer
with multiple filters
of different widths

I

|

Concatenation
. of character Kim et al. (2016):

_ embeddings Character-Aware

..........................)) Neural Language
moment the absurdlty is recognized Models

1. What dimension are the character embeddings? (ters

»@ S

Highway network

4 » Max-over-time
max{-} pooling layer

.............

Convolution layer

/ with multiple filters

of different widths

I

|

Concatenation

3 of character Kim et al. (2016):
Z — embeddings Character-Aware
..........................)) Neural Language

moment the absurdlty is recognized Models

1. What dimension are the character embeddings? 4 rs

2. How many character 4-gram filters are there?

Highway network

4 4 Max-over-time
: pooling layer

L e e P

L N R e

Convolution layer
with multiple filters
of different widths

PR—

[| Concatenation
. of character Kim et al. (2016):
: embeddings Character-Aware

e . _ Neural Language
moment the iabsurdityi is recognized Models

oooooooooooooooooooooooooo

1. What dimension are the character embeddings? 4
2. How many character 4-gram filters are there? 5
3. Why do different filter lengths lead to different lengths

of feature maps?

4 4 Max-over-time
pooling layer

..

Convolution layer
with multiple filters

of different widths

] Concatenation
3 of character Kim et al. (2016):
: embeddings Character-Aware
............ Neura/ Language

moment the :absurdityi is recognized Models

 what about simpler methods?

* add or average vectors for character n-grams in
the word:

— word space (Schutze, 1993)

— deep structured semantic models (Huang et al., 2013)
— charagram (Wieting et al., 2016)

— fastText (Bojanowski et al., 2017)

29

DSSM (Microsoft Research, 2013-2016)

Tri-letter: a scale-able word representation

Tri-letter based Word Hashing of 0
rcats ’ The index of word cat
e x (cat) = 1 < in the vocabulary
- Tri-letters: #-c-a, c-a-t, a-t-#. 0 l
. 0
- Compact representation :

. |VOC| (SOOK) - |TriLetter| (30K) 1 Indices of #-c-a, c-a-t, a-t-# in the
Generalize to unseen words f(cat) = 1 letter-tri-gram list, respectively.
Robust to misspelling, inflection, 1
etc. :

n

Huang et al. (2013): Learning Deep Structured Semantic Models for Web Search using
Clickthrough Data

DSSM (Microsoft Research, 2013-2016)

Word hashing by n-gram of letters

- Collision:

- What if different words have the same word hashing vector?

- Statistics
- 22 out of 500K words collide

- Collision Example: #bananna# <- > #bannana#

Vocabulary | Unique tri-letter Number of
size observed in voc Collisions
40K 10306 2

500K 30621 22

- et

Huang et al. (2013): Learning Deep Structured Semantic Models for Web Search using

Clickthrough Data

“Charagram” Embeddings

* to embed a character sequence (word or sentence),
sum embeddings for character n-grams

* only parameters to learn are embeddings for
character n-grams

Wieting et al. (2016): Charagram: Embedding Words and Sentences via Character n-grams

32

Charagram Embeddings

Word Similari
0.8 — 1 ty
S 0.6 | i
g 0.4 ° "
g 0.2] “».' frn o S s S)
’ O ; -{| faster convergence to
| | I
0 0 20 30 a0 5o | strong performance
POS Taggin than character LSTM or
1 gging | CNN
.. 095 ° : c § 2 2 2 8 8 o
§ 0.9 1 e CHARAGRAM | -
fg% 0.85 » charLSTM
- « charCNN
0.8 1
2 4 6 8 10
Epoch

Wieting et al. (2016): Charagram: Embedding Words and Sentences via Character n-grams

Charagram Word Embeddings

 we used all 122,610 character n-grams observed in
training set (2 £ n £4), including spaces

* we trained on paraphrase pairs from the Paraphrase
Database

Wieting et al. (2016): Charagram: Embedding Words and Sentences via Character n-grams

34

For words in training set:

nearest neighbors

cefundin refunds, refunded, refund, repayment, reimbursement, rebate, repay
8 reimbursements, reimburse, repaying, repayments, rebates, rebating
professor, professorships, professorship, teachers, professorial, teacher
professors . :
prof., teaches, lecturers, teachings, instructors, headteachers
enormous, tremendous, large, big, vast, overwhelming, immense, giant
huge : . . :
formidable, considerable, massive, huger, large-scale, great, daunting

Wieting et al. (2016): Charagram: Embedding Words and Sentences via Character n-grams

35

For words in training set:

nearest neighbors

cefundin refunds, refunded, refund, repayment, reimbursement, rebate, repay
8 reimbursements, reimburse, repaying, repayments, rebates, rebating
professor, professorships, professorship, teachers, professorial, teacher
professors . :
prof., teaches, lecturers, teachings, instructors, headteachers
enormous, tremendous, large, big, vast, overwhelming, immense, giant
huge : . . :
formidable, considerable, massive, huger, large-scale, great, daunting

For words not in training set:

word nearest neighbors

vehicals vehical, vehicles, vehicels, vehicular, cars, vehicle, automobiles, car

journeying journey, journeys, voyage, trip, roadtrip, travel, tourney, voyages, road-trip

babyyyyyy babyyyyyyy, baby, babys, babe, baby.i, babydoll, babycake, darling

Wieting et al. (2016): Charagram: Embedding Words and Sentences via Character n-grams
36

fastText

 |like word2vec, but represents a word as the
sum of its character n-gram embeddings and
an embedding for the word itself

We also include the word w itself in the
set of its n-grames, to learn a representation for each
word (in addition to character n-grams). Taking the
word where and n = 3 as an example, it will be
represented by the character n-grams:

<wh, whe, her, ere, re>
and the special sequence

<where>.

Bojanowski et al. (2017): Enriching Word Vectors with Subword Information
37

fastText

* better data efficiency than word2vec:

75 T T ', ! 1
70— el T e
.ﬁé 65-"é ...
© 60 e P e ——] © ;
g SR, g 35k, LT TP ST S
£ 50 — cbhow = — chow
35 : ; T Sisg : — sisg
30 i ; H H 15 ; i H H
0 20 40 60 80 100 0 20 40 60 80 100
percentage of data percentage of data
(a) DE-GUR350 (b) EN-RW

Figure 1: Influence of size of the training data on performance. We compute word vectors following the
proposed model using datasets of increasing size. In this experiment, we train models on a fraction of the
full Wikipedia dump.

Bojanowski et al. (2017): Enriching Word Vectors with Subword Information

38

* if you’re just encoding text (rather than
generating), you can use neural architectures like

these to capture subword information

* for generation, it’s trickier:

— character RNNs are fine for generating words, but not
sentences (very long sequences and long-distance

dependencies)

* simple, data-driven segmentation methods have
emerged as the standard way to handle this

Data-Driven Segmentation

 Most popular methods:
— Byte pair encoding (BPE)
— SentencePiece’s unigram LM

SentencePiece

build 'passing | &) build ' passing
License [Apache 2.0

SentencePiece is an unsupervised text tokenizer and detokenizer mainly for Neural Network-based text generation systems

10 open | /> code quality ' A l pypi package [0.1.81 | contributions 'welcome

where the vocabulary size is predetermined prior to the neural model training. SentencePiece implements subword units (e.g.,
byte-pair-encoding (BPE) [Sennrich et al.]) and unigram language model [Kudo.]) with the extension of direct training from
raw sentences. SentencePiece allows us to make a purely end-to-end system that does not depend on language-specific
pre/postprocessing.

This is not an official Google product.

Technical highlights

Data-Driven Segmentation

 Most popular methods:
— Byte pair encoding (BPE)
— SentencePiece’s unigram LM

* these are easy and fast to use & work well

* they permit unbounded vocabularies with a
relatively small number of parameters

Byte Pair Encoding (BPE)
(Gage, 1994)

e simple data compression technique

* iteratively replaces most frequent pair of
bytes in a sequence with a single, unused byte

* Sennrich et al. (2016) adapted BPE for
characters and character sequences

Byte Pair Encoding (BPE)

merge: a rule that combines two consecutive
units into a single unit

initially, units are characters
after merges, units become character sequences

greedy algorithm:

— merge two units with the largest unit bigram count,
produce merged unit

— replace all instances of that 2-unit sequence with the
merged unit, recompute counts

Byte Pair Encoding (BPE)

 Sennrich et al. use BPE based on word counts
from a corpus

— sentences are not used; all that’s needed are
word types and their counts

— special treatment for end-of-word symbol </w>
(an unseen initial step merges final character in
each word with </w>)

— when segmenting new data, segments words
individually (does not use context)

Corpus: Merges:

low
low
lower
lowest
high
high
higher

Sennrich et al. (2016): Neural Machine Translation of Rare
Words with Subword Units

45

Corpus:

low</w>
low</w>
lower</w>
lowest</w>
high</w>
high</w>
higher</w>

Sennrich et al. (2016): Neural Machine Translation of Rare

Merges:

actually the corpus
looks like this

Words with Subword Units

46

Corpus: Merges:

low</w> w </w> (2)
low</w> r </w> (2)
lower</w> h </w> (2)
lowest</w> t </w> (1)
high</w>

. the first thing we do is
high</w> _

| merge word-ending
higher</w> characters with </w>

Sennrich et al. (2016): Neural Machine Translation of Rare
Words with Subword Units

47

Corpus:

low</w>
low</w>
lower</w>
lowest</w>
high</w>
high</w>
higher</w>

Segmentation: Merges:

</w>
</w>
</w>
</w>

+ 5 B =

given this set of merges, let’s
segment the corpus!

Sennrich et al. (2016): Neural Machine Translation of Rare
Words with Subword Units

48

Corpus:

low</w>
low</w>
lower</w>
lowest</w>
high</w>
high</w>
higher</w>

Segmentation:

axiie e S S I
b - B O O O O

w</w>
w</w>

W

W

g
g
g

e r</w>

e s t</w>
h</w>
h</w>

h e r</w>

Sennrich et al. (2016): Neural Machine Translation of Rare
Words with Subword Units

49

Corpus: Segmentation: Merges:

low</w> 1 o w</w> w </w>
low</w> 1 o w</w> r </w>
h </w>
lower</w> 1 ow e r</w>
t </w>
lowest</w> 1 o w e s t</w>
high</w> h 1 g h</w>
high</w> h i g h</w>
higher</w> h i g h e r</w>

looking at the segmented corpus shows |,
us what merge will occur next

Corpus:

low</w>
low</w>
lower</w>
lowest</w>
high</w>
high</w>
higher</w>

Segmentation:

1
1
1
1
h
h

h

- - B 0 O O O

w</w>
w</w>

W

W

g
g
g

e r</w>

e s t</w>
h</w>
h</w>

h e r</w>

Merges:

+ 5 B =

</w>
</w>
</w>
</w>

Sennri(

what is the next merge?

Words (what unit bigram appears most often?)

e

Corpus:

low</w>
low</w>
lower</w>
lowest</w>
high</w>
high</w>
higher</w>

Segmentation:

W

W

g
g

1
1
1
1
h
h
h1g

H- B B O O O O

w</w>
w</w>

e r</w>

e s t</w>
h</w>
h</w>

h e r</w>

Merges:

= o OB =

</w>
</w>
</w>
</w>

Sennrich et al. (2

Words with Subw

given this new set of merges,
let’s re-segment the corpus!

Corpus: Segmentation: Merges:

low</w> lo w</w>
low</w> lo w</w>
lower</w> lo wer
lowest</w> 1lo w e s
high</w> h 1 g h<
high</w> h 1 g h<
higher</w> h i g h

w </w> (2)
r </w> (2)
< Jw> h </w> (2)
t </w> (1)
t</w>
1 o (4)
/w>
S w>
e r</w>

Sennrich et al. (2016): Neural M
Words with Subword Units

note: we will always
“back off” to the
complete segmentation

Corpus: Segmentation:
low</w> lo w</w>
low</w> lo w</w>

lower</w> lo w e r</w>
lowest</w> lo w e s t</w>
high</w> h 1 g h</w>
high</w> h i g h</w>
higher</w> h i g h e r</w>

Merges:

= O B =

</w>
</w>
</w>
</w>

|what is the next merge?
Sennriq

Words o 2 s

(what unit bigram appears most often?)

e

Corpus:

low</w>
low</w>
lower</w>
lowest</w>
high</w>
high</w>
higher</w>

Segmentation:

lo w</w>

lo w</w>

lo w e r</w>

lo w e s t</w>
h 1 g h</w>

h i g h</w>

h i gher</w>

Merges:

w </w>
</w>
</w>
</w>

SRR e e R

Corpus:

low</w>
low</w>
lower</w>
lowest</w>
high</w>
high</w>
higher</w>

Segmentation:

lo w</w>

lo w</w>

lo w e r</w>
lo w e s t</w>
h ig h</w>

h ig h</w>

h ig h e r</w>

Merges:

w </w>
</w>
</w>
</w>

SRR e S B

Corpus:

low</w>
low</w>
lower</w>
lowest</w>
high</w>
high</w>
higher</w>

Segmentation:

lo w</w>

lo w</w>

lo w e r</w>
lo w e s t</w>
h ig h</w>

h ig h</w>

h ig h e r</w>

Merges:

W

o e o e R

</w>
</w>
</w>
</w>

19

Corpus:

low</w>
low</w>
lower</w>
lowest</w>
high</w>
high</w>
higher</w>

Segmentation:

lo w</w>

lo w</w>

lo w e r</w>
lo w e s t</w>
hig h</w>

hig h</w>

hig h e r</w>

Merges:

W

R i o e R

</w>
</w>
</w>
</w>

19

Corpus: Segmentation:

low</w> low</w>
low</w> low</w>
lower</w> lowe r</w>
lowest</w> lowe s t</w>
high</w> high</w>
high</w> high</w>
higher</w> hig h e r</w>

we’d like to merge e and r</w>,
but we merged w and e already, so
that messed us up

Merges:

</w> (2)
</w> (2)
</w> (2)
</w> (1)
O (4)
g (3)
19 (3)
S (2)

(2)

s 5 H F 5K S

lo we
lo w</w> (2
(

)
hig h</w>(2)

New Corpus:
(2x)

lower

1low

lowest
high

(2x)

higher

smal l
smal l

small

cr

est

Merges for New Corpus:

1 o

S m
sm a
sma 1
19
h 1g

s t</w>
lo w</w>
lo w

hig h</w>

e st</w>

e r</w>

smal 1

60

Merges:

1 o

S m

sm a

sma 1
19

h 1g

e r</w>
smal 1

s t</w>
lo w</w>

lo w

hig h</w>

e st</w>

Application:

low =2 low

lower = low er

lowest =2 low est

high =2 high
higher =2 hig h er
highest =2 hig h est

small =2 smal 1

smaller =2 small er

smallest = small est

e we can limit the vocabulary size of the
segmented data by limiting the number of
merges

 this can be very helpful for handling an open
vocabulary of words while reducing
computation (e.g., when using a softmax over
the vocabulary)

Stanford Sentiment Treebank
BPE merging on train+dev sets
up to 20k merges (max number found: 15,417)

Example from test set:

writer/director/producer -
writ@@ er@@ /@@ direct@@ or@@ /@@ producer

(To recover original text, remove “Q@ ")

writ@@ er@@ /@@ direct@@ or@@ /@@ producer

Here 's a British flick gle@@ efully un@@
concerned with plaul@ sibility , yet just
as determined to entertain you

probably good: “unconcerned” becomes “un concerned”
maybe bad: “gle efully”

It would n't be my prefer@@ red way of
sp@@ ending 100 minutes or $ 7@@ .@@ 0O

probably good: “prefer” is related to “preferred”
maybe bad: “spending” is not related to “ending”

* BPE is a useful hack, doesn’t correspond to
optimizing any probabilistic objective function

* other related methods have interpretations as
probabilistic models

* we will see methods later in the course for
unsupervised segmentation using probabilistic
modeling and priors related to “minimum
description length”

Other Work on Word Embeddings

e using subword information (e.g., characters)
in word embeddings

* multiple embeddings for a single word type
corresponding to different word senses

* tailoring embeddings using particular
resources or for particular NLP tasks

Other Work on Word Embeddings

e using subword information (e.g., characters)
in word embeddings

 multiple embeddings for a single word type
corresponding to different word senses

* tailoring embeddings using particular
resources or for particular NLP tasks

67

Multisense Word Embeddings

 one embedding for a word type is insufficient

— due to different senses of a word, different
meanings (polysemy, homonymy)

* there has been a lot of work in learning sense-
specific word embeddings:

— use a word sense labeler or cluster word tokens
into clusters that capture word sense

— learn embeddings for each sense/cluster

aning

Multisense Word Embeddings

Refter
magazine
translatio jaquar
Rovels fantasy stars jaguan
are
manja microsoft
MOV i
.. inals
talk t{;ele\'.'glon
video ,
celebration
tﬂc:amera venue calenaar constellation
e
cast P flash hedul afternoon oracle — sun
schedule) r
start asteroid

. d
string |\ ov oa';‘ygss

jaguar,

Mical

Cra%hiVSWitCh reverse

advance

ap rqach ; retreat

p%%%sal alaxy moon
planet |

|attempt

gy

Huang et al. (2012): Improving Word Representations Via Global Context And
Multiple Word Prototypes

69

* nearest neighbors given context:

| Context | Nearest Neighbors
Apple is a kind of fruit. pear, cherry, mango, juice, peach, plum, fruit, cider, apples, tomato, orange, bean, pie
Apple releases its new ipads. microsoft, intel, dell, ipad, macintosh, ipod, iphone, google, computer, imac, hardware
He borrowed the money from banks. banking, credit, investment, finance, citibank, currency, assets, loads, imf, hsbc

along the shores of lakes,

banks of rivers land, coast, river, waters, stream, inland, area, coasts, shoreline, shores, peninsula

Basalt is the commonest volcanic rock. | boulder, stone, rocks, sand, mud, limestone, volcanic, sedimentary, pelt, lava, basalt

Rock is the music of teenage rebellion. | band, pop, bands, song, rap, album, jazz. blues, singer, hip-pop, songs, guitar, musician

Table 2: Nearest neighbors of words given context. The embeddings from context words are first in-
ferred with the Greedy strategy; nearest neighbors are computed by cosine similarity between word
embeddings. Similar phenomena have been observed in earlier work (Neelakantan et al., 2014)

Neelakantan et al. (2014): Efficient nonparametric estimation of multiple
embeddings per word in vector space

Li & Jurafsky (2015): Do Multi-Sense Embeddings Improve Natural Language

Understanding? .

Multisense Word Embeddings

* |limitations:
— need a way to label senses or cluster word tokens
in training data (and for downstream tasks)

— fragments training data, so more may be needed
for estimating word embeddings

— unlikely to get good clusters for rare word types

— unable to handle new senses that only appear in
test data

— unclear if sense-specific embeddings are useful for
downstream tasks

Do Multisense Embeddings Help on NLP Tasks?

* yes, on some tasks

* but when using powerful neural
architectures, multisense
embeddings may not be needed

We then test the performance of our model
on part-of-speech tagging, named entity
recognition, sentiment analysis, semantic
relation identification and semantic relat-
edness, controlling for embedding dimen-
sionality. We find that multi-sense embed-
dings do improve performance on some
tasks (part-of-speech tagging, semantic re-
lation identification, semantic relatedness)
but not on others (named entity recogni-
tion, various forms of sentiment analysis).

* increasing dimensionality of (single-sense) embeddings
achieves some benefit of multisense embeddings

— high dimensionality also may make it easier for subsequent
architectures to extract relevant sense based on context

Li & Jurafsky (2015): Do Multi-Sense Embeddings Improve Natural Language

Understanding?

