TTIC 31210:
Advanced Natural Language Processing

Kevin Gimpel
Spring 2019

Lecture 6:
Finish Transformers;

Sequence-to-Sequence Modeling
and Attention



Roadmap

deep learning for NLP (5 lectures)

structured prediction: sequence labeling, syntactic and
semantic parsing, dynamic programming (4 lectures)

generative models, latent variables, unsupervised learning,
variational autoencoders (2 lectures)

Bayesian methods in NLP (2 lectures)
Bayesian nonparametrics in NLP (2 lectures)
review & other topics (1 lecture)



Assignments

* Any last-minute questions about Assignment 17

e Assignment 2 will be posted tonight, due in 2
weeks



Today

* finish transformers

* sequence-to-sequence modeling and
attention
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Attention

e attention is a useful generic tool

e often used to replace a sum or average with
an attention-weighted sum



Attention

* e.g., for a word averaging encoder:

n

fove(x) = % Z emb(x;)

n

fare(x) = Zett(:ci, 7, a:j)emb(:vz-)
=1 Y

“attention” function,
returns a scalar




Example Attention Function

n

fort(x) = Z att(x;,1,x)emb(x;)

1=1

att(:z:i, i, x) X e:x:p{wT emb(ﬂfi)}

* introduces a new parameter vector w which is
learned along with the word embeddings

e attention is normalized over the sentence
length



Queries, Keys, and Values

we can often think of attention functions in
terms of these abstractions

guery = what you use to search
key = the field that you’re comparing to
value = the field that you return

Vaswani et al. (2017): Attention Is All You Need



» considering attention as query/key/value suggests
using different spaces for different roles

* e.g., we could use separate transformations of the
embedding space for keys and values:

n

foe(x) = Z att(xz;, i, x) (W(”) emb(xi))

i=1
value trans-

formation

o
att(xz;, i, ) X exp {WT (W(k) emb(xi))} Mt

\ key trans-

formation
matrix



Multi-Head Attention

 we may want to learn multiple attention
functions in parallel

 why? so that they can learn complementary
functionality for the task

Vaswani et al. (2017): Attention Is All You Need



Multi-Head Attention

* in the transformer, each attention head uses
projections to lower dimension, followed by
concatenation of the outputs from each head

Vaswani et al. (2017): Attention Is All You Need



Transformer
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Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

Vaswani et al. (2017): Attention Is All You Need 3



Self-Attention

many possibilities for self-attention functions

intuitively, the following weights a word based on
how similar it is to all other words in the sequence:

att(x;, i, x) X exp Z emb(xi)Temb(xj)
=1

can be combined with query/key/value-specific
transformations and multiple heads

Vaswani et al. (2017): Attention Is All You Need



Word Position Information
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Transformer

* developed for a setting
with both encoding and
decoding

e transformer decoder
uses similar components
to encoder, along with
attention on encoder
output
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Attention Visualizations
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Figure 3: An example of the attention mechanism following long-distance dependencies in the
encoder self-attention in layer 5 of 6. Many of the attention heads attend to a distant dependency of
the verb ‘making’, completing the phrase ‘making...more difficult’. Attentions here shown only for
the word ‘making’. Different colors represent different heads. Best viewed in color.



What do Transformers Learn?
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What do Transformers Learn?
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Figure 5: Many of the attention heads exhibit behaviour that seems related to the structure of the
sentence. We give two such examples above, from two different heads from the encoder self-attention
at layer 5 of 6. The heads clearly learned to perform different tasks.
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Applications

transformer encoders have become widely
used in NLP

developed for sequence transduction tasks
(e.g., machine translation)

also highly effective for language modeling,
parsing, etc.

we’ll briefly discuss two pretrained models
based on transformers
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OpenAl GPT

train a transformer language model (predict
the next word)

training data = passages from books

applied to several NLP tasks that involve
predicting things about sentences or filling in
the next word

transformer architecture (likely?) helps with
capturing long-distance dependencies

they then scaled it up to produce GPT-2



OpenAl GPT-2

Context (human-written): In a shocking finding, scientist discovered a herd of unicorns living
in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the
researchers was the fact that the unicorns spoke perfect English.

GPT-2: The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These
four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is fi-
nally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several com-
panions, were exploring the Andes Mountains when they found a small valley, with no other animals
or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by
two peaks of rock and silver snow.

Pérez and the others then ventured further into the valley. “By the time we reached the top
of one peak, the water looked blue, with some crystals on top,” said Pérez.

Radford et al. (2019): Language Models are Unsupervised Multitask Learners




BERT (Ours)

| accessed " account

OpenAl GPT

| accessed ... account

: Google Al

accessed

account

Devlin et al. (2018): BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding




SQuAD1.1 Leaderboard

Rank

1
Oct 05, 2018

2
Sep 09, 2018

3
Jul 11, 2018

Model

Human Performance
Stanford University
(Rajpurkar et al. '16)

BERT (ensemble)
Google Al Language
https://arxiv.org/abs/1810.04805

ninet (ensemble)
Microsoft Research Asia

QANet (ensemble)
Google Brain & CMU

EM

82.304

87.433

85.356

84.454

F1

91.221

93.160

91.202

90.490



Leaderboard

SQuADZ2.0 tests the ability of a system to not only answer reading comprehension
questions, but also abstain when presented with a question that cannot be answered
based on the provided paragraph. How will your system compare to humans on this
task?

Rank Model EM F1
Human Performance 86.831 89.452
Stanford University

(Rajpurkar & Jia et al. '18)

BERT + DAE + AoA (ensemble) 87.147 89.474
Mar 20, 2019 Joint Laboratory of HIT and iFLYTEK Research

BERT + ConvLSTM + MTL + Verifier (ensemble) 86.730 89.286

Mar 15, 2019 Layer 6 Al
BERT + N-Gram Masking + Synthetic Self- 86.673 89.147
Mar 05, 2019 Training (ensemble)

Google Al Language
https:/github.com/google-research/bert



General Language Understanding
Evaluation (GLUE) Leaderboard

Rank Model Score CoLA SST-2 MRPC STS-B  QQP MNLI-m QNLI

1 BERT: 24-layers, 1024-hidden, 16-heads 80.4 60.5 94.9 85.4/89.3 87.6/86.5 89.3/72.1 86.7 91.1 70.1

2 Singletask Pretrain Transformer 72.8 454 91.3 75.7/82.3 82.0/80.0 88.5/70.3 82.1 88.1 56.0

3 BILSTM+ELMo+Attn 70.5 36.0 90.4 77.9/84.9 75.1/73.3 84.7/64.8 76.4 799 56.8



Rank Name Model URL Score ColLA SST-2 MRPC STS-B QaQP

1 GLUE Human Baselines GLUE Human Baselines C/,' 87.1 66.4 97.8 86.3/80.8 92.7/92.6 59.5/80.4
2 Microsoft D365 Al & MSR /MT-DNN++ (BigBird) C/,' 83.8 65.4 95.6 91.1/88.2 89.6/89.0 72.7/89.6
3 IH ALICE large (Alibaba DAMO NLP; 83.3 63.5 95.2 91.8/89.0 89.8/88.8 74.0/90.4
4 Stanford Hazy Research Snorkel MeTalL C),' 83.2 63.8 96.2 91.5/88.5 90.1/89.7 73.1/89.9
5 IR{EM SemBERT C),' 82.9 62.3 94.6 91.2/88.3 87.8/86.7 72.8/89.8
6 Anonymous Anonymous BERT + BAM C},' 82.3 61.5 95.2 91.3/88.3 88.6/87.9 72.5/89.7
7 Jason Phang BERT on STILTs g 82.0 62.1 94.3 90.2/86.6 88.7/88.3 71.9/89.4
8 Jacob Devlin BERT: 24-layers, 16-heads, 1024- G 80.5 60.5 94.9 89.3/85.4 87.6/86.5 72.1/89.3
9 Neil Houlsby BERT + Single-task Adapters g 80.2 59.2 94.3 88.7/84.3 87.3/86.1 71.5/89.4
10 Alec Radford Singletask Pretrain Transformer g 728 454  91.3 823/75.7 82.0/80.0 70.3/88.5

11 GLUE Baselines BILSTM+ELMo+Attn (' 700 336 904 844780 74.2/72.3 63.1/84.3



BERT Overview

transformer encoder with 24 layers, hidden size
1024, 16 attention heads; 340M parameters

learned positional embeddings (up to 512)

word prediction softmax layers are attached to
the output layer (at every position)

two training tasks:

— masked LM: mask certain input words, predict them

— next-sentence classification: encode two sentences,
classify whether second follows first in a corpus

Devlin et al. (2018): BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding



BERT Input Representation

Input [CLS] ’ my dog is ‘ cute ’ [SEP] he ‘ likes H play ’ ##ing ’ [SEP]

Token

Embeddings E[CLS] Emy Edog EIS Ecute E[SEP] Ehe EIikes EpIay E##ing E[SEP]
o= o= = = = = = = = = =

Segment

Embeddings EA EA EA EA EA EA EB EB EB EB EB
o= L o= o= o= o= o= o= o= L o=

Position

Embeddings Eo El E2 E3 E4 ES E6 E7 E8 E9 Elo

Figure 2: BERT input representation. The input embeddings is the sum of the token embeddings, the segmentation
embeddings and the position embeddings.

* input uses WordPieces (vocabulary of size 30,000)
* first token is [CLS]
e special token [SEP] separates sentences

Devlin et al. (2018): BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding v



Pretraining Task 1:
Masked Word Prediction

training data generator chooses
15% of tokens at random, e.g., in the sentence my
dog is hairy it chooses hairy. It then performs
the following procedure:

* Rather than always replacing the chosen « 109% of the time: Replace the word with a
words with [MASK], the data generator will  random word, e.g., my dog is hairy — my

do the following: dog is apple

* 80% of the time: Replace the word with the « 10% of the time: Keep the word un-
[MASK] token, e.g., my dog is hairy —  changed, e.g., my dog is hairy — my dog
my dog is [MASK] is hairy. The purpose of this is to bias the

representation towards the actual observed
word.

Devlin et al. (2018): BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding -



Pretraining Task 2:
Next Sentence Classification

IHpUt — [CLS] the man went to [MASK] store [SEP]
he bought a gallon [MASK] milk [SEP]

Label

IsNext

InINIt [CLS] the man [MASK] to the store [SEP]
penguin [MASK] are flight ##less birds [SEP]

Label = notnext

Devlin et al. (2018): BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding v



Today

* finish transformers

* sequence-to-sequence modeling and
attention
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Sequence-to-Sequence Modeling

data: <input sequence, output sequence> pairs
use one RNN to encode input sequence

use another RNN to decode the output
sequence from the input sequence vector

often more generally called “encoder-decoder”
models



Application: Machine Translation

 encode source sentence into a vector, decode
translation

w X Y Z <EOS>
A A A A A
—> > > > > > >
T T T Y Y Y Y 7y
A B C <EOS> w X Y VA

Kalchbrenner & Blunsom (2013): Recurrent Continuous Translation Models

Cho et al. (2014): Learning Phrase Representations using RNN Encoder—Decoder
for Statistical Machine Translation

Sutskever et al. (2014): Sequence to Sequence Learning with Neural Networks



Application: Chatbots

Human: what is the purpose of life ?

Machine: 7o serve the greater good .

Human: what is the purpose of living ?
Machine: 7o live forever .

Human: what is the purpose of existence ?
Machine: 7o find out what happens when we get
fo the planet earth .

Human: where are you now ?

Machine: i ‘m in the middle of nowhere .
Human: what is the purpose of dying ?
Machine: 7o have a life .

Human: what is the purpose of being intelligent
?

Machine: 7o find out what it is .

Human: what is the purpose of emotions ?
Machine: i don 't know .

Vinyals & Le (2015): A Neural Conversational Model



Application: Parsing

S

I
John has a dog . . NP /vp\ ‘
| - ™~
NNP VBZ NP
~ N
DT NN
John has a dog . — (S (NP NNP )np (VP VBZ (NP DT NN )np vp - )s

Figure 2: Example parsing task and its linearization.

{Vinyals, Kaiser} et al. (2015): Grammar as a Foreign Language



RNN Autoencoders

 encode sentence, decode sentence

e can use final hidden vector of sentence encoder as a
sentence embedding

food any find didn’t she . hungry was  Mary

W P P e

Encode

Mary was hungry o she didn't find any food

Li et al. (2015): A Hierarchical Neural Autoencoder for Paragraphs and Documents



Skip-Thoughts

* encode sentence using an RNN

* decode two neighboring sentences

* use different RNNs for previous and next sentences

* also pass encoder sentence vector on each decoding step

...| got back home | could see the cat on the steps This was strange ...

back home <eos>

—30@

got back home

strange <eos>

30

was strange

Kiros et al. (2015): Skip-Thought Vectors



Skip-Thoughts
query sentence:

im sure youll have a glamorous evening , she said,
giving an exaggerated wink .

nearest neighbor:

im really glad you came to the party tonight, he said,
turning to her.

Kiros, Zhu, Salakhutdinov, Zemel, Torralba, Urtasun, Fidler (2015)



Encoder-Decoder Models for Neural Machine Translation

 encode source sentence into a vector, decode
translation

w X Y 4 <EOS>
A A A A A
—> —> —> —> —> —> —>
T T T A A A A A
A B C <EOS> w X Y 4

Kalchbrenner & Blunsom (2013): Recurrent Continuous Translation Models

Cho et al. (2014): Learning Phrase Representations using RNN Encoder—Decoder
for Statistical Machine Translation

Sutskever et al. (2014): Sequence to Sequence Learning with Neural Networks



Encoder-Decoder Models for Neural Machine Translation
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Figure 3: A graphical depiction of the two RCTMs. Arrows represent full matrix transformations while lines are
vector transformations corresponding to columns of weight matrices.

Kalchbrenner & Blunsom (2013): Recurrent Continuous Translation Models



Encoder-Decoder Models for Neural Machine Translation

 encode source sentence into a vector, decode
translation Decoder

Encoder

Figure 1: An illustration of the proposed RNN
Encoder—Decoder.

Cho et al. (2014): Learning Phrase Representations using RNN Encoder—Decoder
for Statistical Machine Translation



Encoder-Decoder Models for Neural Machine Translation

 encode source sentence into a vector, decode
translation

w X Y 4 <EOS>
A A A A A
—> —> —> —> —> —> —>
T T T A A A A A
A B C <EOS> w X Y 4

Sutskever et al. (2014): Sequence to Sequence Learning with Neural Networks



Encoder as a Sentence Embedding Model?
W
3r OMary admires John

2F OMary is in love with John

OMary respects John
OdJohn admires Mary

-2r OdJohn is in love with Mary

-5L OdJohn respects Mary

_6 1 | | | 1 | 1 | J
-8 -6 -4 -2 0 2 4 6 8 10

Sutskever et al. (2014): Sequence to Sequence Learning with Neural Networks



Encoder as a Sentence Embedding Model?

15

10

-10

-15

-20

-15

O | was given a card by her in the garden

O In the garden , she gave me a card
O She gave me a card in the garden

O She was given a card by me in the garden

O In the garden , | gave her a card

O | gave her a card in the garden

5 10 15 20

Sutskever et al. (2014): Sequence to Sequence Learning with Neural Networks
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Sequence-to-Sequence Model

encoding input sequence:

h,, = tanh (W("”)XU + WWh, | + b(h))



Sequence-to-Sequence Model

encorer: b, = tanh (W, + Wb, , 1 b

decoder: s, = tanh (W ® emb(y, 1) + W)s, 1 + b(*))

Y; = argmax S;r emb(y)

yeO



Extension: Attention

NEURAL MACHINE TRANSLATION
BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

Dzmitry Bahdanau
Jacobs University Bremen, Germany

KyungHyun Cho  Yoshua Bengio*
Université de Montréal



Extension: Attention

X X X X

Figure 1: The graphical illus-
tration of the proposed model
trying to generate the ¢-th tar-
get word y; given a source
sentence (x1, T2, ...,TT).

Bahdanau et al. (2015): Neural Machine
Translation by Jointly Learning to Align
and Translate



Extension: Attention
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Bahdanau et al. (2015): Neural Machine
Translation by Jointly Learning to Align
and Translate



* disclaimer: the version | will present is a little
simpler than the Bahdanau et al version but
retains the key ideas

* see the paper for more details



Adding Attention

Qi g X expq att(si—1,hy)}
att function models association between all pairs of
hidden vectors in encoder and decoder



Adding Attention
vy, X expfatt(s;_1,hy)}

How is the att function defined?
Bahdanau et al. used a feed-forward network:

att(si_1,h,) = v, tanh W(as)st L+ Wy )



Adding Attention
Qi g X expq att(si—1,hy)}

create new decoder hidden vector based on
attention-weighted sum of encoder hidden vectors:

||

Ct = E CVt,uhu
u=1



Qi o, X expq att(si—1,hy)}

||

Ct = Z CVt,uhu
create new decoder hidden vector based on u=1
attention-weighted sum of encoder hidden vectors:

() () (o

O ) @ @



new RNN decoder hidden state update equation:

5¢ = tanh (W(y) emb(yi—1) + Ws;_1 + Wi, + b(8)>

o
¢
0
LRO20



s¢ = tanh (W(y) emb(y,—1) + Ws,_; + Wl¢, + b(s))

new prediction equation:

y; = argmax score(emb(y), s¢, Ct)
yeO



Notes

* while initially developed for machine translation,
attention is useful for many other applications
— speech recognition
— Image captioning
— summarization

— data-to-text generation

* many different kinds of attention; see Luong et al.
(2015) for other variations and comparisons

* sometimes attention seems interpretable, but it
can be misleading

Luong et al. (2015): Effective Approaches to Attention-based Neural Machine Translation



Attention in Machine Translation
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Bahdanau et al. (2015): Neural Machine Translation by Jointly Learning to Align
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«9 Sentence
i <s> Summarization

russian
defense
minister

- ivanov
e called

sunday

mm for

the

I creation
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R combating

global

B tcrrorism

Figure 1: Example output of the attention-based summa-
rization (ABS) system. Th.e heatmap represents a soft align- Rush et al. (2015): A Neural
ment between the input (right) and the generated summary . :
. 2 . Attention Model for Abstractive
(top). The columns represent the distribution over the input .
aft . Sentence Summarization
er generating each word.



Natural Language Inference

park outside

1-¢0 D

someone
playing
music
outside

in
the .
alice someone

park A
alice I=G(I I) ’y=H(I+I+...+I)
plays '
f ta - flute+
LIS solo music

solo

Figure 1: Pictoral overview of the approach, showing the Attend
(left), Compare (center) and Aggregate (right) steps.

Parikh et al. (2016): A Decomposable Attention Model for Natural Language Inference
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Chan et al. (2015): Listen, Attend and Spell



Image Captioning

Figure 3. Examples of attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

! ¢ Ny

A stop sign is on a road with a
mountain in the background.

e | —= 43 Pis
A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.

Xu et al. (2015): Show, Attend and Tell: Neural Image Caption Generation with Visual Attention



