TTIC 31210:
Advanced Natural Language Processing

Kevin Gimpel
Spring 2019

Lecture 9:
Inference in Structured Prediction

Roadmap

structured prediction (4 lectures)
— introducing/formalizing structured prediction, categories of structures
— inference: dynamic programming, greedy algorithms, beam search
— inference with non-local features
— learning in structured prediction

generative models, latent variables, unsupervised learning,
variational autoencoders (2 lectures)

Bayesian methods in NLP (2 lectures)
Bayesian nonparametrics in NLP (2 lectures)
review & other topics (1 lecture)

Assignments

* Assignment 2 due Wednesday

e for the report, please use either pdf format or a
Jupyter notebook (no plain text)

Modeling, Inference, Learning

|inference: solve argmax | modeling: define score function

v

classify(ax, @) = argmax score(x,y, 0)
Yy

‘Iearning: choose @ ’

Working definition of structured prediction:
size of output space is exponential in size of input
or is unbounded (e.g., machine translation)

(we can’t just enumerate all possible outputs)

Inference with Structured Predictors

inference: solve argmax

classify(ax, @) = argmax score(x,y, 0)
Yy

* how do we efficiently search over the space of all
structured outputs?

* this space may have size exponential in the size of
the input, or be unbounded

* complexity of inference depends on parts function

Parts and Score Functions

— given a “parts” function

parts(z, y)

— our score function is then defined:

score(x,y,0) = Z Scorepart (Tr, Yr, 0)
(T ,Yyr)Eparts(z,y)

— each part is a subcomponent of input/output pair
— score function decomposes additively across parts

Structured Prediction Tasks

task

output structure

minimal parts

multi-label
classification

set of N labels, each of
which can be true or false

set containing
individual labels in
label set

mp(y) = {y1, .-, Y~}
where each y; € {0,1}

sequence
labeling

label sequence with same
length T as input sequence;
each label is one of N
possibilities

set containing labels
at positions in
output sequence

mp(y) = {y1,. .-, yr}
where each y; € {1,..., N}

unlabeled
dependency
parsing

tree over the words in the
input sentence; each word

has exactly one parent

set containing
indices of parent

words for each
word in sentence

mp(y) — {yla R 7yT}
where each y; € {0,1,...,T}

conditional
generation

sentence (or a paragraph,
document, etc.)

set containing each
word in the output

mp(y) = {y1,-- -, Yy|}

where each y; € V

Hidden Markov Model (HMM)
||

pw(mvy) :p.,-(</S> | y|a:|) Hp’r(yi ‘ yi—l)pn(wi ’ yz)
1=1

transition parameters: .- (yz ‘ y¢—1)

emission parameters: p,, (x; | i)
pal’tSHMM(m, y) — {<ZEt, Z/t>}¥:1 U {<@7 yt—l:t>}¥;1

* each word-label pair forms a part, and each label
bigram forms a part

* note: define score as log-probability to make
score function decompose additively over parts

Inference in HMMs

classify(x, w) = argmax p(x,y)
Y

||

= argmax pr(</s> | Yz|) Hpr(yz' | Yi—1)Pn(Ti | Yi)
Yy i=1

* since the output is a sequence, this argmax
requires iterating over an exponentially-large set

e we can use dynamic programming (DP) to solve
these problems exactly

 for HMMs (and other sequence models), the
algorithm for solving this is the Viterbi algorithm

Viterbi Algorithm for HMMs

* recursive equations + memoization:

base case:
returns probability of sequence starting with label y for first word

\

V(1Ly) =pylr1|y) prly | <s>)

V(m,y) = max (py(@m | y) pr(y | y') V(m - 1,y))

f y' el

recursive case:
computes probability of max-probability label
sequence that ends with label y at position m

final value isin: goal(x) = max (pr(</s>|y)V(z|,¥"))
(S

10

“Backpointers” in Viterbi

* Viterbi only gives us the probability of the
max-probability label sequence

* how do we get the actual label sequence?

V(m,y) = max (pn(xm [y) pr(y|y) V(imn—1,9))

L(m,y) = argmax (pn(Tm | y) p-(y | y) V(m —1,9))

f y' el

contains label that achieved max probability in max-prob label
sequence that ends with label y at position m

11

“Backpointers” in Viterbi

* Viterbi only gives us the probability of the
max-probability label sequence

* how do we get the actual label sequence?

V(m,y) = max (pn(xm [y) pr(y|y) V(imn—1,9))

L(m,y) = argmax (pn(xm |Y) Dy | y") V(im —1,y"))
y' €

similar modification for final label:

goal(x) = max (p(</s> | y') V(|z],y"))
y'el

Ylae| = ATgImax (pr(</s>|y) V(2| y"))
y' €

Following Backpointers in Viterbi

* full backpointer-following procedure (after Viterbi):

L <m<|z|: L(m,y) = argmax (py(zm |y) pr(y [y) V(m —1,1))

y'eL
J|z| = argmax (pr(</s> | y) V(zl,y))
y'eL
letT = |z|: 9r

Viterbi Algorithm for Sequence Models

(with tag bigram features)

V(1,y) = score(x, (<s>,y),1, w)
V(m,y) = max (score(, {y', y), m, w) + V(m —1,y))
Tt
score function for label bigram <y’, y>
ending at position min x

could be anything! linear model, feed-
forward network, LSTM, etc.

Approximate Inference

exact inference limits us to small parts functions

— e.g., Viterbi requires parts with only two consecutive
labels, and takes time O(|x| |L]|?)

— time complexity of exact DP algorithms is exponential
in the size of the parts

we want to use bigger parts without exponential

Increase in runtime

so, we consider algorithms for approximate
inference

even when using small parts, approximate
inference can help us to speed up inference with
little loss in accuracy

Example: HMM POS Tagging

* tag set:
N: noun
V:verb
D: determiner
J: adjective

example sentence:

V D N
Lower the lights

16

Greedy Left-to-Right Inference

* build a label sequence one word at a time
from left to right

e at each position, choose the tag for a word
greedily to maximize a local scoring function

Lower

<s>

~

starting tag

Greedy Inference

the

lights

18

Greedy Inference
Lower the lights

~

j1 = ATgmax pn(“Lower” | y) p+(y | <s>)
ye

<s>

takes O(|L|) time (iterate through labels)

19

Greedy Inference
Lower the lights

<s> J

~

U = argrrzax pn(“Lower” | y) pr(y | <s>)
(S

error here: model must choose a tag and
stick with it; can’t change anything later

V D N
Lower the lights 20

Greedy Inference
Lower the lights

<s> J D

Jo = argmax pn(“the” | y)p,(y | J)

yeLl /

uses best label for
previous position

V D N
Lower the lights

21

Greedy Inference
Lower the lights

<s> J D N </s>

ys = argmax pn(“lights” | y) pr(y | D) pr(</s> | y)

yeL /

for final word in input, include
\Y, D N transition to end-of-sentence label

Lower the lights

<s>

Greedy Inference
Lower the lights

J D N </s>

| x| positions, O(]|L]|) time for each position
(iterate through labels)

time for greedy: O(|x]| |L])
time for Viterbi: O(|x| |L]|?)

faster than Viterbi, but doesn’t work as well
can we improve it?

we can convert this greedy algorithm to
beam search

beam search maintains multiple hypotheses at
each position

two types of steps: q

— extend hypotheses

— prune set of hypotheses

size of pruned set = size of “beam”

24

Beam Search (beam size b = 2)
Lower the lights

score of
hypothesis
starting
hypothesis
low score high score

<s>

low score

Extend Hypotheses

Lower the lights
N only one hypothesis here to extend
. consider all possible ways of
extending it
D
scores of extended hypotheses:
7 B pn(“Lower” [y) p(y | <s>)score(hypyey)

W_/

score of
previous

high score hypothesis

<s>

low score

Extend Hypotheses

Lower the lights
N only one hypothesis here to extend
. consider all possible ways of
extending it
D
scores of extended hypotheses:
- pn(“Lower” | y) pr(y | <s>)

because score of starting hypothesis
is fixed to 1

high score

Prune Hypotheses (b = 2)

Lower the lights
<s> N keep top b hypotheses
\Y
D
J
low score high score

Prune Hypotheses (b = 2)

Lower the lights

<s> V

> B(1) = set containing the top b
J hypotheses ending at position 1,
|) along with their scores

note: this is a set; the items do not have to be sorted

low score high score

Prune Hypotheses (b = 2)

Lower the lights

<s> V

> B(1) = set containing the top b
J hypotheses ending at position 1,
|) along with their scores

note: this is a set; the items do not have to be sorted

so, this step only takes O(N) time if there are N
hypotheses to sort; cf. “unordered partial sorting”

low score high score

Extend Hypotheses

Lower the lights
N scores of extended
=S v hypotheses:
J \ pn(“the” | y)
X p‘r (y | yprev)

D
b hypotheses < SCOTe (lTypprev)
to extend

J
consider all |
possible ways of R last Iabgl from
extending them previous

hypothesis
V

Prune Hypotheses (b = 2)

Lower the lights

<s> V D

>B(2) = set containing
J D the top b hypotheses
) ending at position 2,

with their scores

note: using backpointers, we can recover the
entire hypothesis

Prune Hypotheses (b = 2)

Lower the lights

<s> V D

>B(2) = set containing
J D the top b hypotheses
) ending at position 2,

with their scores

computational complexity of beam search?

Complexity of Beam Search

| x| positions

extend hypotheses:
O(b|L|) time for each position (O(b) hypotheses, for each
we have to iterate through labels)

prune set of hypotheses:
O(b|L|) time for each position (unordered partial sorting
takes O(N) time for a set with N items)

time for beam: O(|x| b|L|)
time for greedy: O(|x]| |L])
time for Viterbi: O(|x| |L|?)

Beam Search

beam search alternates between extending
hypotheses and pruning hypothesis sets

the design of these steps depends on the
structure being predicted

at the end, just return the highest-scoring
hypothesis

the final set of hypotheses can also be used as
an approximate n-best list (where n = b)

Beam Search

 ifwesetb=|L|, do we get Viterbi?
— NO

— beam search still operates left-to-right greedily
and can’t recover if the best path is pruned early

— Viterbi doesn’t prune

* recombination can improve the diversity of
hypotheses in the beam (and therefore
improve the search), but is only applicable for
certain parts functions

Beam Search for Generation

Let beam size = 2: 0.4 work
0.3 at 0.1
[I'm g

right 0.5

here

Pranav Khaitan, Google Research Blog: Chat Smarter with Allo

37

Beam Search in Generation

* in generation tasks, using too large of a beam
size may hurt performance

 why?

Approximate Inference

greedy

beam search
coarse-to-fine
heuristic search

Coarse-to-Fine

* use a series of models of increasing complexity
— earlier models are faster than later models

— each model is used to prune away potential
structures for subsequent models to consider

* downside is that this requires training
additional models

— but these additional models are usually fairly
simple and efficient to train

Coarse-to-Fine

 thisis popular for tasks like parsing

SOR0

RRXR
(RORLXL
10,0205, 0502034363

O

eaesoretetess, o

380 0ses0t0e? Yede, %
ogsgetess

4
%%, %

*
3
%
05038
O

&

500505258508

2000512050, (020200
RTINS

KRXRELIIRKKLNN

SRRSO MK

%% ¢ « 0%

o
Fodedotede!
odtetete!
DXL
IRXR
¢

(§ 020093
(RRRRRRRS
0,0%50300030S0%0S0%0 3020300,
0008 90003050 80%0003020%¢
00008 Qa3etesetotetodetets
003" (oletalededosetetoteds
0?4000 %0%00 Setetetets

Influential
members

Figure 1.3. Charts are used to depict the dynamic programming states in parsing. In coarse-
to-fine parsing, the sentence is repeatedly re-parsed with increasingly refined grammars,
pruning away low probability constituents. Finer grammars need to only consider only a
fraction of the enlarged search space (the non-white chart items).

Petrov (2009): Coarse-to-Fine Natural Language Processing “

Coarse-to-Fine

 also can be used for generation tasks (by
clustering words and training coarse models to
predict clusters)

000 A 001 010 A 011 100 A 101 110 A 111

these we the that states of also will

one they a for report to been must

Figure 5.1. An example of hierarchical clustering of target language vocabulary (see Sec-
tion 5.4). Even with a small number of clusters our divisive HMM clustering (Section 5.4.3)
captures sensible syntactico-semantic classes.

Petrov (2009): Coarse-to-Fine Natural Language Processing 42

Coarse-to-Fine

* remember the local predictors we discussed for
dependency parsing and machine translation?

* while they don’t work very well by themselves, they
can be useful as coarse models

e e.g., for dependency parsing:
— train a local predictor
— use it to get top k head candidates for each word
— restrict next model to trees that use those candidates

References for Coarse-to-Fine Procedures in NLP

e Petrov (2009): Coarse-to-Fine Natural
Language Processing

* Weiss and Taskar (2010): Structured Prediction
Cascades

* Rush and Petrov (2012): Vine Pruning for
Efficient Multi-Pass Dependency Parsing

Heuristic Search Algorithms

* beam search can be improved by using heuristics to
favor certain hypothesis extensions over others
— e.g., in phrase-based machine translation this is called

“future cost estimation” (see Koehn et al. (2003):
Statistical Phrase-Based Translation)

 if using a particular form of beam search (cf.
“agenda algorithms”) and the heuristics satisfy
certain conditions, search can be exact
— cf. A* search

— for parsing, see Klein & Manning (2003): A* Parsing: Fast
Exact Viterbi Parse Selection

Non-Local Features

efficient exact or even approximate inference
requires relatively small parts

out intuitively, this limits modeling power

now can we combine efficiency with some
ong-distance or “non-local” information in
the scoring function?

lots of work on this

Non-Local Features in Named Entity Recognition

... But in the end, Chicago came

up short. ~—

organlzation?
location?

47

Non-Local Features in Named Entity Recognition

organization
A

~ ~N
The Chicago Bears needed a win in Sunday
night’s game.... But in the end, Chicago came

up short. Y

organization

* first mention of a named entity may have
more information

48

Non-Local Features in Named Entity Recognition

* this type of non-local feature was used in
several papers focused on approximate
inference for NLP

Skip-Chain CRFs with Inference via
Loopy Belief Propagation

Speaker: John Smith Professor Smith will

Figure 2: Graphical representation of skip-chain
CREF. Identical words are connected because they
are likely to have the same label.

Sutton and McCallum (2004): Collective Segmentation and
Labeling of Distant Entities in Information Extraction

50

Inference via Gibbs Sampling

TN
eSS

Figure 1: An example of the label consistency problem excerpted from a document in the CoNLL 2003 English dataset.

Finkel et al. (2005): Incorporating non-local information into
information extraction systems by Gibbs sampling

51

Non-Local Features in Beam Search

Lower the lights
<s> \Y/ D
J D

note: using backpointers, we can recover the entire
hypothesis = we can compute any feature or scoring
function using the entire hypothesis!

same idea can be applied to Viterbi and other exact
DP algorithms!

Inference in PCFGs

* to find max-probability tree for a sentence, use
dynamic programming: CKY algorithm

* to find the best way to build a tree covering
words i to J:
— consider all possible “split points” k between i and j

— for each split point k, consider all possible
nonterminals for the two smaller trees created by
that split

//

RB IN DT NN IN DT NN VBZ NNP NNP

There nearthe top of the Ilst |s quarterbackTroyAlkman

CKY Algorithm

C(Z,1,7) = max max (C(A,i,k)C(B,k,j)score({Z — AB)))

kL ADB
’\ ;

max probability
of all ways to
build a constltuent

NP

with nonterminal
Zfromi tOj
VBZ NNP NNP

There near the top of the Ilst |s quarterback Troy Alkman

CKY Algorithm

C(Z,1,7) = max max (C(A,i,k)C(B,k,j)score({Z — AB)))

k ADB
/ \(S\
max over N? max over
split points nonterminals
for smaller trees |}

VBZ NNP NNP

There near the top of the list |s quarterback Troy Alkman
0 1 7

e detail: CKY requires the PCFG to be in
Chomsky Normal Form (CNF)

e basically: every rule has either 2 nonterminals
or 1 terminal on the right-hand side

57

Cube Pruning

(Chiang, 2007; Huang & Chiang, 2007)

modification to dynamic programming algorithms for
decoding to use non-local features approximately

keeps a k-best list of derivations for each item

applies non-local feature functions on these derivations when
defining new items

lets modeler decide which scoring terms to incorporate
exactly and which scoring terms to incorporate approximately

//

RB IN DT NN IN DT NN VBZ NNP NNP

There nearthe top of the Ilst |s quarterbackTroyAlkman

CKY Algorithm

C(Z,i,5) = mMax max (C(A,i,k)C(B,k,j)score({Z — AB)))

S

NP

VBZ NNP NNP

There near the top of the list |s quarterback Troy Alkman
0 1 7

Local scoring functions
compatible with CKY: S

VP
NP
NP

A /N

RB IN DT NN IN DT NN VBZ NN NNP NNP

There nearthe top of the list Is quarterback Troy Aikman

Local scoring functions
compatible with CKY: S

NP

PP
NP

VP

PP NP

NP NP

NP
ANV /N
IN DT NN IN DT NN VBZ NN NNP NNP

nearthe top of the list is quarterback Troy Aikman

Local scoring functions
compatible with CKY: S

VP

NP

IN DT NN IN DT NN VBZ NN NNP NNP

nearthe top of the list is quarterback Troy Aikman

Local scoring functions
compatible with CKY:

NP

IN DT NN IN DT NN VBZ NN NNP NNP

nearthe top of the list is quarterback Troy Aikman

Imagine a scoring term that
uses this information: g

DT NN

There\near the top of the Ilst |s quarterbackTroyAlkman

IN DT NN VBZ N NNP NNP

“NGramTree” feature
(Charniak & Johnson, 2005)

Imagine a scoring term that
uses this information: g

VP

PP NP

NP

DT NN

“NGramTree” feature
(Charniak & Johnson, 2005)

NP

N\

IN DT |[NN\VBZ NN NNP NNP

the top of the \list) \is|quarterback Troy Aikman

We cannot use these
scoring terms in the S
CKY algorithm

VP

PP NP

NP NP NP

/\ /N

DT NN IN DT |[NN\VBZ NN NNP NNP

the top of the \list) \is|quarterback Troy Aikman

C(Z,i,7) = ax max (C(A,i,k)C(B,k,j)score({Z — AB)))

“non-local features” like these break
dynamic programming!

PP
NP
PP NP
DT NN IN DT |NN|\VBZ| NN NNP NNP

the top of the \list

IS | quarterback Troy Aikman

C =C x C X A\

NP0,7 “~“NPO,1 PR1,7 NP—NP PP

S

NP

NP

NP

/N

VBZ NN NNP NNP

There near the top of the list is quarterback Troy Aikman
0 1 7

C =C x C X A\

NPO,7 “~NPO,1 PP 1,7 NP—NP PP
T T T
E|X RlB Nll\lP
There There There
Crpos= 0.4 0.3 0.02
PP PP PP
NP NP NP
IN DT NN IN DT NN IN DT JJ IN DT NN RBDT NN IN DT NN
ne|artr|1e t(|)p o|f tr|1e Ii|st ne|artr|1e tc|>p c|>f tr|1e I!st ne|ar tr|1e tc|>p c|>f tr|1e Ii|st
C 0.2 0.1 0.05

PP1,7

C C x C X A

NPO07 ~ “~“NPO.1 PP 1,7 NP—NP PP

PP PP PP
NP NP NP
IN DT NN IN DT JJ RB DT NN
ne|artr|1e t(|)p ne|artr|1e tc|Jp ne|artr|1e t(|)p
C
N|P
EX
| NP
There |
RlB
There NIP
NNP

I
There

0.03 x0.5

0.015 x 0.5

0.002 x 0.5

0.001 x 0.5

= X X
CNP,O,? CNF’,0,1 CPP, 1,7 ANP—»NP PP
PP
_ NP
Apnppp= 00 AN
IN DT NN
near the top
C
NlP
EX
| NP
There |
RIB 0.06 x 0.5
There NlF’
e 0.004 x 0.5

C =C x C X A\

NP0,7 “~“NPO,1 PR1,7 NP—NP PP

PP PP PP
NP NP NP
IN DT NN IN DT JJ RB DT NN
ne|artr|1e tc|)p ne|artr|1e to|p ne|art}'|1e t(lp
C
N|P
EX
| NP
There |
RlB
There NlF’
NNP

I
There

There EX NP NP PP IN near 02
PP PP PP
NP

N N N

NP ... NP .. NP ..
IN DT NN IN DT NN /\ /\ /\
IN DT NN IN DT JJ RBDT NN

There near the top of the Ilst | | | | | | | | |
C near the top ... near the top ... near the top ...

PR 1,7

-
EX
I NP
There |
R|B
There Nlp
Nfl‘lP

There

> > > > > >

There EX NP NP PP IN near

There RB NP NP PP IN near

=0.1

There NNP NP NP PP IN near PP
There EX NP NP PP RS near — 0+ 1 /NP\
NP

There RB NP NP PP RB near
IN DT NN
There NNP NP NP PP RB near

near the top ...

PP
NP

A

NP

IN DT JJ

near the top ...

RB DT NN

near the top

e 0.04 x0.2 | 0.02 x0.2 | 0.01 x0.1
There |
RB 0.03 x0.6 | 0.015 x 0.6 | 0.0075 x 0.4
There NP
- 0.002 x 0.1 | 0.001 x 0.1 | 0.0005 x 0.2

PP PP PP

NP NP NP
IN DT NN IN DT JJ RB DT NN
ne|artr|1e t(lp ne|artr|1e tc|)p ne|artr|1e t(|)p
C
N|P
EX
| NP
There |
RlB
There N|P
Nll\lP

There

EX
I NP
There |
RIB
There N|P
er\lP

There

Rk

There nearthe top There nearthe top There nearthe top)

CNP,0,7 0.018 0.009 0.008

Clarification

* Cube pruning does not actually expand all k? proofs as this
example showed

* |t uses a fast approximation that only looks at O(k) proofs

