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Abstract 

Silent Speech Interfaces use data from the speech production 

process, such as visual information of face movements. 

However, using a single modality limits the amount of available 

information. In this study we start to explore the use of multiple 

data input modalities in order to acquire a more complete 

representation of the speech production model. We have 

selected 4 non-invasive modalities – Visual data from Video 

and Depth, Surface Electromyography and Ultrasonic Doppler 

- and created a system that explores the synchronous 

combination of all 4, or of a subset of them, into a multimodal 

Silent Speech Interface (SSI). This paper describes the system 

design, data collection and first word recognition results. As the 

first acquired corpora are necessarily small for this SSI, we use 

for classification an example based recognition approach based 

on Dynamic Time Warping followed by a weighted k-Nearest 

Neighbor classifier. The first classification results using 

different vocabularies, with digits, a small set of commands 

related to Ambient Assisted Living and minimal nasal pairs, 

show that word recognition benefits can be obtained from a 

multimodal approach. 

Index Terms: silent speech interfaces, multimodal, video and 

depth information, surface electromyography, ultrasonic 

Doppler sensing 

1. Introduction 

The use of Silent Speech Interfaces (SSI) is an alternative to 

conventional speech interfaces based on acoustic signals. Silent 

Speech designates the process of speech communication in the 

absence of an audible and intelligible acoustic signal. By 

extracting information of the human speech production process, 

an SSI is able to interpret, process or route the acquired data. 

The adoption of this type of interface brings advantage for 

people who have undergone a laryngectomy (i.e. total or partial 

removal of the larynx), or elder people for whom speaking 

requires a substantial effort. Since it is based on non-

acoustically acquired speech cues, it also allows 

communication in noisy environments and is suitable for 

situations where privacy and confidentiality is required.  

Several SSI based on different sensory types of data 

have been proposed in the literature: Implants in the speech-

motor cortex [2], Electro-encephalographic (EEG) sensors [3]; 

Surface Electromyography (sEMG) sensors [4]; 

Electromagnetic Articulography (EMA) sensors [5]; 

Ultrasound (US) used concurrently with optical imaging of the 

tongue and lips [6]; Ultrasonic Doppler Sensing (UDS) [7]; 

Non-Audible Murmur (NAM) microphone [8]; glottal activity 

using electromagnetic [9], or vibration [10] sensors.  Overviews 

can be found in [1] and [11]. However, the production of human 

speech is composed by several stages that go from intention to 

articulation effects [12], thus, acquiring data from a single stage 

limits the amount of useful information available for capture 

and further processing. Therefore, taking a higher level 

perspective, if multiple modalities could be used, a more 

complete representation of the speech production model could 

be obtained, benefiting speech recognition performance [13]. 

As eventually the weakest points of one modality can be 

minored by other(s), their combination should be investigated 

and compared with the performance observed by each one 

separately. In literature several multimodal SSIs can be found 

and almost all the approaches mentioned earlier also consider 

an audible acoustic signal stream in their experiments, with 

exception for some work based on brain computer interfaces 

[2][3]. Since this paper only addresses silent speech, we will not 

focus on the combination of audio with other input modalities. 

The work presented here aims at creating the 

conditions to explore more complex combinations of Human-

Computer Interaction (HCI) input modalities for SSI – 

exploring more non-invasive and recent modalities such as 

UDS - and to make an analysis of first evaluations. As such, we 

have selected multiple HCI technologies based on: the 

possibility of being used in a natural manner without complex 

medical procedures, low cost, tolerance to noisy environments, 

ability to work with speech-handicapped users and cost. Given 

these requirements, a novel type of SSI based on the following 

specifications was defined as our target: (1) Facial information 

acquired from Visual and Depth sensors; (2) sEMG of the 

articulator muscles; and (3) Capture of facial movements during 

speech using UDS. Since this is the first reported SSI that uses 

more than 2 data types and consequently, the first to combine 

the corresponding modalities, no corpora exists for the selected 

language – European Portuguese (EP) - or any other that the 

authors know of, causing the necessity of creating a database 

with this type of multimodal data. The amount of data collected, 

although being sufficient for a first proof-of-concept SSI, it is 

yet not sufficient to allow for a generalization of the observed 

data and apply classification methods such as Hidden Markov 

Models (HMMs). For that reason, we decided to use an example 

based classification method that uses Dynamic Time Warping 

(DTW) scores followed by a k-Nearest Neighbor (k-NN) 

classifier [14], which has achieved successful results in the 

literature for speech recognition tasks [15]. 

The remaining sections of this study are structured as 

follows: Section 2 presents a description of related work on 

previous multimodal approaches used in SSIs and on the most 

recent and relevant developments concerning the selected 

modalities. Section 3 describes the methodology and the system 

used to acquire multiples streams of data, giving particular 

attention to the synchronization solution used to register/align 

all the input signals. Section 4 presents the first word 
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recognition results, using example based techniques in a 

multimodal SSI. Finally, section 5 presents the conclusions of 

this research. 

2. Related work 

In 2004, Denby and Stone [16], presented a first experiment 

where 2 input modalities, in addition to speech audio, were used 

to develop an SSI. Denby and Stone employed ultrasound 

imaging of the tongue area, lip profile video and acoustic speech 

data with the goal of developing an SSI. More recently, Florescu 

et al. [6], using these same modalities achieved a 65.3% 

recognition rate only considering silent word articulation in an 

isolated word recognition scenario with a 50-word vocabulary 

using a DTW-based classifier. The reported approach also 

attributes substantially more importance to the tongue 

information, only considering a 30% weight during 

classification for the lip information. In 2008, Tran et al. [17], 

also reported a preliminary approach using information from 2 

modalities: whispered speech acquired using a NAM and visual 

information of the face using the 3D position of 142 colored 

beads glued to the speakers face. Later, using the same 

modalities, the same author, achieved an absolute improvement 

of 13.2% when adding the visual information to the NAM data 

stream. The use of visual facial information combined with 

sEMG signals has also been proposed by Yau et. al. in 2008 

[21]. In this study Yau et. al. presents an SSI that analyses the 

possibility of using sEMG for unvoiced vowels recognition and 

a vision-based technique for consonant recognition.  

 When looking at the chosen modalities, recent work 

using video plus depth information has been presented by 

Galatas et. al. [22], showing that the depth facial information 

can improve the system performance over audio-only and 

traditional audio-visual systems. In the area of sEMG-based 

SSIs, recent research on has been focused on the differences 

between audible and silent speech and how to decrease the 

impact of different speaking modes [23]; the importance of 

acoustic feedback [24]; EMG-based phone classification [25]; 

and session-independent training methods [26]. For what UDS 

is concerned, it has been applied to several areas (e.g. voice 

activity detection [27], speaker identification [28], and 

synthesis [29]) including speech recognition with promising 

results [7][30]. 

3. Methodology / System design  

Before conducting this research it was necessary to plan and 

gather all the necessary equipment, which in the case of UDS, 

led us to the development of custom built equipment [30]. The 

next step was to create the necessary conditions to register all 

signals via proper synchronization. For this purpose, we 

selected the sEMG recording device as the central unit that 

generates the alignment pulse for all the remaining modalities 

as described in section 3.3. After the system setup was ready, a 

proof-of-concept database was collected for further analysis. 

3.1. The individual modalities  

The work described here addresses 4 modalities: (1) Video 

which captures the image pixels of the speakers’ mouth region 

and its surroundings, including chin and cheeks. (2) Depth 

which captures depth information of the same areas, providing 

useful information about the mouth opening and tongue 

position in some cases. (3) Surface EMG sensory data, which 

provides us information about the myoelectric signal of the 

targeted facial muscles during speech movements. (4) 

Ultrasonic Doppler Sensing, a technique which is based on the 

emission of a pure tone in the ultrasound range towards the 

speaker’s face that is received by an ultrasound sensor tuned to 

the transmitted frequency. The reflected signal then contains 

Doppler frequency shifts proportional to the movements of the 

speaker’s face. Based on the analysis of the Doppler signal, 

patterns of movements of the facial muscles, lips, tongue, jaw, 

etc., can be extracted [7]. 
The devices employed in this data collection were: (1) 

a Microsoft Kinect [19] that acquires visual and depth 

information; (2) an sEMG acquisition system from Plux [20] 

that captures the myoelectric signal from the facial muscles; (3) 

a custom built dedicated circuit board (hereon referred as UDS 

device) that includes: 2 ultrasound transducers (400ST and 

400SR working at 40 kHz), a crystal oscillator at 7.2 MHz and 

frequency dividers to obtain 40 kHz and 36 kHz and all 

amplifiers and linear filters needed to process the echo signal 

[30]. All devices were connected to the same laptop. 

The Kinect sensor was placed at approximately 0.7m 

from the speaker and it was configured to capture a color video 

stream with a resolution of 640x480 pixels, 24-bit RGB at 30 

frames per second and a depth stream with a resolution of 

640x480 pixels, 11-bit at 30 frames per second. Kinect was also 

configured to use the Near Depth range (i.e. range between 

0.4m to 3m) and to track a seated skeleton.  

The sEMG acquisition system consisted of 5 pairs of 

EMG surface electrodes connected to a device that 

communicates with a computer via Bluetooth. The sensors were 

attached to the skin using a single use 2.5cm diameter clear 

plastic self-adhesive surfaces and considering an approximate 

2cm spacing between the electrodes center for bipolar 

configurations. The recordings took place in a single session, 

meaning that the sensors were never removed during the 

recordings of each speaker. Before placing the surface EMG 

sensors, the sensor location was previously cleaned with 

alcohol. While uttering the prompts no other movement, besides 

the one associated with speech production, was made. The five 

electrode pairs were placed in order to capture the myoelectric 

signal from the following muscles: the zygomaticus major 

(channel 2); the tongue (channel 1 and 5), the anterior belly of 

the digastric (channel 1); the platysma (channel 4) and the last 

electrode pair was placed below the ear between the mastoid 

process and the mandible. The EMG channels 1 and 4 used a 

unipolar configuration (i.e. used one of the electrodes from the 

respective pair as a reference electrode located in a place with 

low or negligible muscle activity), being the reference 

electrodes placed on the mastoid portion of the temporal bone. 

The positioning of the EMG electrodes 1, 2, 4 and 5 was based 

on previous work (e.g. [4]) and EMG electrode 3 was placed 

according to recent findings about the detection of nasality in 

SSIs [31], a distinct characteristic of EP [32]. 

The UDS device was placed at approximately 40cm 

from the speaker and was connected to an external sound board 

(Roland, UA-25 EX) which in turn is connected to the laptop 

through a USB connection. The two supported recording 

channels of the external sound board were connected to the I/O 

channel of the sEMG recording device and to the UDS device. 

The Doppler echo and the synchronization signals were 

sampled at 44.1 kHz and to facilitate signal processing, a 

frequency translation was applied to the carrier by modulating 

the echo signal by a sine wave of a frequency 𝑓
𝑎

= 36𝑘𝐻𝑧 and 



low passing the result, obtaining a similar frequency modulated 

signal centered at 𝑓
1 

= 𝑓
0 

– 𝑓
𝑎
 , i.e., 𝑓

1
= 4𝑘𝐻𝑧. 

3.2. Multimodal Acquisition 

The recordings took place in a quiet room with controlled 

illumination with an assistant responsible for monitoring the 

data acquisition and also for pushing a record/stop button in the 

recording tool interface in order to avoid unwanted muscle 

activity. Our database contains the recordings of 8 native EP 

speakers - 2 female and 6 male – with no history of hearing or 

speech disorders, with an age range from 25 to 35 years old and 

an average age of 30 years. No audible acoustic signal was 

produced by the speakers during the recordings and only one 

speaker had past experience with silent articulation. Before each 

session the participants received a 30m briefing that included 

instructions and speaker preparation. Each recording session 

took between 40 to 60 minutes generating an average 3.2GB of 

data per speaker that includes: session metadata; RBG and 

depth information of a 128x128 pixel square centered at the 

mouth center and the coordinates of 100 facial points for each 

Kinect frame; EMG data from the 5 available channels; two 

channel wave per prompt containing the Doppler and the 

synchronization signal; and a compressed video of the whole 

session. The prompts were presented to the speaker in a random 

order. 

3.3. Registration of all input modalities 

In order to register all input modalities via time alignment 

between all corresponding four input streams, we have used an 

I/O bit flag in the sEMG recording device, which has one input 

switch for debugging purposes and two output connections, as 

depicted in Figure 1. Synchronization occurs when the output 

of a synch signal, automatically emitted by the sEMG device at 

the beginning of each prompt, is used to drive a led and to 

provide an additional channel in UDS recording. Registration 

between the video and depth streams is ensured by Kinect SDK. 

Using the information from the led and auxiliary 

channel with synch info, the signals were aligned offline. To 

align RGB video and the depth streams, we have used an image 

template matching technique that automatically detects the led 

position on each color frame. By applying a threshold on the 

average luminance of that image area, we can determine if the 

led is ON or OFF. For the UDS acquisition system, the 

activation of the output I/O flag of the sEMG recording device, 

generates a small voltage peak on the signal of the first channel. 

To enhance and detect that peak, a second degree derivative is 

applied to the signal followed by an amplitude threshold. To be 

able to detect this peak, we have previously configured the 

external sound board channel with maximum input sensitivity. 

The time-alignment of the EMG signals is ensured by the sEMG 

recording device, since the I/O flag is recorded in a synchronous 

way with the samples of each channel. 

External 
Sound 
Card

UDS
Device

Debug Switch LED

Microsoft Kinect

EMG 
Recording 

Device

I/O
C1

C2

C3

C4

C5

Figure 1: Diagram of the alignment scheme showing the I/O 

channel connected to the three outputs – debug switch, external 

sound card and a directional led. 

3.4. Corpora 

For this first experiment we have selected a vocabulary of 32 

EP words, which can be divided into 3 distinct sets. The first 

set, used in previous work for other languages (e.g. [7]) and for 

EP in previous work [30], consists of 10 digits from zero to nine. 

The second set contains 4 minimal pairs of common words in 

EP that only differ on nasality of one of the phones (minimal 

pairs, e.g. Cato/Canto [katu]/[kɐt̃u] or Peta/Penta [petɐ]/[pẽtɐ] – 

see [33] for more details), and is directly related with previous 

investigation on the detection of nasality with SSIs. Table 1 

shows the last set, with 14 common words in EP, taken from 

context free grammars of an Ambient Assisted Living (AAL) 

application that supports speech input and chosen based on past 

experiences of the authors in [34]. A total of 99 prompts  per 

session were presented to the speaker (three additional silence 

prompts were also included in the beginning, middle and end of 

the session), in a random order with each prompt being 

pronounced individually, in order to allow isolated word 

recognition, and occurring 3 times per recording session. 

Table 1. Set of words previously used in an AAL context. 

AAL Words 

Videos 

(Videos) 

Ligar 

(Call/Dial) 

Contatos 

(Contacts) 

Mensagens 

(Messages) 

Voltar 

(Back) 

Pesquisar 

(Search) 

Anterior 

(Previous) 

Fotografias 

(Photographs) 

Família 

(Family) 

Ajuda 

(Help) 

Seguinte 

(Next) 

Lembretes 

(Reminders) 

Calendário 

(Calendar) 

E-Mail 

(E-Mail) 

 

3.5. Feature Extraction 

The first step for extracting visual and depth facial information 

is to determine a region-of-interest (ROI). For this process we 

use the real-time Active-Appearance Models (AAMs) [35], 

already provided by the Kinect SDK, to track 100 points in the 

speakers’ face during the recordings. This allows us to have a 

64x64 pixel ROI always centered at the speaker’s mouth. After 

estimating the ROI, an appearance-based methodology based 

on previous work taken from the literature [22], is applied to 

both depth and color images. The challenge in extracting 

features based on appearance resides in collecting required 

information from the vast amounts of data present in image 

sequences. Each frame contains a large number of pixels and is 

obviously too large to model as a feature vector. In order to 

reduce dimensionality and to allow better feature classification, 

we start by applying a Discrete Cosine Transform (DCT) to 

extract the 45 coefficients with higher energy values. Then, to 

match with frame rates from other input modalities, we 



interpolate the obtained frames from 30Hz to 100Hz. After this 

process, a two stage Linear Discriminant Analysis, LDA is 

applied in order to reduce dimensionality of the resulting feature 

vector. In the first stage, we apply LDA to each frame, reducing 

it to 15 features per frame. In the second stage, LDA is applied 

to the stacking of 12 adjacent frames, selecting the 10 mapped 

features with the highest eigenvalues. Finally, the first and 

second derivative are appended to the feature vector. 

For UDS feature extraction we followed a similar 

approach to [7] and started by pre-processing the UDS signal. 

The acquired signal was first zero-averaged, then a 3 sample 

moving average filter is applied to suppress the 4 kHz carrier 

and later a difference operator is applied. After the pre-

processing stage, we split the signal into 50ms frames with a 

10ms frame shift, and apply a Discrete Fourier transform (DFT) 

with a second-order Goertzel algorithm over the preprocessed 

signal for the interval around the carrier - 3500 Hz to 4750 Hz. 

Finally, a DCT is applied to the DFT results to de-correlate and 

compress the signal, extracting the first 30 coefficients, which 

contain most of the signal energy.  

For sEMG feature extraction we have used a similar 

approach to the one described by [13] and [31], based on 

temporal features, since it has been shown in previous studies 

that time-domain features presents better accuracy results. The 

extracted features are frame-based and for any given sEMG 

signal frames of 30ms and a frame shift of 10ms is considered. 

After feature extraction, we applied LDA to reduce the feature 

vector to 30 coefficients per frame. The vocabulary of each 

word set was used as the LDA categorical variable. 

4. Isolated Word Recognition Results 

As a first approach, we decided to analyze if better word 

recognition performance could be obtained by fusing multiple 

classification approaches. Another question addressed in this 

paper is if fusion of different modalities should occur at an early 

stage after feature extraction (i.e. feature fusion), or should be 

applied upon classification results of each individual modality 

(i.e. decision fusion). Hence, we started by obtaining baseline 

results for each modality for each word set, as depicted in Table 

2 and Table 3. Considering the reduced number of samples per 

speaker in the corpus we decided to use an example based 

technique that uses DTW alone or DTW followed by a weighted 

k-NN for a first classification approach. To split the data into 

train and test, we adopted a 10-fold cross-validation strategy 

[30]. The LDA described in section 3.5 is performed for each of 

the 10-fold partition.  

In the DTW technique, we calculate the distance 

between the test word samples and each sample of the training 

set choosing the class with the minimum distance. When 

multiple distances are used for each training sample (as when 

we have multiple modalities and consequently multiple feature 

vectors), the class with the minimum sum of all distances for 

each sample is selected. In case of using the DTW followed by 

a weighted k-NN classifier, the DTW distances are used as an 

input to build the feature space. The k number of neighbors are 

dynamically determined based on the size n of the training set, 

having 𝑘 =  √𝑛 [15]. For prediction, we used an Euclidean 

distance metric and an inverse distance weighting function, i.e. 

each point of the model has a weight equal to the inverse of its 

distance. 

The results presented in Table 2 show that the best 

result is found for the combination of Video, Depth and UDS 

input modalities, with an average error rate of 69.6%, using 

DTW followed by k-NN and a Decision Fusion technique. 

However, the combination of Video and Depth presented very 

similar results with an average error rate of 69.7%, particularly 

if we consider the statistical dispersion of the results shown by 

the confidence interval. Regarding individual modalities, Video 

presented the best results with an average error rate of 70.1%, 

followed by Depth with 71.1%, both using the DTW+k-NN 

classifier. When comparing classification techniques, DTW 

followed by k-NN seems to outperform classification based on 

DTW only by a small margin of 0.6% in average.  

Regarding which fusion approach is better, results 

vary according to classification technique and modalities. We 

find that, using feature fusion with DTW only, has better results 

in average, but when applying k-NN, decision fusion has better 

performance, except for the case where we combine all 

modalities. 

When analyzing the results of individual word sets, as 

depicted in Table 3 the combination of multiple modalities 

seems to present a better performance, except for the case of the 

AAL word set, which has a larger vocabulary, and where Video 

presents the best performance using both classification 

pipelines with a 71.4% average error rate using DTW and 

70.8% using DTW+k-NN. However, combinations between 

Video and Depth using a decision fusion technique present a 

very close performance result with 71.4% error rate but a larger 

confidence interval. In the remaining cases, the combination of 

Video and Depth present the best results with error rates of 

72.1% for Digits, 66.2% for Nasal Pairs and 65.7% for the 

vocabulary mix, all achieved using the DTW+k-NN pipeline. 

Discarding the combination of all modalities (with 

clear problems), a one-way ANOVA was performed, 

separately, to the average values of error and to the error rates 

for each set, having as factor the existence or not of several 

modalities. Significantly different and lower results were found 

for multimodal combinations error rates. As an example, for the 

average of the 3 word sets, was obtained F(1,14) = 6.249, 

p=0.0255. 

Table 2. Average isolated word recognition error rate 

for individual and different combination of multiple 

modalities and for two classification techniques. It 
includes the results of all word sets. 

 DTW  DTW+KNN 

Video 71.3% 70.1% 

Depth 71.8% 71.1% 

EMG 89.2% 89.4% 

UDS 81.4% 81.7% 

Video+Depth (FF) 71.4% 69.7% 

Video+Depth (DF) 72.3% 69.7% 

Video+Depth +UDS (FF) 71.2% 70.4% 

Video+Depth +UDS (DF) 73.0% 69.6% 

Video+Depth+UDS+EMG (FF) 86.7% 88.3% 

Video+Depth+UDS+EMG (DF) 88.4% 90.2% 



Table 3. Average isolated word recognition error rate with 95%confidence interval of the 10-fold, for individual and different 

combination of multiple modalities, using 4 different vocabularies (including a random mixed selection of 8 words based on the 
other word set) and 2 different fusion techniques – feature fusion (FF) and decision fusion (DF).

 
Digits AAL words Nasal pairs Vocabulary Mix 

DTW DTW+k-NN DTW DTW+k-NN DTW DTW+k-NN DTW DTW+k-NN 

Video 74.2% ± 5.4% 72.5% ± 3.7% 71.4% ± 4.2% 70.8% ± 4.7% 72.5% ± 7.6% 67.9% ± 7.3% 67.2% ± 5.9% 69.3% ± 4.5% 

Depth 74.2% ± 4.3% 74.1% ± 4.6% 72.6% ± 5.0% 71.7% ± 6.2% 70.9% ± 7.6% 67.8% ± 6.8% 69.3% ± 4.0% 70.9% ± 4.6% 

EMG 87.9% ± 4.7% 85.8% ± 3.9% 92.3% ± 3.2% 91.1% ± 2.7% 89.6% ± 4.5% 92.2% ± 3.9% 87.0% ± 4.1% 88.6% ± 4.6% 

UDS 81.7% ± 4.6% 83.4% ± 3.5% 83.0% ± 3.9% 82.5% ± 2.1% 82.4% ± 5.4% 78.1% ± 6.0% 78.6% ± 8.8% 82.8% ± 6.0% 

Video+Depth (FF) 75.0% ± 5.3% 72.1% ± 4.0% 73.1% ± 6.4% 73.4% ± 5.6% 70.4% ± 7.0% 67.3% ± 9.3% 67.2% ± 6.4% 65.7% ± 5.8% 

Video+Depth (DF) 73.3% ± 4.7% 72.9% ± 4.2% 71.4% ± 5.2% 73.7% ± 5.2% 75.1% ± 7.4% 66.2% ± 9.0% 69.3% ± 6.1% 65.8% ± 7.1% 

Video+Depth 

+UDS (FF) 
74.6% ± 5.4% 72.9% ± 3.3% 73.2% ± 5.6% 72.6% ± 5.2% 69.9% ± 7.2% 69.4% ± 7.8% 67.2% ± 5.8% 66.7% ± 5.5% 

Video+Depth 

+UDS (DF) 
73.3% ± 5.2% 72.5% ± 4.2% 72.3% ± 4.8% 72.6% ± 4.7% 74.6% ± 7.9% 66.8% ± 9.5% 71.9% ± 5.6% 66.3% ± 6.6% 

Video+Depth+ 

UDS+EMG (FF) 
85.4% ± 4.2% 91.7% ± 1.6% 92.0% ± 2.6% 89.6% ± 2.3% 86.1% ± 6.9% 86.4% ± 3.3% 83.3% ± 5.4% 85.4% ± 4.6% 

Video+Depth+ 

UDS+EMG (DF) 
86.2% ± 4.9% 89.2% ± 3.7% 93.8% ± 2.8% 93.2% ± 2.5% 89.5% ± 3.3% 90.1% ± 3.1% 83.9% ± 6.7% 88.1% ± 4.2% 

5. Discussion 

This study explores the use of a novel multimodal approach in 

order to capture a more complete representation of the speech 

production model, also addressing the problem of how to 

combine multiple modalities and how to model information 

with limited amounts of training data. 

 Video, Depth, EMG and UDS capture different types 

of data at different stages of the speech production model [11]. 

Our aim with this initial study was to analyze if a multimodal 

approach could help minimizing the weakest points of one or 

several modalities, towards a solution where a more complete 

representation of the speech production model is achieved. The 

chosen modalities capture information about several 

articulators, e.g. lips, chin, tongue, etc. Nonetheless, some 

modalities may obtain a more accurate representation of a 

particular articulator when compared to others. For example, 

Video is not able to get an accurate representation of the tongue. 

However, EMG channels 1 and 5 can, in theory, obtain 

information about tongue movements during speech. 

Overall results point towards performance 

advantages in using a multimodal solution to implement an SSI, 

particularly for the UDS and EMG cases.  However, it is not 

possible to drive a final conclusion on which approach presents 

the higher gain. In this study two multimodal combinations 

stand out: Video and Depth; and Video, Depth and UDS. The 

ANOVA analysis has shown that the combination of these 

approaches introduces a significant improvement in most cases 

when compared with the individual modalities or other 

modalities combination. However, if we take into account the 

confidence intervals depicted in Table 3, none of the 

multimodal combinations seem to clearly outperform Video or 

Depth modalities alone. 

 Recognition problems were also detected when using 

EMG, which based on literature seem to be caused by the small 

data set [23]. As such, the combination of other modalities with 

EMG did not improve the results. Even though it is acceptable 

for this experience, other literature studies have shown that 

error rates tend to improve substantially when considering 

audible speech articulation, simultaneously with individual 

modalities like EMG [23] [33] or UDS [30], as opposed to silent 

speech articulation, as in the research described in this paper. 

We have also compared two example based 

classification techniques: DTW and DTW+k-NN. Results 

indicate an increase of performance when adding the k-NN 

classifier to the recognition pipeline, as this extra step based on 

clustering allows to discard, in some cases, DTW distance 

outliers.   

Regarding the fusion of techniques results are not 

conclusive on which technique is better, since it varies 

according to classification technique and modalities. 

Nonetheless, results show that decision fusion works better 

when used with the DTW followed by a k-NN classifier. This 

can be explained by the richer feature space used as input for 

the k-NN classifier, consequently generating better results. 

6. Conclusions 

The work presented in this research, presents the first steps of 

an SSI for isolated word recognition, based on the registration 

of four non-invasive input modalities, all of relatively low cost. 

This paper describes the design and registration 

solution built for such system, the data collection methodology 

and also an analysis of the isolated word recognition 

performance of this SSI. Our results show that a significant 

difference in recognition rates can be found between unimodal 

and multimodal approaches in favor or the latter, and that 

benefits can be obtained by aligning several modalities, 

especially when registering Video, Depth and UDS, or Video 

and Depth. Results also indicate a slight better performance 

when using a decision fusion approach with DTW followed by 

a k-NN classifier.  

As future work we intend to develop a classification 

model based on the human speech production model, where the 

weakest points of each modality can be overcome, e.g. combine 

visual lip information with the tongue myoelectric signal 

obtained with the sEMG. We also intend to expand the collected 

database and explore more appropriate features for the 

multimodal scenario. 
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