Completing the noisy circuit Systems of feedback in models of dysarthria

Frank Rudzicz Scientist, Toronto Rehabilitation Institute Assistant professor, Department of Computer Science University of Toronto

SPASR workshop, 30 August 2013, Lyon France

Studying how systems break down

• Observing how closed systems *fail* can be a valuable method in

discovering how those systems work.

- Paul Broca (left) discovered, in 1861, that a lesion in the left ventro-posterior frontal lobe caused expressive aphasia.
- This was the first direct evidence that language function was localized.
 - It hinted at a **mechanistic** view of **speech production**.

Broca's area

Dysarthria

Neuro-motor articulatory disorders resulting in unintelligible speech.

7.5 million Americans have dysarthria

- Cerebral palsy,
- Parkinson's,
- Amyotrophic lateral sclerosis) (National Institute of Health)

SPOClab signal processing and oral communication

Nosology of dysarthria

• **Types** of dysarthria are related to **specific sites** in the subcortical nervous system.

Туре	Primary lesion site
Ataxic	Cerebellum or its outflow pathways
Flaccid	Lower motor neuron (≥1 cranial nerves)
Hypo- kinetic	Basal ganglia (esp. substantia nigra)
Hyper- kinetic	Basal ganglia (esp. putamen or caudate)
Spastic	Upper motor neuron
Spastic- flaccid	Both upper and lower motor neurons

(After Darley et al., 1969)

Characteristics of dysarthria

	Ataxic	Flaccid	Hypo- kinetic	Hyper- kinetic, chorea	Hyper- kinetic, dystonia	Spastic	Spastic- flaccid (ALS)	
Monopitch								
Harshness								
Imprecise consonants								
Mono-loud								
Distorted vowels		5000			5000			
Slow rate		4500			4500			
Short phrases		4000	0	28.5	4000			
Hypernasal		£ 3000		Software a	(H ²) 3000	Mark (SPA)	Sec. 1	
Prolonged intervals	2	A 2500			2500		and the second second	
Low pitch		ون 1500 يې	may sala	CAN ENTING	월 2000 1500			
Inappropriate silences		1000		CANAL A	1000			
Variable rate								
Breathy voice		1300 14	100 1500 1600 1700 time (ms) fear	800 1900 2000	1300 14	00 1500 1600 1700 time(ms) fair	1800 1900 2000	
Strain-strangled voice								
					_	505	_	

Dysarthria

Dysarthria

The **broader** neuro-motor deficits associated with dysarthria can make **traditional** human-computer interaction difficult.

Accounting for aspects of dysarthria

- Ergodic HMMs can be robust against recurring pauses, and non-speech events.
- Polur and Miller (2005) replaced GMM densities with neural networks (after Jayaram and Abdelhamied, 1995), further increasing accuracy.

Adjusting to the individual speaker

Acoustic ambiguity

This **acoustic** behaviour is indicative of underlying **articulatory** behaviour.

UNIVERSITY OF

The TORGO database

- TORGO was built to train augmented ASR systems.
 - 9 subjects with cerebral palsy, 9 matched controls.
 - Each reads 500—1000 prompts over 3 hours that cover phonemes and articulatory contrasts (e.g., meat vs. beat).
 - Electromagnetic articulography (and video) track points to <1 mm error.

SPOClab

ignal processing and

Vowel durations in TORGO

TORGO

Information in TORGO

	Speaker	H(Acous)	H(Artic)	$H(Ac \mid Ar)$	
Dycarthric	M01	66.37	17.16	50.30	
	M04	33.36	11.31	26.25	
Dysartnic	F03	42.38	19.33	39.47	
	Average	47.34	15.93	38.68	
Control	MC01	24.40	21.49	1.14	
	MC03	18.63	18.34	3.93	
	FC02	16.12	15.97	3.11	
	Average	19.72	18.60	2.73	
Dysarthric a are far more ally disorder the contro	coustics Dy statistic- is ed than ord I data but	sarthric articula t <i>just as</i> statistica ered as the cor data	tion Dysarth ally are far le atrol from a yet	nric acoustics ess predictable articulation.	
RGO	12		SPOCIab signal processing and	IHN Toronto Rehabilitation Institute	

oral communication

Classifying dysarthric acoustics

Dynamic Bayes nets with EMA data

O″ 0″ O'Ο () О О Ph Ph Ph Ph Ph Ph Q Q Q Q Q Q Α Α А Α Α Α A' A' A' A' \bigcirc \bigcirc Α″ Α″ Α″ Α″ O'**O**″ O'0″ 0 Ο Ο DBN-A2 **DBN-A3 DBN-A SPOClab** Toronto Rehabilitation Institute UNIVERSITY OF TORGO 14 signal processing and oral communication

Dynamic Bayes nets with EMA data

Phoneme recognition

Severity	HMM	LDCRF	DE	3N	NN		
of dysarthria			DBN-F	DBN-A	MLP	Elman	
Severe	14.1	15.2	15.0	16.4	15.5	15.6	
Moderate	27.8	28.0	28.0	31.1	28.6	30.5	
Mild	51.6	51.8	51.6	54.2	51.4	51.2	
Control	72.8	73.5	73.3	73.6	72.6	72.7	

Average % phoneme accuracy (frame-level) with speaker-dependent training

SPOClab

signal processing and

oral communication

Beyond discrete articulation

UNIVERSITY OF

Dynamic speech gestures

We wish to classify dysarthric speech in a low-dimensional and informative space that incorporates **goal-based** and **long-term dynamics**.

signal processing and

Characteristics of dysarthria

	Ataxic	Flaccid	Hypo- kinetic	Hyper- kinetic, chorea	Hyper- kinetic, dystonia	Spastic	Spastic- flaccid (ALS)
Monopitch							
Harshness							
Imprecise consonants							
Mono-loud							
Distorted vowels							
Slow rate							
Short phrases							
Hypernasal							
Prolonged intervals							
Low pitch							
Inappropriate silences							
Variable rate	Task-	Task-dynamics:					
Breathy voice	TUSK						
Strain-strangled voice							
		$Mz'' + Bz' + K(z - z^0)$					
SPOCIab							*

signal processing and oral communication

UNIVERSITY OF

Aspects to consider

- As we develop an **extension** or **alternative** to task dynamics, we have to consider:
 - 1. Timing.
 - a) Inter-articulator co-ordination.
 - b) Rhythm.
 - 2. Feedback.
 - a) Acoustic, proprioceptive, and tactile.
 - **3. Higher-level features**a) Syntax and meaning

1. Timing

- In TD, pairs of goals are dynamically coupled in time.
- Articulators are phase-locked (0° or 180°; Goldstein et al., 2005)

- (C)CV pairs stabilize in-phase.
- V(C)C pairs stabilize anti-phase.
- Kinematic errors occur when competing gestures are repeated and tend to stabilize incorrectly.
 - e.g., repeat koptop (Nam et al, 2010).

SPOC lab

1. Timing

- Cerebellar **ataxia** often **prohibits** control over more than one articulator at a time.
 - Apraxia generates incorrect motor plans, wholly distorting gestural goals, hence timing.
- Dysarthric speech nearly equally consists of steady-states (49.95%) and transitions (50.05%) (Vollmer, 1997).
 - Typical speech consists of ~82.14% steady-states.

1. Timing/rhythm

• **Rhythm** (the distribution of **emphasis**) is *not* part of TD.

- Tremor behaves as oscillations about an equilibrium.
 There is evidence that people with Parkinson's coordinate voluntary movement with involuntary tremors (Kent et al., 2000).
- Rhythm in ataxic dysarthria formalized by aberrations in a 'scanning index', SI, consisting of syllable lengths S_i ,

$$SI = \frac{\prod_{i=1}^{n} S_{i}}{\left(\frac{\sum_{i=1}^{n} S_{i}}{n}\right)^{n}}$$
 (Ackermann and Hertrich, 1994)

2. Feedback

- Dysarthria can affect **sensory** cranial nerves.
- Parkinson's disease reduces temporal discrimination in tactile, auditory, and visual stimuli.
 - Likely explanation is that **damage** to the **basal ganglia prohibits** the formation of **sensory targets** (Kent *et al.*, 2000).
 - The result is **underestimated** movement.
- Cerebellar disease results in dysmetria since the internal model of the skeletomuscular system is dysfunctional.
 - The cerebellum is apparently used in the preparation and revision of movements.

2. Feedback and DIVA

- The DIVA model is **supposed** to model feedback, but is largely **speculative** on **neurological** aspects.
- Here, sound targets and somatosensory targets are learned during 'babbling' and modify articulatory goals.

3. Further into the brain with aphasia

Broca's aphasia

- Reduced hierarchical syntax.
- Anomia.
- Reduced "mirroring" between observation and execution of gestures (Rizzolatti & Arbib, 1998).

Wernicke's aphasia

- Normal intonation/rhythm.
- Meaningless words.

SPOClab

nal processing and

- 'Jumbled' syntax.
- **Reduced** comprehension.

Toronto Rehabilitation

Summary

Dysarthria is a prevalent disorder that would be mitigated to some extent by **improved speech technology**.

Some **benefit** can be derived by building in **explicit articulatoryacoustic statistics** into simple **acoustic models** for **dysarthria**.

About **3.3%** improvement in **phoneme error rate** for **moderately** dysarthric given models trained with EMA data.

Dysarthria presents with **complex long-term effects** that are **difficult to capture** in short-time models

Extensions to task-dynamics, e.g., should take into account some of these phenomena.

