

Low ℓ_1 norm and guarantees on Sparsifiability

Shai Shalev-Shwartz & Nathan Srebro Toyota Technologica Institute-Chicago

ICML/COLT/UAI workshop, July 2008

Problem I:

$\mathbf{w}_0 = \underset{\mathbf{w}}{\operatorname{argmin}} \mathbb{E}[L(\langle \mathbf{w}, \mathbf{x} \rangle, y)] \quad \text{s.t.} \quad \|\mathbf{w}\|_0 \le S$

Problem I:

$$\mathbf{w}_0 = \underset{\mathbf{w}}{\operatorname{argmin}} \mathbb{E}[L(\langle \mathbf{w}, \mathbf{x} \rangle, y)] \quad \text{s.t.} \quad \|\mathbf{w}\|_0 \leq S$$

Problem II:

$$\mathbf{w}_1 = \underset{\mathbf{w}}{\operatorname{argmin}} \mathbb{E}[L(\langle \mathbf{w}, \mathbf{x} \rangle, y)] \quad \text{s.t.} \quad \|\mathbf{w}\|_1 \leq B$$

Problem I:

$$\mathbf{w}_{0} = \underset{\mathbf{w}}{\operatorname{argmin}} \quad \mathbb{E}[L(\langle \mathbf{w}, \mathbf{x} \rangle, y)] \quad \text{s.t.} \quad \|\mathbf{w}\|_{0} \leq S$$

Problem II:
$$\mathbf{w}_{1} = \operatorname{argmin} \quad \mathbb{E}[L(\langle \mathbf{w}, \mathbf{x} \rangle, y)] \quad \text{s.t.} \quad \|\mathbf{w}\|_{1} \leq B$$

- Strict assumptions on data distribution \Rightarrow \mathbf{w}_1 is also sparse
- But, what if \mathbf{w}_1 is not sparse ?

 \mathbf{W}

Problem I:

$$\mathbf{w}_0 = \underset{\mathbf{w}}{\operatorname{argmin}} \mathbb{E}[L(\langle \mathbf{w}, \mathbf{x} \rangle, y)] \quad \text{s.t.} \quad \|\mathbf{w}\|_0 \leq S$$

Problem II:

$$\mathbf{w}_1 = \underset{\mathbf{w}}{\operatorname{argmin}} \mathbb{E}[L(\langle \mathbf{w}, \mathbf{x} \rangle, y)] \quad \text{s.t.} \quad \|\mathbf{w}\|_1 \leq B$$

features not correlated

- Strict assumptions on data distribution \Rightarrow \mathbf{w}_1 is also sparse
- But, what if \mathbf{w}_1 is not sparse ?

Sparsification

Sparsification

- Constraint: $\mathbb{E}[L(\langle \tilde{\mathbf{w}}, \mathbf{x} \rangle, y)] \leq \mathbb{E}[L(\langle \mathbf{w}, \mathbf{x} \rangle, y)] + \epsilon$
- Goal: Minimal S that satisfies constraint
- Question: How S depends on B and ϵ ?

Main Result

- Theorem:
 - For any predictor \mathbf{w} , λ -Lipschitz loss function L, distribution D over $\mathcal{X} \times Y$, desired accuracy ϵ
 - Exists $\tilde{\mathbf{w}}$ s.t. $\mathbb{E}[L(\langle \tilde{\mathbf{w}}, \mathbf{x} \rangle, y)] \leq \mathbb{E}[L(\langle \mathbf{w}, \mathbf{x} \rangle, y)] + \epsilon$ and

$$\|\tilde{\mathbf{w}}\|_0 = O\left(\left(\frac{\lambda \|\mathbf{w}\|_1}{\epsilon}\right)^2\right)$$

- Tightness:
 - Data distribution, loss function, dense predictor w with loss l, but need $\Omega((\|\mathbf{w}\|_1^2/\epsilon)^2)$ features for loss $l + \epsilon$
 - Sparsifying by taking largest weights or following ℓ_1 regularization path might fail
 - Low ℓ_2 norm predictor $\not\Rightarrow$ sparse predictor

• Distribution D

• Loss L

Sparsification Procedure

For $j = 1, \ldots, S$

- Sample r_i from distribution $P_i \propto |w_i|$
- Add $|\tilde{w}_i| \leftarrow |\tilde{w}_i| + 1$

$$\frac{|\tilde{w}_1|}{Z'}$$

$$\frac{|\tilde{w}_n|}{Z'}$$

Sparsification Procedure

For $j = 1, \ldots, S$

- Sample r_i from distribution $P_i \propto |w_i|$
- Add $|\tilde{w}_i| \leftarrow |\tilde{w}_i| + 1$

Sparsification Procedure

For $j = 1, \ldots, S$

- Sample r_i from distribution $P_i \propto |w_i|$
- Add $|\tilde{w}_i| \leftarrow |\tilde{w}_i| + 1$

Guarantee

• Assume: $\mathcal{X} = \{\mathbf{x} : \|\mathbf{x}\|_{\infty} \leq 1\}, Y = \text{arbitrary set}, \mathcal{D} = \text{arbitrary distribution over } \mathcal{X} \times Y, \text{Loss } L : \mathbb{R} \times Y \to \mathbb{R} \text{ is } \lambda\text{-Lipschitz w.r.t. 1st argument}$

• If:
$$S \ge \Omega\left(\frac{\lambda^2 \|\mathbf{w}\|_1^2 \log(1/\delta)}{\epsilon^2}\right)$$

• Then, with probability at least $1 - \delta$, $\mathbb{E}[L(\langle \tilde{\mathbf{w}}, \mathbf{x} \rangle, y)] - \mathbb{E}[L(\langle \mathbf{w}, \mathbf{x} \rangle, y)] \leq \epsilon$

Tightness

Data distribution: spread 'information' about label among all features

Tightness (cont.)

• Dense predictor:

•
$$w_i = \frac{B}{n}$$
 and thus $\|\mathbf{w}\|_1 = B$

•
$$\mathbb{E}[|\langle \mathbf{w}, \mathbf{x} \rangle - y|] \le \frac{B}{\sqrt{n}}$$

• Sparse predictor:

• Any **u** with $\mathbb{E}[|\langle \mathbf{u}, \mathbf{x} \rangle - y|] \leq \epsilon$ must satisfy:

$$\|\mathbf{u}\|_0 = \Omega\left(\frac{B^2}{\epsilon^2}\right)$$

Tightness (cont.)

• Dense predictor:

•
$$w_i = \frac{B}{n}$$
 and thus $\|\mathbf{w}\|_1 = B$

•
$$\mathbb{E}[|\langle \mathbf{w}, \mathbf{x} \rangle - y|] \le \frac{B}{\sqrt{n}}$$

- Sparse predictor:
 - Any **u** with $\mathbb{E}[|\langle \mathbf{u}, \mathbf{x} \rangle y|] \leq \epsilon$ must satisfy:

$$\|\mathbf{u}\|_0 = \Omega\left(\frac{B^2}{\epsilon^2}\right)$$

Proof uses a generalization of Khintchine inequality: If $\mathbf{x} = (x_1, \dots, x_n)$ are independent random variables with $\mathcal{P}[x_k = 1] \in (5\%, 95\%)$ and Q is degree d polynomial, then:

 $\mathbb{E}[|Q(\mathbf{x})|] \ge (0.2)^d \mathbb{E}[|Q(\mathbf{x})|^2]^{\frac{1}{2}}$

Low L2 norm does not guarantee sparsifiability

- Same data distribution as before with $B = \epsilon \sqrt{n}$
- Dense predictor:

•
$$w_i = \frac{B}{n}$$

• $\mathbb{E}[|\langle \mathbf{w}, \mathbf{x} \rangle - y|] \le \frac{B}{\sqrt{n}} = \epsilon$
• $\|\mathbf{w}\|_2 = \frac{B}{\sqrt{n}} = \epsilon$

- Sparse predictor:
 - Any **u** with $\mathbb{E}[|\langle \mathbf{u}, \mathbf{x} \rangle y|] \leq 2\epsilon$ must use almost all features:

$$\|\mathbf{u}\|_0 = \Omega\left(\frac{B^2}{\epsilon^2}\right) = \Omega(n)$$

• ℓ_1 captures sparsity but ℓ_2 doesn't !

Sparsifying by zeroing small weights fails

Sparsifying by zeroing small weights fails

Sparsifying by zeroing small weights fails

Intermediate Summary

• We answer a fundamental question: How much sparsity does low ℓ_1 norm guarantee ?

•
$$\|\tilde{\mathbf{w}}\|_0 \le O\left(\frac{\|\mathbf{w}\|_1^2}{\epsilon^2}\right)$$

- This is tight
- Achievable by simple randomized procedure
- Coming next: Direct approach also works !

Intermediate Summary

• We answer a fundamental question: How much sparsity does low ℓ_1 norm guarantee ?

•
$$\|\tilde{\mathbf{w}}\|_0 \le O\left(\frac{\|\mathbf{w}\|_1^2}{\epsilon^2}\right)$$

- This is tight
- Achievable by simple randomized procedure
- Coming next: Direct approach also works !

Greedy Forward Selection

• Step 1: Define a slightly modified loss function

$$\tilde{L}(v,y) = \min_{u} \frac{\lambda^2}{\epsilon} (u-v)^2 + L(u,y)$$

Using infimal convolution theory, it can be shown that

- \tilde{L} has Lipschitz continuous derivative
- $\forall v, y | L(v, y) \tilde{L}(v, y) | \le \epsilon/4$
- Step 2: Apply forward greedy selection on \tilde{L}
 - Initialize $\mathbf{w}_1 = \mathbf{0}$
 - Choose feature using largest element of gradient
 - Choose step size η_t (closed form solution exists)
 - Update $\mathbf{w}_{t+1} = (1 \eta_t)\mathbf{w}_t + \eta_t B \mathbf{e}^{j_t}$

Greedy Forward Selection

Example – Hinge loss:

$$L(v, y) = \max\{0, 1-v\} \quad ; \quad \tilde{L}(v, y) = \begin{cases} 0 & \text{if } v > 1\\ \frac{1}{\epsilon}(v-1)^2 & \text{if } v \in [1-\frac{1}{\epsilon}, 1]\\ (1-\frac{\epsilon}{4})-v & \text{else} \end{cases}$$

Greedy Forward Selection

Example – Hinge loss:

$$L(v, y) = \max\{0, 1-v\} \quad ; \quad \tilde{L}(v, y) = \begin{cases} 0 & \text{if } v > 1\\ \frac{1}{\epsilon}(v-1)^2 & \text{if } v \in [1-\frac{1}{\epsilon}, 1]\\ (1-\frac{\epsilon}{4})-v & \text{else} \end{cases}$$

Guarantees

Theorem

- $\mathcal{X} = \{\mathbf{x} : \|\mathbf{x}\|_{\infty} \le 1\}, Y = \text{arbitrary set}$
- \mathcal{D} = arbitrary distribution over $\mathcal{X} \times Y$
- Loss $L: \mathbb{R} \times Y \to \mathbb{R}$ is proper, convex, and λ -Lipschitz w.r.t. 1st argument
- Forward greedy selection on \tilde{L} finds $\tilde{\mathbf{w}}$ s.t.

•
$$\|\tilde{\mathbf{w}}\|_0 = O\left(\frac{\lambda^2 B^2}{\epsilon^2}\right)$$

• For any **w** with $\|\mathbf{w}\|_1 \leq B$ we have:

 $\mathbb{E}[L(\langle \tilde{\mathbf{w}}, \mathbf{x} \rangle, y)] - \mathbb{E}[L(\langle \mathbf{w}, \mathbf{x} \rangle, y)] \le \epsilon$

Related Work

- ℓ_1 norm and sparsity:
 - Donoho provides sufficient conditions for when minimizer of ℓ_1 norm is also sparse. But, what if these conditions are not met?
 - Compressed sensing: ℓ_1 norm recovers sparse predictor, but only under server assumptions on the design matrix (in our case, the training examples)
- Converse question: Small $\|\tilde{\mathbf{w}}\|_0 \stackrel{?}{\Rightarrow}$ Small $\|\mathbf{w}\|_1$?
 - Servedio: partial answer for the case of linear classification
 - Wainwright: partial answer for the Lasso
- Sparsification:
 - Randomized sparsification procedure previously proposed by Schapire et al. However, their bound depends on training set size
 - Lee, Bartlett, and Williamson addressed similar question for the special case of squared-error loss
 - Zhang presented forward greedy procedure for twice differentiable losses

Summary

Summary

