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Sparsification

Predictor w with ||w|; = B

v

Sparsification procedure

\4

Predictor w with |wl|lo =5

@ Constraint: E[L((w,x),y)| <

LW, x),y)] + €

@ Goal: Minimal S that satisfies constraint

@ Question:How S depends on B and € 7



@ Theorem:

MET N

sult

o For any predictor w, A\-Lipschitz loss function L, distribu-
tion D over X X Y, desired accuracy ¢

L((w,x),y)] <

\mm—a((

@ Tightness:

Exists w s.t.

EIL((w,x),y)| + € and

A?1Y)

o Data distribution, loss function, dense predictor w with
loss I, but need Q((||w]|%/€)?) features for loss | + ¢

e Sparsitying by taking largest weights or following ¢ regu-

larization path might fail

Low /5 norm predictor % sparse predictor
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Randomized Sparsification Procedure

Sparsification Procedure
For y=1,...,5
@ Sample r; from distribution P; o< |w;]|

o Add |w;| | @] + 1

Guarantee

@ Assume: X = {x : ||X||lcc < 1}, Y = arbitrary set, D =

arbitrary distribution over X X Y, Loss L : R x Y — R is
A-Lipschitz w.r.t. 1st argument

o If: §> 0O (AQ IIWII?;ogu/(S))

@ Then, with probability at least 1 — 9,
E[L((W,x),y)] = E[L({(w,x),y)] < €




Randomized Sparsification Procedure

@ Distribution D

@ lLoss L

Convex
opt. ® Requires access to w

® Does not require access to D

Randomized

sparsification
Low ¢ predictor w ﬁ Sparse predictor w




Tightness

Data distribution: spread ‘information’ about label among all features




Tightness (cont.)

@ Dense predictor:

owi:%andtﬁ
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Tightness (cont.)

@ Dense predictor:

owizgandtﬁ

° 4:[ <W7X> o y‘

@ Sparse predictor:

o Any u with E[|(u,x) — y|] < e must satisfy:

B2
\wmzﬂﬁ7)
€

Proof uses a generalization of Khintchine inequality:

If x = (x1,...,2,) are independent random variables with
Plar = 1] € (5%, 95%) and @ is degree d polynomial, then:

E[Q()[] > (0.2)! E[|Q(x)[?]2




Low L2 norm does not guarantee sparsifiability

@ Same data distribution as before with B = e/n

® Dense predictor:

. le\zz%ze

@ Sparse predictor:

o Any u with E[[(u,x) — y|| < 2¢€ must use
almost all features:

® /1 captures sparsity but /5 doesn’t !
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Sparsifying by zeroing small weights fails

P(Y =-

1+2/3
2

14+1/3
2

P(Zy =yly) = P(Z, =yly) =

/ \ = 2[j/s] | 215/s1) =

. initial weights on regularization
larger weights . .
path also fails on this example
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@ Distribution D

@ Loss L Forward selection procedure

Convex
opt.

: Randomized : »
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Greedy Forward Selection

@ Step 1: Define a slightly modified loss function

X )2
L(v,y) = min — (u — v)2 + L(u,y)

uw €

Using infimal convolution theory, it can be shown that

o L has Lipschitz continuous derivative

o Vu,y |L(v,y) — L(v,y)| < /4
@ Step 2: Apply forward greedy selection on L

o Initialize w1 =0

Choose feature using largest element of gradient

Choose step size 1; (closed form solution exists)

Update Wil = (]. — nt)wt -+ i Bejt




Greedy Forward Selection

Example — Hinge loss:

it v>1
L(v,y) = max{0,1—v} ; L(v,y) = - (v —1)° if vell—2,1]
(1—%)—v else




Greedy Forward Selection

Example — Hinge loss:

0 it v>1
tv=1* fovel-11]
(1—%)—v else

L(v,y) = max{0,1—v} ; f)(v,y) =




Guarantees

Theorem

@ X ={x:||X||lcoc <1}, Y = arbitrary set
@ D = arbitrary distribution over X X Y

@ Loss L : RxY — R is proper, convex, and A-Lipschitz w.r.t.
Ist argument

Forward greedy selection on L finds w s.t.

o [wlo =0 (XF)

€

o For any w with ||w||; < B we have:

]E[L(<W7X>7y)] - E[L(<W7X>7y)] S €




Related VWork

@ /1 norm and sparsity:
e Donoho provides sufficient conditions for when minimizer of /1 norm
is also sparse. But, what if these conditions are not met?

o Compressed sensing: ¢; norm recovers sparse predictor, but only
under server assumptions on the design matrix (in our case, the
training examples)

@ Converse question: Small ||w||q = Small |wll1 7

e Servedio: partial answer for the case of linear classification

o Wainwright: partial answer for the Lasso
@ Sparsification:
e Randomized sparsification procedure previously proposed by

Schapire et al. However, their bound depends on training set size

o Lee, Bartlett, and Williamson addressed similar question for the
special case of squared-error loss

e Zhang presented forward greedy procedure for twice differentiable
losses
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