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features not correlated
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Sparsification

Sparsification procedure

Predictor w with ‖w‖1 = B

Predictor w̃ with ‖w̃‖0 = S

Constraint: E[L(〈w̃,x〉, y)] ≤ E[L(〈w,x〉, y)] + ε

Goal: Minimal S that satisfies constraint

Question:How S depends on B and ε ?



Main Result

Theorem:

For any predictor w, λ-Lipschitz loss function L, distribu-
tion D over X × Y , desired accuracy ε

Exists w̃ s.t. E[L(〈w̃,x〉, y)] ≤ E[L(〈w,x〉, y)] + ε and

‖w̃‖0 = O

((
λ‖w‖1

ε

)2
)

Tightness:

Data distribution, loss function, dense predictor w with
loss l, but need Ω((‖w‖2

1/ε)2) features for loss l + ε

Sparsifying by taking largest weights or following #1 regu-
larization path might fail
Low #2 norm predictor &⇒ sparse predictor
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Randomized Sparsification Procedure

Sparsification Procedure

For j = 1, . . . , S

Sample ri from distribution Pi ∝ |wi|

Add |w̃i|←| w̃i| + 1

Guarantee

Assume: X = {x : ‖x‖∞ ≤ 1}, Y = arbitrary set, D =
arbitrary distribution over X × Y , Loss L : R × Y → R is
λ-Lipschitz w.r.t. 1st argument

If: S ≥ Ω
(

λ2 ‖w‖21 log(1/δ)
ε2

)

Then, with probability at least 1− δ,
E[L(〈w̃,x〉, y)]− E[L(〈w,x〉, y)] ≤ ε



Randomized Sparsification Procedure

Convex
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Randomized
sparsification

Distribution D

Loss L

Low !1 predictor w Sparse predictor w̃

•Requires access to w
•Does not require access to D



Tightness

Y

X1 Xn

P (Y = ±1) = 1
2

P (Xi = y|y) =
1 + 1/B

2

Xi

Data distribution: spread ‘information’ about label among all features



Tightness (cont.)

Dense predictor:

wi = B
n and thus ‖w‖1 = B

E[|〈w,x〉 − y|] ≤ B√
n

Sparse predictor:

Any u with E[|〈u,x〉 − y|] ≤ ε must satisfy:

‖u‖0 = Ω
(

B2

ε2

)

Y

X1 Xn

P (Y = ±1) = 1
2

P (Xi = y|y) =
1 + 1/B

2

Xi



Tightness (cont.)

Proof uses a generalization of Khintchine inequality:
If x = (x1, . . . , xn) are independent random variables with
P[xk = 1] ∈ (5%, 95%) and Q is degree d polynomial, then:

E[|Q(x)|] ≥ (0.2)d E[|Q(x)|2]
1
2

Dense predictor:

wi = B
n and thus ‖w‖1 = B

E[|〈w,x〉 − y|] ≤ B√
n

Sparse predictor:

Any u with E[|〈u,x〉 − y|] ≤ ε must satisfy:

‖u‖0 = Ω
(

B2

ε2

)

Y

X1 Xn

P (Y = ±1) = 1
2

P (Xi = y|y) =
1 + 1/B

2

Xi



Low L2 norm does not guarantee sparsifiability

Same data distribution as before with B = ε
√

n

Dense predictor:

wi = B
n

E[|〈w,x〉 − y|] ≤ B√
n

= ε

‖w‖2 = B√
n

= ε

Sparse predictor:

Any u with E[|〈u,x〉 − y|] ≤ 2 ε must use
almost all features:

‖u‖0 = Ω
(

B2

ε2

)
= Ω(n)

"1 captures sparsity but "2 doesn’t !



Sparsifying by zeroing small weights fails
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Y

Z1 Zs

P (Y = ±1) = 1
2

X1 Xn Xsn

P (Xj = z!j/s" | z!j/s") =
7
8

P (Z1 = y|y) =
1 + 2/3

2
P (Zs = y|y) =

1 + 1/3
2

larger weights
initial weights on regularization 
path also fails on this example 



Intermediate Summary

We answer a fundamental question:
How much sparsity does low !1 norm guarantee ?

‖w̃‖0 ≤ O
(
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1
ε2

)

This is tight
Achievable by simple randomized procedure

Coming next: Direct approach also works !
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Greedy Forward Selection

Step 1: Define a slightly modified loss function

L̃(v, y) = min
u

λ2

ε
(u− v)2 + L(u, y)

Using infimal convolution theory, it can be shown that

L̃ has Lipschitz continuous derivative
∀v, y |L(v, y)− L̃(v, y)| ≤ ε/4

Step 2: Apply forward greedy selection on L̃

Initialize w1 = 0

Choose feature using largest element of gradient
Choose step size ηt (closed form solution exists)

Update wt+1 = (1− ηt)wt + ηt B ejt



Greedy Forward Selection

Example – Hinge loss:

L(v, y) = max{0, 1−v} ; L̃(v, y) =






0 if v > 1
1
ε (v − 1)2 if v ∈ [1− 1

ε , 1]
(1− ε

4 )− v else
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Guarantees

Theorem

X = {x : ‖x‖∞ ≤ 1}, Y = arbitrary set

D = arbitrary distribution over X × Y

Loss L : R×Y → R is proper, convex, and λ-Lipschitz w.r.t.
1st argument

Forward greedy selection on L̃ finds w̃ s.t.

‖w̃‖0 = O
(

λ2 B2

ε2

)

For any w with ‖w‖1 ≤ B we have:

E[L(〈w̃,x〉, y)]− E[L(〈w,x〉, y)] ≤ ε



Related Work

!1 norm and sparsity:

Donoho provides sufficient conditions for when minimizer of !1 norm
is also sparse. But, what if these conditions are not met?
Compressed sensing: !1 norm recovers sparse predictor, but only
under server assumptions on the design matrix (in our case, the
training examples)

Converse question: Small ‖w̃‖0
?⇒ Small ‖w‖1 ?

Servedio: partial answer for the case of linear classification
Wainwright: partial answer for the Lasso

Sparsification:

Randomized sparsification procedure previously proposed by
Schapire et al. However, their bound depends on training set size
Lee, Bartlett, and Williamson addressed similar question for the
special case of squared-error loss
Zhang presented forward greedy procedure for twice differentiable
losses
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