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Abstract

A learning problem might have several mea-
sures of complexity (e.g., norm and di-
mensionality) that affect the generalization
error. What is the interaction between
these complexities? Dimension-free learn-
ing theory bounds and parametric asymp-
totic analyses each provide a partial pic-
ture of the full learning curve. In this pa-
per, we use high-dimensional asymptotics
on two classical problems—mean estimation
and linear regression—to explore the learn-
ing curve more completely. We show that
these curves exhibit multiple regimes, where
in each regime, the excess risk is controlled
by a subset of the problem complexities.

1. Introduction

Most analyses of learning algorithms proceed by iden-
tifying a measure of complexity of the learning problem
and then provide either bounds or asymptotic expres-
sions for the generalization error (risk) in terms of that
complexity. For instance, for linear models, bounds
based on Rademacher complexity (Bartlett & Mendel-
son, 2001), covering numbers (Pollard, 1984), or online
learning (Cesa-Bianchi & Lugosi, 2006) depend on the
norm (in relation to the variance of data and the noise)
and not the dimensionality. On the other hand, clas-
sical parametric asymptotic analyses (van der Vaart,
1998; Liang et al., 2010) provide answers that depend
only on the dimensionality and not the norm. There
seems to be some tension here: If the sample complex-
ity depends asymptotically only on the dimensionality,
how can it be bounded in terms of only the norm?
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What we really want to understand is the true be-
havior of the excess risk En(B, d) as a function of
the sample size n, norm B, and dimensionality d.
In this paper, we analyze the excess risk for two
classical problems—mean estimation (Section 2) and
linear regression (Section 3)—by performing a high-
dimensional asymptotic analysis. In particular, we al-
low the complexity (B, d) of the problem to grow with
the sample size n, so that the excess risk En(B, d)
converges to a non-vanishing asymptotic limit E(B̃, d̃),
where B̃ and d̃ are the rescaled complexities. We then
study this limiting function as B̃ and d̃ vary to see
the interaction between norm and dimensionality. We
show how the excess risk can have multiple regimes,
where in each regime, the excess risk is controlled by a
subset of the relevant complexities. Furthermore, we
find that the transitions between regimes are smooth,
even asymptotically.

Notation For a vector v ∈ Rd, we write v⊗ = vv>.
Let Xn = Op(1) denote that the sequence of ran-
dom variables (Xn)n≥1 is bounded in probability, that
is, for every ε > 0, there exists M < ∞ such that
supn P (Xn > M) ≤ ε. We write Xn = Op(Yn)

to mean Xn
Yn

= Op(1). Let Xn
P−→ 0 denote con-

vergence in probability, that is, for every ε > 0,
limn→∞ P (|Xn − X| > ε) = 0. When we use big-O
notation, only universal constants are hidden, never
parameters of the learning problem.

2. Constrained Mean Estimation

A classical problem in statistics is estimating the mean
of a multivariate Gaussian from i.i.d. samples. We con-
sider a variant of this problem where the norm of mean
vector is constrained to a Euclidean ball. Even in this
simple problem, we will see that two learning regimes
emerge: a random regime controlled by the norm and a
unregularized regime controlled by the dimensionality.
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2.1. Setup

The mean estimation problem is defined as follows: Let
µ∗ ∈ Rd be the unknown mean vector that we wish to
estimate, and let B = ‖µ∗‖2 denote its norm. We
obtain n i.i.d. training points: X(i) ∼ N (µ∗, σ2Id×d)
for i = 1, . . . , n. Let the tuple Ψ = (B, d, σ2) speci-
fies an instance of the mean estimation problem, which
includes the norm B, dimensionality d, and data vari-
ance σ2.

Given a vector µ ∈ Rd, we measure its generalization
error (risk) using squared loss:

ε(µ)
def
= EX∼N (µ∗,σ2I)

[
(X − µ)2

]
. (1)

Define the following estimator which minimizes the
empirical risk subject to a norm constraint:

µ̂n
def
= argmin
‖µ‖2=B

n∑
i=1

(X(i) − µ)2. (2)

Our goal is to study the excess risk of µ̂n, defined as
follows:

En(Ψ)
def
= ε(µ̂n)− ε(µ∗). (3)

2.2. Preliminary Analysis

We first derive a closed form solution for the estimator
µ̂n. Consider the Lagrangian of the constrained opti-
mization problem in (2): L(µ, λ) =

∑n
i=1(X(i)−µ)2 +

λ‖µ‖2. Differentiating L with respect to µ and setting

it to zero, we get µ = X̄
1+λ , where X̄ = 1

n

∑n
i=1X

(i) is
the empirical mean. To satisfy the constraint ‖µ‖2 =

B, we must have µ̂n = BX̄
‖X̄‖2

. The estimator µ̂n is

just the unconstrained estimator X̄ projected onto the
radius-B sphere.

Next, we decompose the risk in (1) into two orthogonal
parts: ε(µ) = E[(X−µ∗)2]+(µ−µ∗)2 = dσ2+(µ−µ∗)2.

Plugging the derived expressions for µ̂n and ε(µ) into
(3) yields the following expression for the excess risk:

En(Ψ) =

(
BX̄

‖X̄‖2
− µ∗

)2

. (4)

Note that X̄ is distributed as N (µ∗, σ
2

n ).

2.3. Asymptotic Analysis

To analyze the excess risk En(Ψ), we turn to asymp-
totics to simplify the form of En(Ψ). In particular, we
consider a sequence of problems Ψn = (Bn, dn, σ

2
n) so

that the excess risk En(Ψn) converges to some non-
vanishing quantity E(Ψ̃) as n → ∞. The allowed se-
quences Ψn are given in the following definition:

Definition 1 (Limiting Problem Specification). A se-
quence of mean estimation problems Ψn = (B2

n, dn, σ
2
n)

has a limit Ψ̃ = (B̃2, d̃, σ̃2) if

B2
n → B̃2,

dnσ
2
n

n
→ d̃, σ2

n → σ̃2 (5)

as n→∞.

Intuitively, the limiting problem specification Ψ̃ cap-
tures the essence of the mean estimation problem. The
following proposition gives a precise handle of the ex-
cess risk in this limit:

Proposition 1. Suppose a sequence of mean estima-
tion problems Ψn = (Bn, dn, σ

2
n) has a limit Ψ̃ =

(B̃, d̃, σ̃2). Then the excess risk (3) has the following
asymptotic limit:

En
def
= En(Ψn)

P−→ E(Ψ̃), (6)

where the asymptotic excess risk is

E(Ψ̃) = 4B̃2 sin2

1

2
arctan

√
d̃

B̃2

 . (7)

Note that E(Ψ̃) is a non-random function; this is be-
cause in high dimensions, the excess risk concentrates.
Before proving the proposition, let us establish some
intuitions about the regimes that E(Ψ̃) exhibit by vary-
ing Ψ̃:

• Random Regime (B̃2 � d̃): When the rescaled di-
mensionality d̃ is large, the arctan term tends to π

2 ;

also, sin2(π4 ) = 1
2 , so the asymptotic excess risk is

E u 2B̃2. In this regime, the norm B̃ dominates the
excess risk and the dimensionality d̃ is irrelevant.

Geometrically, the estimator µ̂n essentially pro-
duces a random point on a (dn − 1)-dimensional
sphere, whose squared distance from µ∗n concen-
trates around 2B2

n.

• Unregularized Regime (d̃ � B̃2): When
the rescaled dimensionality is small, then
4 sin2( 1

2 arctan(x)) u x2, so the excess risk is

E u d̃. Here, the dimensionality d̃ dominates the
excess risk and the norm B̃ is irrelevant.

This regime is very closely related to parametric
asymptotics. The maximum likelihood estimator

X̄n has excess risk exactly
σ2
n

n · χ
2
dn

, where χ2
dn

de-
notes a χ2 random variable with dn degrees of free-
dom, which has mean dn. When B2

n is large, the
sphere looks locally flat, so the projection of X̄n

onto its surface simply removes an insignificant de-
gree of freedom.
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Figure 1. On constrained mean estimation: Log-log plot
of the excess risk for dn = 1000, B2

n = 1, σ2
n = 1. The

corresponding limiting values are B̃2 = B2
n = 1 and

d̃ =
dnσ

2
n

n
= 1000

n
. One can clearly see the two regimes

marked by their slopes (0 and −1, respectively): In the ran-
dom regime, the norm B̃ controls the excess risk, while in
the unregularized regime, the dimensionality d̃ does. The
bound EB = min{2B̃2, d̃} represents the ends of E quite ac-
curately, but misses the smooth transition in the middle.

Based on the previous discussion, we can actually
stitch together the following upper bound,

EB(Ψ̃)
def
= min

{
2B̃2, d̃

}
≥ E(Ψ̃), (8)

which clearly marks out the two regimes.

We can see how well the asymptotics represent the
actual excess risk En for finite n by plotting the learn-
ing curve (Figure 1), increasing n while keeping Ψn

fixed. Note that increasing n decreases the rescaled
dimensionality d̃. From Figure 1, we see that while
the bound EB matches the asymptotic E at the ends,
there is a noticeable gap when transitioning between
the two regimes. In particular, the bound is piecewise
linear whereas asymptotic curve is smooth, tracking
the empirical excess risk much more closely. We note
that the transition is smooth even in the asymptotic
limit; this is due to the smoothness of the loss function.

Proof of Proposition 1. Without loss of generality, as-
sume µ∗n = (Bn, 0, . . . , 0)> because the problem is ro-
tationally invariant.

First, let us decompose the pre-projected estimator
X̄n into two components: (1) the component in the

subspace of µ∗n, which has length Un
def
= |X̄n1|, and

(2) the component orthogonal to µ∗n, which has length

Vn
def
=
√∑dn

j=2 X̄
2
nj . Figure 2 depicts the setup: the

excess risk En we want to compute is denoted geomet-
rically.

Un
P−→B̃{ √En

Vn
P−→

√
d̃{

µ∗n

µ̂n

X̄n

θn

Figure 2. Geometric depiction of the excess risk En (used
in the proof of Proposition 1). The constrained estimator
µ̂n is obtained by projecting X̄n down to the radius-Bn
sphere. The key is that in high dimensions, the two random
components Un and Vn both concentrate.

We can obtain En using basic trigonometry. First,

compute the angle θn = arctan
(
Un
Vn

)
. Bisecting θn

and converting angles back to lengths yields
√
En =

2Bn sin( 1
2θn). Putting everything together, we have

En = 4B2
n sin2

(
1

2
arctan

(
Un
Vn

))
. (9)

Now we compute the limits of Un and Vn. First, Un
includes the small deviation along the first component:

Un = Bn+Op(
√

σ2
n

n )
P−→ B̃. Vn includes the deviations

along the other d − 1 components, which amounts to

Vn =
√

σ2
n

n χ
2
dn−1

P−→
√
d̃. Since En depends on Un and

Vn only via smooth trigonometric functions (9), we
can apply the continuous mapping theorem to obtain

En
P−→ E as desired.

3. Regularized Linear Regression

We now turn to norm-regularized linear regression. We
first analyze a componentwise estimator (which treats
each parameter separately), showing that even in this
simple case, the asymptotic excess risk exhibits three
regimes, not two as in mean estimation. For the full
least squares estimator, we use a combination of upper
bounds to hypothesize the existence of four regimes.

3.1. Setup

We assume that data are generated as follows: X ∼
N (0,Σd×d) and Y = 〈X,β∗〉 + W , where β∗ ∈ Rd
is the true parameter and W ∼ N (0, σ2) is indepen-
dent noise. Let pβ∗(X,Y ) denote the resulting distri-
bution. We consider a linear regression problem to be
fully specified by the tuple Ψ = (Σ, β∗, σ2).

Given a predictor β ∈ Rd, we are interested in its
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generalization error (risk), which averages the squared
loss over test points:

ε(β)
def
= E(X,Y )∼pβ∗ [(Y − 〈X,β〉)2]. (10)

Given n i.i.d. training points {(X(i), Y (i))}ni=1 drawn
from pβ∗ , define the regularized least-squares estima-
tor:

β̂λn
def
= argmin

β∈Rd

1

n

n∑
i=1

(
Y (i) −

〈
X(i), β

〉)2

+ λ‖β‖2,

(11)
where λ ≥ 0 is the regularization parameter. We are
interested in analyzing the excess risk of this estimator:

Eλn(Ψ)
def
= ε(β̂λn)− ε(β∗). (12)

We also consider the excess risk of an oracle estimator
which chooses the optimal λ (in a data-dependent way)
to minimize the excess risk:

E∗n(Ψ)
def
= inf

λ≥0
Eλn(Ψ). (13)

Assumption 1 (Diagonal Covariance). Assume that
the covariance matrix of the data is diagonal, that is,
Σ = diag(τ2

1 , . . . , τ
2
d ).

This assumption is made without loss of generality for
the estimators we have defined so far, which are rota-
tionally invariant. This is not true for the componen-
twise estimator that we will introduce later.

3.2. Preliminary Analysis

Define the empirical covariance Σ̂
def
= 1

n

∑n
i=1X

(i)⊗

and let Ŝ
def
= 1

n

∑n
i=1X

(i)W (i). First, we solve (11) in
the standard way by differentiating and setting the
result to zero to get β̂λn = (Σ̂ + λI)−1(Σ̂β∗ + Ŝ).
Next, since the noise W is independent of X, we can

rewrite (10) as ε(β) = σ2

n + tr{Σ(β − β∗)⊗}. Ap-
plying these two derived expressions to (12), we get

Eλn(Ψ) = tr{Σ(β̂λn − β∗)⊗}.

Using some algebra, we can write the parameter error
as β̂λn−β∗ = −λ(Σ̂ +λI)−1β∗+ (Σ̂ +λI)−1Ŝ. Putting
the last two equations together yields:

Eλn(Ψ) = tr{Σ[λ(Σ̂+λI)−1β∗−(Σ̂+λI)−1Ŝ]⊗}. (14)

Unregularized Estimator Before we consider reg-
ularization, let us comment on the unregularized es-
timator (when λ = 0). In this case, the excess risk
E0
n(Ψ) in (14) simplifies to E0

n(Ψ) = tr{Σ̂−1Ŝ⊗Σ̂−1Σ}.
We can compute the expectation of E0

n(Ψ) in closed

form. First, conditioned on X(1), . . . , X(n), we can
integrate out the W (1), . . . ,W (n) in Ŝ by indepen-

dence; this yields E[Ŝ⊗ | X(1), . . . , X(n)] = Σ̂σ2

n .

Next, the inverse covariance matrix Σ̂−1 has an inverse
Wishart distribution (Σ̂−1 ∼ W−1( 1

nΣ, n)), which has

mean nΣ−1

n−d−1 . Putting everything together, we obtain

E[E0
n(Ψ)] = dσ2

n−d−1 .

It is interesting to note that the excess risk does not
depend on β∗ and Σ, but only on the dimensionality
d. The norm of β∗ does not play a role at all because
the unregularized estimator is shift-invariant. The co-
variance of the data Σ does not play a role due to the
following intuition: the larger Σ is, the easier it is to
estimate β, but the harder it is to predict. The two
forces cancel out exactly.

3.3. Componentwise Estimator Asymptotics

In this section, we introduce and analyze a simple es-
timator that still provides additional insight into the
interaction between norm and dimensionality. Define
the componentwise least-squares estimator, which esti-
mates each component of β̂ ∈ Rd separately, as follows:

β̂λj =
τ̂2
j β
∗
j + Ŝj

τ̂2
j + λ

∀j = 1, . . . , d, (15)

where τ̂2
j = Σ̂jj .

The componentwise estimator consistently estimates
β∗ regardless of whether Σ is diagonal. When Σ is di-
agonal, the excess risk is just the sum across the com-
ponents, where component involves a one-dimensional
regression problem. Without regularization, the ex-
pected excess risk of the componentwise estimator is
dσ2

n−2 . Note this is smaller than the excess risk of the

full unregularized estimator, which is dσ2

n−d−1 . We effec-
tively gain an effective sample of size d−1 by exploiting
knowledge of the eigenstructure of Σ.

In this section, we analyze the excess risk of the com-
ponentwise estimator using asymptotics. The lack
of covariance structure simplifies the math consid-
erably. Consider a sequence of regression problems
Ψn = (τ2

n, β
∗
n, σ

2
n). We do not yet commit to a particu-

lar scaling, but we do impose the following constraints:

Assumption 2 (Constraints on Limiting Problem

Specification). Assume that lim supn
dnσ

2
n

n < ∞ and

lim supn
∑dn
j=1 |β∗nj |τnj <∞.

We now derive the asymptotic excess risk of the oracle
componentwise estimator:

Proposition 2. Consider a sequence of regression
problems Ψn = (τ2

n, β
∗
n, σ

2
n) satisfying Assumption 2.
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Define

Eλn
def
=

dn∑
j=1

λ2β∗2njτ
2
nj

(τ2
nj + λ)2︸ ︷︷ ︸

squared bias

+
σ2
nτ

4
nj

n(τ2
nj + λ)2︸ ︷︷ ︸

variance

. (16)

Suppose that there exists a function Eλ such that

supλ≥0 |Eλn − Eλ| → 0. Then the excess risk E∗n
def
=

E∗n(Ψn) of the oracle componentwise estimator (13)
has the following asymptotic limit E∗:

E∗n
def
= inf

λ≥0
Eλn

P−→ inf
λ≥0
Eλ def

= E∗. (17)

For a fixed λ, we will show that the excess risk Eλn
converges to a non-random asymptotic excess risk Eλ,
using Eλn as an intermediate quantity that intuitively
removes the randomness from Eλn . The concentration
of Eλn around Eλn must be established.

What is new in regression is the minimization over λ.

To establish infλ≥0E
λ
n

P−→ infλ≥0 Eλ (i.e., switching
inf with lim), we need some sort of uniformity over λ,
which occupies most of the following proof.

Proof of Proposition 2. To prove that E∗n
P−→ E∗, it

suffices to show that supλ≥0 |Eλn−Eλn |
P−→ 0. If we have

that, the proposition can be established as follows: Let
λn ∈ argminλ≥0E

λ
n and λ∗ ∈ argminλ≥0 Eλ. Note

that E∗n = Eλnn and E∗ = Eλ∗ . For any ε > 0, we have
Eλnn ≤ Eλ

∗

n u ε
2
Eλ∗n u ε

2
Eλ∗ ≤ Eλn u ε

2
Eλnn u ε

2
Eλnn

for sufficiently large n with high probability, where
a uε b denote |a− b| ≤ ε. This ensures |E∗ − E∗n| ≤ ε.

Now, we need to show that supλ≥0 |Eλn − Eλn |
P−→ 0,

i.e., that the residual |Eλn − Eλn | goes to zero at a rate
that does not depend on λ. Specializing (14) to the
componentwise estimator and expanding yields:

Eλn =

dn∑
j=1

τ2
nj(λ

2β∗2nj − 2λβ∗njŜnj + Ŝ2
nj)

(τ̂2
nj + λ)2

. (18)

For each j = 1, . . . , dn, let R̂nj1
def
=

Ŝnj
σnτnj

= Op(n
− 1

2 ),

R̂nj2
def
=

τ̂2
nj−τ

2
nj

τ2
nj

= Op(n
− 1

2 ), and Ĥnj
def
=

nŜ2
nj

σ2
nτ

2
nj
− 1 =

Op(1). Importantly, these variables (1) do not depend
on the problem specification Ψn and (2) capture all

the randomness in Eλn . Using these variables, define:

Fλn (R) =

dn∑
j=1

λ2β∗2njτ
2
nj − 2λβ∗njσnτ

3
njRj1 +

σ2
n

n τ
4
nj

(τ2
nj(1 +Rj2) + λ)2

,

(19)

Gλn(R) =

dn∑
j=1

σ2
n

n τ
4
njĤnj

(τ2
nj(1 +Rj2) + λ)2

. (20)

We have constructed Fλn and Gλn so that Eλn = Fλn (0)
and Eλn = Fλn (R̂n) + Gλn(R̂n), which can be veri-
fied with some algebra. Intuitively, Fλn (0) captures
the non-random problem-dependent part of the excess
risk; R̂n and Gλn(R̂n) contribute the random problem-
independent part.

Let An be the event that ‖R̂n‖∞ ≤ 1
2 . On event An,

Lemma 1 below will show that ‖∇Fλn (R̂n)‖1 ≤ M for
some constant M independent of Ψn and λ. Note:
norms on the matrices are element-wise.

Lemma 1. For all R ∈ Rdn×2 such that ‖R‖∞ ≤ 1
2

and λ ≥ 0, we have ‖∇Fλn (R)‖1 ≤ M , where M is a
constant independent of Ψn and λ.

Proof. Let Qnj
def
= τ2

nj(1 + Rj2) + λ. For each j, we

have
∂Fλn (R)
∂Rj2

= −2Q−3
nj τ

2
nj(λ

2β∗2njτ
2
nj−2λβ∗njσnτ

3
njRj1+

σ2
n

n τ
4
nj). Using the fact thatQnj is larger than 1

2τ
2
nj and

λ, we obtain |∂F
λ
n (R)
∂Rj2

| ≤ 4β∗2njτ
2
nj + 8β∗njσnτnj + 16

σ2
n

n .

Similarly, we can bound |∂F
λ
n (R)
∂Rj1

| ≤ 4β∗njσnτnj . Sum

the right-hand sides over j = 1, . . . , dn. By Assump-
tion 2, this sum is bounded above by a quantity inde-
pendent of Ψn and λ.

By the mean value theorem, Fλn (R̂n) − Fλn (0) =
∇Fλn (cR̂n)>R̂n for some c ∈ [0, 1], where, abusing no-
tation, R̂n is treated as a vector. Applying the lemma
with Hölder’s inequality and taking a sup over λ yields
supλ≥0 |Fλn (R̂) − Fλn (0)| ≤ M‖R̂n‖∞. Note this is all
still conditioned on An.

Now we want to bound supλ≥0 |Gλn(R̂n)|. It suf-

fices to take λ = 0, which is where Gλn attains
its maximum value. Simplifying, we get G0

n(R̂n) =
σ2
n

n

∑dn
j=1

Ĥnj

(1+R̂nj2)2
. Note that each summand con-

verges in distribution to a χ2 distribution minus 1
(which has mean zero), independent of Ψn and λ.

To finish the proof, fix ε > 0. With high probability,
we can take n large enough (in a way that does not
depend on Ψn or λ) such that (1) ‖R̂‖∞ < ε

2M and
event An holds by applying a standard tail bound plus
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a union bound over the 2dn = O(n) elements of R̂n;

and (2) | 1
dn

∑dn
j=1

Ĥnj

(1+R̂nj2)2
| ≤ ε

2d̃
by the law of large

numbers.

This ensures that both supλ≥0 |Fλn (R̂) − Fλn (0)| ≤ ε
2

and supλ≥0 |Gλn(R̂)| ≤ ε
2 , implying that supλ≥0 |Eλn −

Eλn | ≤ ε.

3.4. Learning Regimes

To get some concrete intuition for Proposition 2, let
us specialize the problem specification:

Assumption 3 (Two-Part Regression Struc-
ture). Let the true parameter vector be
β∗n = (1, 0, . . . , 0)> ∈ Rdn and the data covari-

ance be Σ = diag(B2
n,

C2
n

dn−1 , . . . ,
C2
n

dn−1 ) ∈ Rdn×dn for

some B2
n, C

2
n > 0.

The idea is that B2
n captures the squared norm of the

signal in the data (which exists only on the first com-
ponent), and C2

n captures the squared norm of irrele-
vant components. The norm of β∗n can always taken to
be one without loss of generality, since the true mea-
sure of complexity is the product of the norm of the
predictor with the norm of the data.

Definition 2 (Limiting Problem Specifica-
tion). A sequence of linear regression prob-
lems Ψn = (B2

n, C
2
n, dn, σ

2
n) converges to a limit

Ψ̃ = (B̃2, C̃2, d̃, σ̃2) if

B2
n → B̃2,

C2
nσ

2
n

n
→ C̃2,

dnσ
2
n

n
→ d̃, σ̂2

n → σ̃2 (21)

as n→∞.

Note that we allow both the dimensionality dn and the
squared norm C2

n of the irrelevant components tend to
∞. The presence of C2

n will create a new intermediate
learning regime.

Specializing the asymptotic excess risk from (16) to
this problem specification:

Eλn =
B2
nλ

2

(B2
n + λ)2

+
σ2
nB

4
n

n(B2
n + λ)2

+

dn∑
j=2

σ2
n

C4
n

(dn−1)2

n(
C2
n

dn−1 + λ)2
,

which can be shown to converge uniformly across λ ≥ 0
to

Eλ =
B̃2λ2

(B̃2 + λ)2︸ ︷︷ ︸
squared bias

def
= Uλ

+
C̃4

d̃

( C̃
2

d̃
+ λ)2︸ ︷︷ ︸

variance
def
= Vλ

. (22)

Recall that we are ultimately interested in the excess
risk of the oracle estimator E∗ = infλ≥0 Eλ, which by
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Figure 3. Componentwise estimator for linear regression:
Log-log plot of the learning curve for d = 100, B2 = 1, C2 =
10, σ2 = 100. There are three regimes, each characterized
by a different slope (0 corresponding to a constant excess
risk in the random regime, − 1

2
corresponding to a rate of

1√
n

in the regularized regime, and −1 corresponding to 1
n

in the unregularized regime).

Proposition 2 is the limit of the excess risk E∗n of the
oracle estimator. The following proposition sheds light
into the multi-regime structure of E∗:
Proposition 3 (Bounds on Regimes). Let

EB def
= min

{
B̃2,

2C̃2

B̃
√
d̃
, d̃

}
. (23)

The asymptotic excess risk E∗ of the oracle componen-
twise estimator defined in (15) is bounded by EB to
within a factor of four:

1

4
EB ≤ E∗ ≤ EB. (24)

We can plot the learning curve as a relationship be-
tween the sample size and excess risk, for a fixed spec-
ification of the regression problem. Figure 3 shows the
actual excess risk En, the asymptotic excess risk E∗,
and bounds 1

4E
B, EB. Note that C̃2 and d̃ scale in-

versely with n, so that the three regimes scale as 1,
1√
n

, and 1
n , respectively.

The bound (23) indicates three regimes corresponding
to each of the three terms:

• Random Regime: In this regime, λ should be large
so that the variance Vλ → 0 and the squared bias
Uλ → B̃2 (see (22)). This corresponds to simply

guessing β̂n = 0. Only the squared norm of the
signal B̃2 controls the excess risk.

• Regularized Regime: In this new regime, λ must be
optimized to balance the squared bias Uλ and vari-
ance Vλ terms. The squared norm of the irrelevant
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Figure 4. Log-log plots of asymptotic excess risk E∗ (same
default parameters as in Figure 3), where we study the im-
pact of varying the norm C2

n and dimensionality dn. Vary-
ing the dimensionality dn affects both the regularized and
unregularized regimes (a); varying the squared norm C2

n

only affects the regularized regime (b).

components C̃2 dominates the excess risk, favorably

scaled down by large B̃ and
√
d̃. The implied de-

pendence of the excess risk on n is 1√
n

.

• Unregularized Regime: λ should be small so that
Uλ → 0 and Vλ → d̃. Here, the dimensionality d̃
controls the excess risk, yielding an excess risk of
order 1

n , independent of the norm.

Figure 4 shows the impact of varying the problem pa-
rameters on the various regimes. As one would expect
from (23), changing the norm C2 only affects the in-
termediate regime, whereas changing the dimension-
ality d affects both the variance and the intermediate
regime.

Proof of Proposition 3. We first prove the upper
bound E∗ ≤ EB. To do this, we need to show that E∗
(defined in terms of (22)) is upper bounded by each of
the three terms in (23).

To get E∗ ≤ B̃2, take λ→∞ (infinite regularization).
In this limit, the squared bias term Uλ dominates and
converges to B̃2.

To show E∗ ≤ 2C̃2

B̃
√
d̃
, observe that Eλ = Uλ+Vλ, where

Uλ ≤ λ2

B̃2
and Vλ ≤

C̃4

d̃

λ2 (22). Optimize the sum of the
two bounds with respect to λ:

E∗ ≤ inf
λ≥0

{
λ2

B̃2
+

C̃4

d̃

λ2

}
=

2C̃2

B̃
√
d̃
, (25)

which is attained by setting λ2 = B̃C̃2√
d̃

.

Finally, to show that E∗ ≤ d̃, simply set λ = 0 (corre-
sponding to no regularization), to get that Eλ = d̃.

Now we show the lower bound 1
4E

B ≤ E∗. Using the
fact that a ≥ b ≥ 0 implies 1

(a+b)2 ≥
1

4a2 , we have the

following relations:

(i) λ > B̃2 implies Uλ ≥ 1
4 B̃

2,

(ii) λ ≤ B̃2 implies Uλ ≥ 1
4λ

2,

(iii) λ > C̃2

d̃
implies Vλ ≥ 1

4

C̃4

d̃

λ2 , and

(iv) λ ≤ C̃2

d̃
implies Vλ ≥ 1

4 d̃.

Take any λ ≥ 0. The plan is to construct Lλ out of
two lower bounds on Uλ and Vλ, respectively, based
on which of the above relations are satisfied. In doing
so, we ensure that Lλ ≤ Eλ. We will also show that
1
4E

B ≤ minλ′≥0 Lλ
′ ≤ Lλ. Since this holds for all

λ ≥ 0, we will have that 1
4E

B ≤ infλ≥0 Eλ = E∗.

Now we consider the four cases for λ: If λ > B̃2 (i) and

λ > C̃2

d̃
(iii), we have infλ′ Lλ

′
= 1

4 B̃
2 with λ′ →∞. If

λ > B̃2 (i) and λ ≤ C̃2

d̃
(iv), infλ′ Lλ

′
= 1

4 B̃
2 + 1

4 d̃. If

λ ≤ B̃2 (ii) and λ > C̃2

d̃
(iii), infλ′ Lλ

′
= 1

4
2C̃2

B̃
√
d̃
, with

λ′ = B̃C̃2√
d̃

, based on an earlier derivation. Finally, if

λ ≤ B̃2 (ii) and λ ≤ C̃2

d̃
(iv), infλ′ Lλ

′
= 1

4 d̃ with

λ′ = 0.

The regularized regime does not always exist. For ex-
ample if the dimensionality is relatively small (d̃ ≤
2C̃2

B̃2
), then based on EB in (23), the excess risk of the

regularized regime ( 2C̃2

B̃
√
d̃
) will be larger than the geo-

metric average of the excess risks of the other regimes

(B̃
√
d̃). In this case, we jump directly from the ran-

dom regime to the unregularized regime.

3.5. Full Estimator

So far, we have analyzed the componentwise estima-
tor. This section offers a partial characterization of
the learning curve for the full estimator (11).

Clearly, E∗ ≤ B̃2 by taking λ → ∞ (the random
regime), and E∗ ≤ d̃ by taking λ = 0 (the unregular-
ized regime). To analyze the intermediate regime, de-
fine the constrained estimator to be one which chooses
λ so that ‖β̂λn‖ ≤ 1, and λn denote this λ. Let EC
be the corresponding asymptotic excess risk and note
that the oracle asymptotic excess risk E∗ ≤ EC.

Having not yet been able to derive an exact asymptotic
form for EC, we instead offer some speculations based
on upper bounds for stochastic optimization (online

learning). Let β̂sgd
n be the estimator obtained by run-

ning one pass of stochastic gradient descent over the
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training data. Then in expectation over the sample we
have

Esgd
n ≤ 2

B2
n + C2

n

n
+ 2

√
2

(B2
n + C2

n)σ2
n

n
.

This follows from Srebro et al. (2010), which is based
on Theorem 1 of Shalev-Shwartz (2007). While this
bound holds only for stochastic gradient descent, we
strongly suspect that it also holds for the constrained
estimator (the regularized empirical risk minimizer).

Putting together all the pieces yields the following
coarse approximate form to the risk:

EC u min

{
B̃2, O

(
C̃2

σ̃2
+ C̃

)
, d̃

}
. (26)

We emphasize that (26) is purely speculative. Never-
theless, it can help us understand what might change
from the componentwise analysis. Comparing (26)

with (23), we see an additional factor of C̃
B̃
√
d

that

might correspond to the benefit of specializing to a
diagonal covariance. We also notice the additional ad-

ditive term C̃2

σ̃2 , which behaves as 1
n and is the relevant

term when σ̃2 is large. This additional additive term
gives rise to a fourth regime. While the componentwise
estimator has three regimes, (26) suggests the full es-
timator has four regimes, with two regimes controlled
only by the norm, independent of the dimensionality.
Further work is necessary to confirm these hypotheses.

4. Discussion

Our broad goal is to obtain an accurate picture of the
learning curve. There are a plethora of approaches in
the literature that tackle pieces of the curve. Classi-
cal parametric asymptotics, a dominant approach in
statistics, let the sample size n → ∞ while fixing
the problem specification Ψ. Hence, they consider
the limit of the learning curve where the excess risk

En
P−→ 0. These analyses thus focus on the local fluc-

tuations of estimators around a limiting value. As a
result, norm constraints do not enter into the asymp-
totic risk, even with considering higher-order asymp-
totics (e.g., Liang et al. (2010)).

On the other hand, finite sample complexity bounds
(e.g., Bartlett & Mendelson (2001)) provide state-
ments for any sample size n and problem specification
Ψn. These focus on controlling structural complex-
ities. Thus, they are well suited for handling norm
constraints and typically yield dimension-free results.
However, these are only upper bounds and can be far
from being tight.

Both analyses provide complementary but incomplete
views of the learning curve. In this paper, we used
high-dimensional asymptotics to obtain an asymptoti-
cally exact analysis also when En is away from zero, al-
beit for simple problems. The key is that as Ψn grows
with n, the appropriate ratios between sample size and
complexity are maintained, while still allowing us reap
the benefits of asymptotics, namely concentration.
Such ideas have been around in statistics since Kol-
mogorov’s work in the 1960s, and more recently have
played an important role in high-dimensional sparse
settings (e.g., Wainwright (2009)). Related ideas can
also be found in statistical physics approaches for
studying learning curves (Haussler et al., 1994).

The particular focus in this paper has been on un-
derstanding how multiple problem complexities inter-
act to generate multiple regimes in learning curves.
We have so far characterized the regimes for two
problems—mean estimation and componentwise linear
regression–as a starting point. We hope future work
will help shed light on learning curves in more general
settings.
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