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Maximum Margin Matrix Factorization is as an alternative 
to Low Rank methods:
•Allows an unbounded number of factors
•Convex optimization problem: sparse SDP
•Correspondence with large margin linear classification
•Generalization error bounds
•Applicable in other applications where low-rank approximations 
are currently used
Direct optimization of dual would enable large-scale applications

Preliminary experiments on 100 user × 100 movie subset of MovieLens

Two level cross validations:
•Train all variants, with various regularization parameters, on 50% of ratings
•Validate on 25% of data to select best variant and parameters (3-fold CV on 75% of data)
•Evaluate single variant and parameters on held out 25% of data

Compare trace-norm and max-norm MMMF to low-rank approximation minimizing sum-
squared error and to K-medians clustering of users.
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• All-threshold loss is a bound on the absolute rank-difference
• We experimented with both:

“all-thresholds” consistently outperformed “immediate-threshold”
• For both loss functions: learn per-user θ’s (no extra cost to SDP)

XijYij=3θ1 θ2 θ6θ5θ4θ3

[Shashua Levin 03]
Immediate-threshold loss

all-threshold loss
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hinge-loss for 
binary labels

Generalizations of hinge-loss for ordinal labels

Experiments“Will user i like movie j?”
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Based on partially observed matrix
⇒ Predict unobserved entries

Collaborative Prediction

Fit low-rank matrix X=UV’ to observed entries.

minimize  Σ loss( Xij ; Yij )

Use matrix X to predict unobserved entries.

observationprediction

ij∈S

observed 
entries

∀Y PrS ( ∀X D(X;Y)<DS(X;Y)+ε ) > 1-δ

D(X;Y) = Eij[loss(Xij;Yij)] DS(X;Y) = ∑ij∈S loss(Xij;Yij)/|S|

same observation distribution

Major Assumption: Random Observations
Although we did not make any assumptions about the true preferences Y, we 
made a very strong assumption about the set S of observed entries: we 
assumed entries as selected uniformly at random.
For (∑ |Ui|2/n)(∑ |Vi|2/m) · R2, uniformity crucial.
For (max |Ui|2)(max |Vj|2) · R2 and rank(X)·k, S need not be uniform:

Not very satisfying: we are guaranteed good generalization only on items the 
user is likely to observe on its own—not on items we might recommend.

-1 -1 +1 +1

+1 -1-1 +1

+1 +1 -1 -1
-1 +1 +1

+1 +1 -1

-1 -1 +1
-1 +1 +1 +1

-1 +1 +1
+1 +1 -1 +1 -1 -1
+1 -1 -1 +1
+1 +1-1 +1

-1 -1 +1
-1 -1 -1

+1 -1 +1 +1
-1 -1 -1+1 +1 +1

-1 -1 +1 +1

X Y
SS

random

unknown, 
assumption-free

training 
set

source 
distribution

hypothesis

∀Y PrS ( ∀rank-k X D(X;Y)<DS(X;Y)+ε ) > 1-δ

D(X;Y) = #ij(Xij·Yij<0)/nm
generalization error

DS(X;Y) = #ij∈S(Xij·Yij<1)/|S|
empirical error
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(∑ |Ui|2/n)(∑ |Vi|2/m) · R2:

(max |Ui|2)(max |Vj|2) · R2:

rank(X) · k:

Compare with the low-rank bound: [Poster tomorrow!]

Universal constant from bound on spectral 
norm of random matrix [Seginer00]

Generalization Error Bounds

Matrix Factorization

V’YY
U

×
≈ X

rank k=
•Additive Gaussian noise: minimize |Y-UV’|Fro
•General additive noise
•General conditional models

Multiplicative noise, Exponential-PCA [Collins+01], 
Multinomial (pLSA [Hofman01]), etc

•General loss functions
Hinge loss, loss functions appropriate for ratings, etc

Constrained U,V: recover more factors 
•Non-Negativity [LeeSeung99]

•Stochasticity (convexity) [LeeSeung97] [Hofman01]

•Sparsity
Clustering as an extreme (when rows of U sparse)

Overall number of factors still constrained
Non-convex optimization problems

Unconstrained U,V,
fully observed Y 

use SVD

all other situations:
non-convex,

no explicit solution

Unconstrained: Low Rank Approximation Matrix Factorization
as Feature Learning

U
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When U is fixed,
each row is a linear classification problem:
•rows of U are feature vectors
•columns of V’ are linear classifiers

Fitting U and V:
Learning features that work well across all 
classification problems.

columns of V’
(movies)

rows of U
(users)

point and hyperplane
arrangement, such that 
each user’s hyperplane
separates the movies the 
user likes and doesn’t like
(usually, we are given points 
and only find hyperplane)

point and hyperplane
arrangement in infinite 
dimensional unit sphere, 
such that hyperplane
separate according to Y
with large margin.

Geometric Interpretation
for max-norm (uniform) MMMF

{ X=UV’ | (∑ |Ui|2)(∑ |Vi|2) · 1 }
= convex-hull( { uv’ | u ∈ n, v ∈ m |u|=|v|=1} )

conv( { uv’ | u ∈ ±1n, v ∈ ±1m} ) 
⊂ { X=UV’ | (max |Ui|2)(max |Vj|2) · 1 }

⊂ 2 conv( { uv’ | u ∈ ±1n, v ∈ ±1m} )
Grothendiek's Inequality

MMMF as a Convex Combination
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X

Srank(X) = |singular values|0

trace-norm (average) MMMF minimizes:

|X|tr = |singular values|1

[Fazel Hindi Boyd 2001] suggest |X|tr as 
convex surrogate to rank(X).
Here, we justify it directly through 
the connection with max-margin 
classification, and by providing 
generalization error bounds.

MMMF, Rank and the SVD

MATLAB code available @ http://www.cs.toronto.edu/~nati/mmmf

• Semi-definite program with sparse dual:
Limited by number of observations, not size
(for both average-norm and max-norm)

• Current implementation: off-the-shelf primal-dual 
solver, up to 30k observations (e.g. 1000x1000, 
3% observed)

• For large-scale problems: updates on dual alone

Querying Primal X*ij from Dual Q*
Add constraint Xij>0 to primal ⇒ Add variable Qij to dual
Q* still feasible,
BUT: No optimal solution with X*ij>0 ⇒ Q* not optimal

Q* still optimal ⇒ X*ij>0

To query if sign(X*ij):
Add Q*ij=0 to Q* with Yij=1 and reoptimize
Add Q*ij=0 to Q* with Yij=-1 and reoptimize

X* spanned by Q*⊗Y SVD components of singular value 1

1) Compute the SVD: Q*⊗Y = UΛV’,
2) Let U*,V* be components of U,V with value 1
3) Primal optimal is of the form X* = U*RR’V’*
3) Solve linear equations in RR’, with Q*ij>0 ⇒ X*ij=Yij

Reconstructing Primal X* form Dual Q*

For trace-norm problems without slack, the primal 
optimal X* can be extracted from dual optimal Q*:
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Finding Max-Margin Matrix Factorizations

X=UV’

maximize M

Yij Xij ≥ M

(maxi |Ui|) (maxj |Vj|) · 1

|X|max

BX’
XA

p.s.d.

minimize t + c ∑ξij

Yij Xij ≥ 1 - ξij

Aii · t, Bjj · t

primal SDP
maximize ∑ Qij

0 · Qij · c

∆Q’⊗Y’
Q⊗YΓ

p.s.d.

Γ, ∆ diagonal; tr(Γ) + tr(∆) = 1

dual SDP

|X|max= minX=UV (maxi|Ui|)(maxj|Vj|)
= minA,B max(maxiAii,maxjBjj)

BX’
XA
V’U’

V

U
p.s.d.s.t.X=UV’

maximize M

Yij Xij ≥ M

(∑i |Ui|2) (∑j |Vj|2) · 1

|X|tr

BX’
XA

p.s.d.

minimize tr(A)+tr(B) + c ∑ξij

Yij Xij ≥ 1 - ξij

primal SDP

||Q ⊗ Y||2 · 1

maximize ∑ Qij

0 · Qij · c

dual SDP

trace-norm (average) MMMF max-norm (uniform) MMMF

sparse elementwise product 
(zero for unobserved entries)

Dual variable Qij for each observed (i,j)

|X|tr = ∑ (singular values of X)
= minX=UV √(∑i |Ui|2)(∑j |Vj|2)
= minX=UV ½(∑i |Ui|2 + ∑j |Vj|2)
= minA,B ½( tr(A) + tr(B) )

[Fazel Hindi Boyd 2001]

BX’
XA
V’U’

V

U
p.s.d.s.t.

Different matrix factorization  methods differ in how they relate real-
valued entries in X to the observations (preferences) Y, possibly through 
a probabilistic model, and in the associated contrast (loss) functions.

g(x)=1/(1+ex)

Logistic Low Rank 
Approximation

[Schein+03]

Yij|Xij~Bin(N,g(Xij))SDR
[Globerson+02]

Natural 
parameterization
unconstrained Xij

P(Yij=1) = XijYij|Xij~Bin(N,Xij)Aspect Model 
(pLSA) [Hoffman+99]

Mean 
parameterization
0 · Xij · 1
E[Yij|Xij]=Xij

Independent 
Bernoulli

Independent 
Binomials

Multinomial

≡ NMF if ∑Xij=1 ≈ NMF [Lee+01]

p(Yij|Xij) ∝ exp(YijXij+F(Yij))
Exponential PCA: [Collins+01]

Low-rank models of co-occurrence or frequency data

hinge
loss

≈

row features most 
informative about columns

Instead of bounding dimensionality of U,V, bound norms of U,V
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low 
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For observed Yij ∈ ±1:
Yij Xij ≥ Margin

(maxi|Ui|2) (maxj|Vj|2) · 1

(∑i |Ui|2) (∑j |Vj|2) · 1

U is fixed: each column of V is SVM

bound norms on average:

bound norms uniformly:

‹Ui,Vj›

Unlike rank(X) · k, these are convex constraints!
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Max-Margin Matrix Factorization


