## Maximum Margin Matrix Factorization

#### Nathan Srebro

Finding Max-Margin Matrix Factorizations

**University of Toronto** 

Jason Rennie Department of Computer Science

Tommi Jaakkola

Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology

maximize M

 $Y_{ii} X_{ii} \geq M$ 

X=UV'

 $A_{ii} \leq t, B_{ii} \leq t$ 

Two level cross validations:







MMMF, Rank and the SVD







•Correspondence with large margin linear classification •Generalization error bounds

•Applicable in other applications where low-rank approximations are currently used

Direct optimization of dual would enable large-scale applications



— Geometric Interpretation —

for max-norm (uniform) MMMF

empirical error

point and hyperplane

such that hyperplane separate according to Y

with large margin.

 $D(\mathbf{X};\mathbf{Y}) = \#_{ij}(\mathbf{X}_{ij}\cdot\mathbf{Y}_{ij}<0)/nm \qquad D_{\mathbf{S}}(\mathbf{X};\mathbf{Y}) = \#_{ij\in\mathbf{S}}(\mathbf{X}_{ij}\cdot\mathbf{Y}_{ij}<1)/|\mathbf{S}|$ 

 $\forall_{\mathbf{Y}} \operatorname{Pr}_{\mathbf{S}} (\forall_{\operatorname{rank-}k\mathbf{X}} \operatorname{D}(\mathbf{X};\mathbf{Y}) < \operatorname{D}_{\mathbf{S}}(\mathbf{X};\mathbf{Y}) + \varepsilon) > 1 - \delta$ 

generalization error

hypothesis

arrangement in infinite

dimensional unit sphere,







maximize M

 $\mathbf{Y}_{ij} \mathbf{X}_{ij} \geq M$ 

 $(\sum_{i} |\mathbf{U}_{i}|^{2}) (\sum_{j} |\mathbf{V}_{j}|^{2}) \leq 1$ 

primal SDP

 $\mathbf{Y}_{ij} \mathbf{X}_{ij} \geq 1 - \xi_{ij}$ 

# dense prima

sparse elementwise product

(zero for unobserved entries)



MATLAB code available @ http://www.cs.toronto.edu/~nati/mmmf

Dual variable Q for each observed (i,j)

Add constraint X<sub>ii</sub>>0 to primal ⇒ Add variable Q<sub>ii</sub> to dual

 Semi-definite program with sparse dual: Limited by number of observations, not size (for both average-norm and max-norm)

Current implementation: off-the-shelf primal-dual solver, up to 30k observations (e.g. 1000x1000,

• For large-scale problems: updates on dual alone

sparse dual Preliminary experiments on 100 user × 100 movie subset of MovieLens Reconstructing Primal X\* form Dual Q\* Querving Primal X\*, from Dual Q\*

 $\Gamma$ ,  $\Delta$  diagonal;  $tr(\Gamma) + tr(\Delta) = 1$ 

X\* spanned by Q\*⊗Y SVD components of singular value 1 For trace-norm problems without slack, the primal optimal **X**\* can be extracted from dual optimal **Q**\*: 1) Compute the SVD:  $Q^* \otimes Y = U \wedge V'$ .

3) Solve linear equations in RR', with  $Q_{ij}^*>0 \Rightarrow X_{ij}^*=Y_{ij}$ 

 $\{ X=UV' \mid (\sum |U_i|^2)(\sum |V_i|^2) \le 1 \}$ 

conv( { uv' | u  $\in \pm 1^n$ , v  $\in \pm 1^m$ } )

Grothendiek's Inequality

2) Let U\*, V\* be components of U, V with value 1 3) Primal optimal is of the form X\* = U\*RR'V'\*

MMMF as a Convex Combination —

 $\subset \{ X=UV' \mid (\max |U_i|^2)(\max |V_i|^2) \le 1 \}$ 

= convex-hull( { uv' |  $u \in \mathbb{R}^n$ ,  $v \in \mathbb{R}^m$  |u|=|v|=1} )

 $_{1}\subset 2 \text{ conv}(\{uv'\mid u\in \pm 1^{n}, v\in \pm 1^{m}\})$ 

BUT: No optimal solution with  $X_{ii}^*>0 \Rightarrow Q^*$  not optimal  $Q^*$  still optimal  $\Rightarrow X^*_{ii} > 0$ 

To query if sign(X\*<sub>ii</sub>)

Add  $\mathbf{Q}^*_{ii}=0$  to  $\mathbf{Q}^*$  with  $\mathbf{Y}_{ii}=1$  and reoptimize Add  $\mathbf{Q}_{ii}^*=0$  to  $\mathbf{Q}^*$  with  $\mathbf{Y}_{ii}^*=-1$  and reoptimize

•Validate on 25% of data to select best variant and parameters (3-fold CV on 75% of data) •Evaluate single variant and parameters on held out 25% of data Compare trace-norm and max-norm MMMF to low-rank approximation minimizing sumsquared error and to K-medians clustering of users. rank agreement error mean rank difference rank-2 aprox | 0.575 | **0.562** | max-norm, c=0.12

•Train all variants, with various regularization parameters, on 50% of ratings



**Experiments** 



• All-threshold loss is a bound on the absolute rank-difference • We experimented with both:

"all-thresholds" consistently outperformed "immediate-threshold" • For both loss functions: learn per-user  $\theta$ 's (no extra cost to SDP)

### Major Assumption: Random Observations

Although we did not make any assumptions about the true preferences **Y**, we made a very strong assumption about the set **S** of observed entries: we assumed entries as selected uniformly at random. For  $(\sum |\mathbf{U}_i|^2/n)(\sum |\mathbf{V}_i|^2/m) \leq R^2$ , uniformity crucial.

For  $(\max |\mathbf{U}_i|^2)(\max |\mathbf{V}_i|^2) \le R^2$  and  $\operatorname{rank}(\mathbf{X}) \le k$ , **S** need not be uniform:

 $D_{\mathbf{S}}(\mathbf{X};\mathbf{Y}) = \sum_{ij \in \mathbf{S}} loss(\mathbf{X}_{ij};\mathbf{Y}_{ij})/|\mathbf{S}|$  $D(X;Y) = E_{ii}[loss(X_{ii};Y_{ii})]$ same observation distribution  $\forall_{\mathbf{Y}} \operatorname{Pr}_{\mathbf{S}} (\forall_{\mathbf{X}} \operatorname{D}(\mathbf{X};\mathbf{Y}) < \operatorname{D}_{\mathbf{S}}(\mathbf{X};\mathbf{Y}) + \varepsilon) > 1 - \delta$ 

distribution ` unknown, assumption-free  $R^2(n+m)\log n + \log \frac{1}{\delta}$  $R^2(n+m) + \log \frac{1}{\delta}$ 

Different matrix factorization methods differ in how they relate realvalued entries in X to the observations (preferences) Y, possibly through Universal constant from bound on spectral a probabilistic model, and in the associated contrast (loss) functions. norm of random matrix [Seginer00] Low-rank models of co-occurrence or frequency data  $(\sum |U_i|^2/n)(\sum |V_i|^2/m) \le R^2$ : Multinomial Independent

Compare with the low-rank bound: [Poster tomorrow!]

 $rank(X) \leq k$ :

### $k(n+m)\log\frac{8em}{k} + \log\frac{1}{\delta}$

Not very satisfying: we are guaranteed good generalization only on items the user is likely to observe on its own—not on items we might recommend.

Bernoulli Binomials  $(\max |U_i|^2)(\max |V_i|^2) \le R^2$ : Aspect Model  $Y_{ii}|X_{ii}\sim Bin(N,X_{ii})$  $P(Y_{ii}=1) = X_{ii}$ (pLSA) [Hoffman+99]  $\approx$  NMF ■ NMF if  $\sum X_{ii}=1$ 

parameterization  $E[Y_{ij}|X_{ij}]=X_{ij}$ SDR  $Y_{ii}|X_{ii}\sim Bin(N,g(X_{ii}))$ Logistic Low Rank parameterization Approximation Globerson+02] Exponential PCA: [Collins+01]

Fit low-rank matrix X=UV' to observed entries.

Use matrix **X** to predict unobserved entries.

minimize Σloss( X<sub>ii</sub> ; Y<sub>ii</sub>

⇒ Predict unobserved entries

"Will user *i* like movie *i*?"

 $p(Y_{ij}|X_{ij}) \propto exp(Y_{ij}X_{ij}+F(Y_{ij}))$ row features most informative about columns  $g(x)=1/(1+e^{x})$