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Abstract

We show how a graphical model learning problem can be presented as a purely combinato-
rial problem. This allows us to analyze the computational hardness of the learning problem,
and devise global optimization algorithms with proven performance guarantees.

Markov networks are a class of graphical models that use an undirected graph to cap-
ture dependency information among random variables. Of particular interest are Markov
networks over low treewidth graphs, under which many operations are tractable. We study
the problem of finding a maximum likelihood distribution among Markov networks over
graphs of bounded treewidth.

We define the maximum hypertree problem, which is the problem of finding an acyclic
hypergraph of bounded width, that maximizes the weight of hyperedges it covers (or equiv-
alently, a triangulated graph of bounded clique size maximizing the weight of its cliques).
We show that the maximum likelihood Markov network problem can be formulated as a
maximum hypertree problem, and in fact the two problems are equivalent. This extends the
work of Chow and Liu (1968) who considered the case wherek = 1 (i.e. trees).

We show that the maximum hypertree problem is NP-hard even fork = 2 and give the
first constant factor approximation algorithm for it. More precisely, for any fixed treewidth
objectivek, we find ak-hypertree with anf(k) fraction of the maximum possible weight
of anyk-hypertree graph.

Thesis Supervisor: David Karger
Title: Associate Professor
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Chapter 1

Introduction

In this thesis, we demonstrate a rigorous combinatorial and algorithmic treatment of a ma-

chine learning problem. The machine learning problem we are concerned with is learning

a maximum likelihood Markov network of bounded “complexity” (specifically, bounded

treewidth), from an empirical sample. We show how this problem corresponds to a combi-

natorial optimization problem on hypergraphs, which we formulate as a “maximum hyper-

tree” problem. We establish that the problems are equivalent by bidirectional reductions,

i.e. from the maximum likelihood problem to the maximum hypertree problem and vice

versa. We then use the maximum hypertree problem to prove the hardness of the maxi-

mum likelihood problem, and provide a constant-factor (for fixed “width”) approximation

algorithm for it.

In 1968, Chow and Liu [CL68], provided such an analysis for the limited case in which

the Markov network is restricted to trees. To the best of our knowledge, this is the first

generalization of such treatment to the more general case. It allows us, for the first time, to

provide hardness results and provable approximation algorithms for the learning problem.

The approximation algorithm is of “global” nature, solving and rounding a linear problem,

as opposed to local search heuristics which have been suggested before [Mal91].

The presentation here is also, as far as we know, the first formulization of the maximum

hypertree problem. In this problem, given some target widthk and a weight function on

9



10 CHAPTER 1. INTRODUCTION

candidate cliques of size up tok + 1, one seeks atreewidthk graph (i.e. a triangulated

graph with maximum clique sizek + 1) that maximizes the total weight on its cliques.

The problem of finding the treewidth of a graph (and its associatedtree decompositionor

triangulation) has been extensively studies. Finding the treewidth, and tree decomposition

and triangulation, of a graph is asupergraphproblem— we seek to find a triangulated graph

containing our desired graph. However, the maximum hypertree problem can be viewed as

asubgraphproblem.

The approximation algorithm we present is an initial step to providing good algorithms

for learning maximum likelihood Markov networks. We hope that further study of the

combinatorial problem we present will yield better algorithms. Such algorithms could then

be applied to the learning problem.

We hope this thesis will be of interest both the machine learning and to the algorithms

communities. We aim to give enough background so as the thesis will be approachable to

readers of both disciplines.

1.1 The Learning Problem

We briefly outline the maximum likelihood Markov network problem. A more complete

description is given in Chapter 2.

One of the important areas of machine learning is the development and use ofprob-

abilistic modelsfor classification and prediction. One popular probabilistic model is the

Markov network, which uses a graph to represent dependencies among the variables in the

probabilistic model. Given the graph, a probability distribution on the variables can be

succinctly represented by tables (called potential functions) of possible outcomes for each

set of variables that forms a clique.

In order to avoid over-fitting the model, it is important that the model’s graph have

no large cliques. At the same time, for efficient use of the model, the graph needs to be

triangulated, i.e. have no minimal cycles of more than three vertices. Combining these two
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objectives yields the actual requirement: that the underlying graph have smalltreewidth.

Treewidth will be defined formally later; for now we note that only trees have treewidth

one, while a small treewidth means that the graph is quite like a tree. Treewidth is closely

related to triangulated graphs: in a triangulated graph the treewidth is equal to the maximum

clique size minus one. More generally the treewidth of a graph is the minimum over all

triangulations of it, of the maximum clique size in the triangulation, minus one.

In some applications, the graphical model is specified in advance. But in others, the

goal is to generate a graphical model that “best fits” some observed data (samples from an

unknown distribution). Chow and Liu [CL68] show how the besttreewidth 1model (that

is, tree) for the data can be found via a maximum spanning tree computation on a graph

whose weights are determined by the values of the observed data. But sometimes a higher

treewidth is needed to get a good fit to the data.

1.1.1 Our contribution

We consider the more general problem: to learn, given some observed data, the maximum

likelihood treewidthk Markov network of the data. This is the maximum likelihood trian-

gulated Markov network with clique size at mostk + 1.

As with the simpler case, we show how to reduce this problem to a pure graph problem.

But unlike the simple case, weights on edges are no longer enough. Instead, we show

how to assign weights to every subset of vertices of size up tok + 1. These weights are a

generalization of the Chow and Liu weights and capture the information in beyond-pairwise

interactions. We formulate a combinatorial problem using these weights, and through it

show that:

• Finding a maximum likelihood Markov network of bounded treewidth (and so also

triangulated network of bounded clique size) is NP-hard.

• For any fixedk, a Markov network of treewidth at mostk (a triangulated network of

clique size at mostk + 1) can be found such that the gain in log likelihood versus an
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fully independent model is within a constant multiplicative factor to the maximum

possible gain in log likelihood.

1.1.2 Projections

A maximal likelihood distribution is a distribution minimizing the information divergence

to the empirical distribution. Finding a maximum likelihood distribution can thus be seen as

an instance of the more general problem ofprojectinga target distribution onto a distribu-

tion class, i.e. finding the distribution from within the class that minimizes the information

divergence to the target. Such projections have applications beyond finding the maximal

likelihood distribution.

Throughout the thesis, we discuss such distribution projections, and work with this

framework.

1.1.3 Related work

The problem of finding a maximum likelihood Markov network of bounded tree width has

been investigated before and discussed in [Pea97]. Malvestuto [Mal91] discussed the con-

nection between this problem and maximal acyclic hypergraphs (which we callhypertrees

here), and suggested a local search heuristic on hypertrees.

Several other extensions to the work of Chow and Liu [CL68] for tree-shaped Markov

networks have recently been proposed. Meila [MP99] suggested modeling distributions as

mixtures of tree-shaped Markov networks. Dasgupta [Das99] suggested polytree Bayesian

networks (trees with oriented edges).

There is also work ondirectedgraphical models known asBayes Networks. Dagum and

Luby have results that focus on the problem of, given a specific graphical model, learning

the appropriate setting of the joint probability distributions. They show that even achieving

good approximations for this problem is NP-hard in the general case [DL93], but also give

approximation algorithms that work well on a large class of instances [DL97].
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1.2 The Algorithmic Problem

Given a candidate graph with weights on edges, and also on larger cliques of size up to

k+ 1, we would like to find the maximum weight treewidth-k subgraph of the input graph.

Fork > 1, this problem is NP-complete. We develop approximation algorithms for it. For

ann-vertex graph with goal widthk, in timenO(k), we find a treewidth-k graph containing

at least anf(k) fraction of the maximum possible weight.

The running time of our algorithm is unsurprising, since the input problem size can (and

will often in practice) benO(k): a weight may be need to be specified for every clique of

size up tok. It is not clear whether the dependence of our approximation factor on the goal

treewidthk is necessary, but we do in any case get a (weak) constant factor approximation

for every fixedk, which is the case that is dealt with in practice.

Our approximation algorithm is based on two main observations. The first is the iden-

tification of a structure called ak-windmill. While treewidth-k graphs can have quite a

complicated structure,k-windmills are easier to work with. We show that any treewidth-k

graph places at least a constant fraction of its weight in disjointk-windmills, and thus set-

tle for approximating maximum weight disjointk-windmills. To find these windmill, we

develop a linear-programming-based approximation algorithm. The linear program bears

some faint resemblance to those in recent algorithms forfacility location [STA97]. Our

rounding scheme is quite different, however, and has an interesting “iterative” approach

similar to Jain’s algorithm for network design [Jai98]: after solving the LP, we randomly

roundsomeof the fractional variables; we thenre-solvethe linear program to make it fea-

sible again before we proceed to round other variables.

Treewidth has been defined in many different contexts and using various equivalent

definitions. We present some of these in Chapter 3, but the setting we use throughout the

thesis is that of acyclic hypergraphs.
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1.2.1 Related work

Finding maximum-weight subgraphs meeting some property is of course a broad field; a

recent good example is the maximum planar subgraph work of Călinescu et al. [CFFK98].

Most recent work on treewidth has been concerned with showing, given some input

graph, that the graphhassmall treewidth, and on finding an appropriate tree decomposition

[SG97, Bod97, Bod96]. Here, we focus on a different problem. We would like to find

a graph of treewidth at mostk that captures the greatest weight. We do not expect to be

able to include all the edges of the graph, but rather aim to maximize what can be included.

While finding a tree-decomposition of a given graph might be viewed as a covering problem

(finding a low-treewidth graph containing the target graph), our problem is a sub-graph

problem—finding a maximal small-treewidth graph inside a given graph.

1.3 Structure of the Thesis

This thesis is contains two main threads: a purely combinatorial analysis of a combinato-

rial optimization problem (the maximum hypertree problem), and an analysis of the equiv-

alence between a learning problem (maximum likelihood, or projected, Markov networks)

and the combinatorial problem, and the consequences of this equivalence.

The rest of this thesis is structured as follows:

• In Chapter 2 we introduce the notions of a maximum likelihood Markov network and

Markov network projections. We motivate the general learning setting and formulate

the specific learning problem which we tackle in this thesis.

The chapter serves mostly as an introduction and tutorial for readers unfamiliar with

unsupervised machine learning and graphical models.

• Chapter 3 serves as a tutorial on treewidth and the related concepts of tree decom-

positions and acyclic hypergraphs. It provides several equivalent definitions of these

concepts, and presents some known results which are used later in the thesis.
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• in Chapter 4 we formally define the maximum hypertree problem, and prove its hard-

ness. We also present some properties of hypertrees that might be of use in solving

the problem, but that we do not use in this work.

• Chapter 5 is the core of the second thread, and the links between them. It presents

the equivalence between the learning problem and the combinatorial problem. The

first sections present known results about decompositions of Markov networks over

acyclic hypergraphs (or equivalently, triangulated graphs). Sections 5.3 and 5.4

present new results, proving the bidirectional equivalence.

• Chapters 6 and 7 hold the core algorithmic content of the thesis. In Chapter 6 wind-

mills, and the “maximum windmill forest” problem are presented, and it is shown

that a maximum windmill forest serves as an approximation to the maximum hy-

pertree. Chapter 7 presents an approximation algorithm for the maximum windmill

forest problem, which translates to an approximation algorithm for the maximum

hypertree problem

A reader interested only in the algorithmic thread and in the presentation of a new

combinatorial optimization problem, may choose to skip Chapters 2 and 5, without loss of

understanding of the combinatorial issues presented in the other chapters.

A reader interested only in the learning thread, may focus only on Chapter 2, parts of

Chapter 3 and Chapter 5. The relevant implications on the machine learning problems are

presented in these chapters.

Chapters 2, 3 and Sections 5.1 and 5.2 contain background material and review of

known results. The results in Section 4.2, 5.3, 5.4 and Chapters 6 and 7 are new results first

presented in this thesis.

Some of the results presented in this thesis are to be published in [KS01].
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Chapter 2

Introduction to Density Estimation,

Distribution Projections, Maximum

Likelihood, and Markov Networks

In this chapter we introduce and motivate the notion of a maximum likelihood Markov

network and Markov network projections, and formulate the learning problem which we

tackle in this work.

The chapter is intended mostly for readers unfamiliar with unsupervised machine learn-

ing and with graphical models. It provides all the necessary background about the under-

lying machine learning issues, the motivation for the algorithmic problem, and for under-

standing the rest of this manuscript, particularly Chapter 5. It can, however, be skipped,

together with Chapter 5, without loss of understanding of the combinatorial and algorithmic

details in the other chapters.

The chapter also serves to set the basic framework, and clarify the learning scenario ad-

dressed by this work, emphasizing the differences from other unsupervised machine learn-

ing problems.

Some well known properties of Markov networks are presented in this chapter without

proof. Most are proved, sometimes in a different formulation, in Chapter 5.

17
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2.1 The Machine Learning Setting: Density Estimation

and Maximum Likelihood Distributions

2.1.1 Density estimation

One of the challenges of unsupervised learning, given a sample of observations, is to deter-

mine the distribution law from which the samples were drawn. The predicted distribution

can be used to make predictions about future, partially observed data. Often, each observed

data point is taken to be expressed as a vector of variablesx = (x1, . . . , xn). A common

approach in probabilistic machine learning is to assume each data vector is drawn indepen-

dently at random from the same unknown probability distributionP 0 over possible vector

values. One then aims tolearnP 0 from the samples.

We will use the following notation: Random variables are generally represented by

uppercase letters, and their outcomes by lower case letters. We denote byn the number of

random variables in a single sample:P 0 is a distribution over random vectors of lengthn.

We denote byT the number of observed samples,x1, . . . , xT , wherext = (xt1, . . . , x
t
n).

We assume eachX t ∼ P 0 independently. Note that the variablesX t
1, . . . , X

t
n within a

single sample vectorX t arenot necessarily independent, but the sampled vectorsX t are

independent of each other. Based on the observationsX t = xt, we would like to estimate

P 0. That is, we would like to learn a distributionP ], such thatP ] is “close” toP 0.

By “close” we mean thatP 0 andP ] assign similar probabilities to events. This can

be quantified by various measures, the most natural of which is perhaps the information

divergenceH
(
P 0‖P ]

)
= EP 0

[
log P 0

P ]

]
.

The empirical distribution and overfitting

One possible candidate forP ] is the empirical distribution1 of the samples,̂P . However,

this is usually a very bad choice aŝP will grossly overfit the data and will not generalize

1The distribution which assigns to each outcome its frequency in the observed samples
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well to unobserved outcomes. In most scenarios, especially when the dimensionn is large,

it is not likely that every possible outcome vectorx will be encountered, as the number of

possible outcome vectors is exponential inn. But P̂ associates a probability of zero to any

unencountered outcome, concentrating too much on the encountered outcomes, which are

usually but a small sample of all possible outcomes.

Without making any assumptions, or speculations, about the nature of the distribution

P 0, not much further can be done— if we assume nothing about the behavior ofP 0 on dif-

ferent outcomes, there is no way to generalize from the observed values to yet unobserved

ones. In order to make such generalizations, we must use prior knowledge, speculations, or

assumptions, aboutP 0, e.g. that it is smooth in some way, that similar values are related,

or that it has only limited internal dependencies.

Limiting the distribution to prevent overfitting

A possible approach is to choose a distribution from within a limited class of distributions

D. This limited class represents our prior assumptions, or speculations, about the true

distributionP 0, or its properties.

Focusing on a specific classD, a reasonable choice it to choose the distributionP ] ∈ D

which maximizes the probability of observing the data:

P ] = arg max
P∈D

P (X1 = x1, . . . , XT = xt) (2.1)

The distributionP ] is called themaximum likelihood distribution, where thelikelihoodof

a distribution is the probability of observing the data under that distribution.

Note that the maximum likelihood distribution is also the distribution from withinD
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that minimizes the information divergence witĥP :

P ] = arg max
P∈D

P (X1 = x1, . . . , XT = xt)

= arg max
P∈D

∏
t

P (xt) X i are independent

= arg max
P∈D

∑
t

logP (xt)

replacing summation over observed outcomes with a sum over all possible outcomes,

counting the number of times they were observed using the empirical distribution,

= arg max
P∈D

∑
x

T P̂ (x) logP (x)

= arg min
P∈D
−
∑
x

P̂ (x) logP (x)

The distributionP̂ , and so also any function of it, is constant, and adding it does not change

the minimizing distribution:

= arg min
P∈D

(∑
x

P̂ (x) log P̂ (x)−
∑
x

P̂ (x) logP (xt)

)

= arg min
P∈D

∑
x

P̂ (x) log
P̂ (x)

P (x)

= arg min
P∈D

H
(
P̂‖P

)
(2.2)

(2.3)

Since the information divergence can be viewed as a “distance” measure2, we refer toP ]

as theprojectionof P̂ ontoD. More generally aprojectionof a some target distribution

(not necessarily an empirical distribution of some sample) onto a class of distributions, is

the distribution from with in the class minimizing the information divergence to the target.

2Although it is not a metric.
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2.1.2 Estimation error and generalization error

Limiting to a restricted classD can reduce the risk of overfitting. For example, we might

limit to the classD0 of distributions in which the variablesXi in the observed vector are

independent. In this case, to estimate the maximum likelihood distributionP ]
0 ∈ D, one

need only estimate the marginals over each variable separately. Since these marginals have

only a few possible outcomes (compared to the total number of outcome combinations), a

good estimate can be attained with a relatively small number of samples.

However, if there are significant dependencies between variables in the true distribution

P 0, as may well be the case, thenP ]
0 will not approximateP 0 well, because no distribution

in D0 approximatesP 0 well.

We distinguish here between two sources of “error”, i.e. discrepancies between the

estimated distributionP ] and the true distributionP 0:

The approximation error is the discrepancy betweenP 0 and the classD, i.e. the differ-

ence betweenP 0 and the distributionP ∗ ∈ D that is closest to it.

The estimation error is the difference betweenP ∗ and our estimate of it based on the

observed samples,P ].

The estimation error is essentially caused by not having enough samples. Had we an

infinite number of samples (and infinite time), we could findP ∗ exactly. The fewer samples

we have, the greater the estimation error is likely to be. The estimation error also depends

on the size of the classD: intuitively, the smaller, and simpler, the class, the easier it is to

“focus in” onP ∗, and fewer samples will be needed to reduce the estimation error.

The approximation error does not depend on the number of samples, but only on the

distribution classD. The bigger the classD, and denser it is in the space of all distributions,

the more conceivable it is that there will be a distributionP ∗ ∈ D that will approximateP 0

well. Of course, not only the size is important, but perhaps more important is choosing a
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classD which correctly captures the expected properties ofP 0, and so ensures thatP 0 will

lie within the class, or at least not far from it.

We see a tradeoff between the estimation error and the approximation error, controlled

by the size of the classD. A bigger and more complexD might captureP 0 better and

reduce the approximation error, but at the same time make it harder to estimateP ∗ and

increase the estimation error. We would like to choose a distribution class that is simple and

small enough to be estimated using the samples we have, yet as large and comprehensive

as possible to allow for a good approximation ofP 0. The more samples we have, the better

we can estimate even in more complex classes, and the larger the class we will aim to use.

2.1.3 Limiting to Markov networks

Earlier we described one possible, rather simple, distribution class— the classD0 of distri-

butions with no dependencies between random variables. Finding the maximum likelihood

distribution from this class is straightforward. But the class is very limited and often one

would like to allow some dependencies in the distribution.

We might like to use larger, more complex, classes, when we have enough samples

to support estimation in those classes. It is convenient to use a parameterized family of

distribution classes, which gradually become larger and more complex. We can then use

the distribution class from the family that is appropriate for the sample size at hand.

A possible more general family of distributions areMarkov networks, which will be

described in detail in Section 2.2. Markov networks allow a limited dependency structure,

as imposed by a graph (loosely speaking, dependencies are only allowed along edges in

the graph). The denser and “wider” the graph, the less restricted the distribution. In this

work, we consider the problem of finding a maximum likelihood distribution from within

the classDk of Markov networks of width at mostk (as will be defined in Chapter 3).
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2.1.4 Density estimation, not model selection

It is important to note that the problem we concentrate on is density estimation, and not

model selection or hypothesis testing. We discuss model selection problems briefly, in

order to emphasize what we donotdo.

In model selection problems, we aim to discover the underlying distribution model. For

example we might want to decide which random variables are independent. Since a more

complex model (e.g. with more dependencies) will always predict the data better, and have

a higher likelihood, a pure maximum likelihood approach is not suitable in this scenario.

Instead, we wish to balance likelihood and simplicity, and find a model that is both simple

(e.g. assume as few dependencies as possible) and predicts the data well.

But in this thesis we donot consider the problem of model selection. In the scenario

we are concentrating on, we are merely trying to estimate a distribution, and our output is

a distribution. The quality is measured by how well the distribution itself, i.e. the proba-

bilities assigned to possible outcomes, resembles the true distribution. We are limiting to

a class of simple distributions only to overcome overfitting— had we more samples, we

would allow ourselves to choose from a wider, more complex, class of distributions, since

this will always decrease (or at least, not increase) the approximation error. This is in sharp

contrast to model selection, where even if we have an infinite number of samples, we would

still prefer a simple model.

2.1.5 Tractable models

Despite our emphasis on thedistributionrather then themodel, there is one sense in which

we are concerned also with the underlying model, or representation of the distribution. To

be of any practical use, the resulting distribution must be representable in some compact

form that allows efficient computation of marginal (and thus also conditional) probabili-

ties. Recording the probability value associated with each possible outcome is almost al-

ways infeasible, because of the huge (exponential inn) number of possible outcomes, and



24 CHAPTER 2. LEARNING INTRODUCTION

calculating a marginal probability with such a verbose representation requires excessive

computation.

Existence of a compact, but not necessarily tractable, representation is tied to the size

of the distribution class, since the length of the minimal representation is logarithmic in the

size of the class. Since we restrict the size of the class to avoid overfitting, we also implicitly

restrict the size of its minimal representation. In fact, from the information theoretic point

of view, the length of the representation of the distribution surely cannot be more than the

sample size, since this is our only source of information about the distribution.

However, although such a compact representation is guaranteed to exist, computations

using it, perhaps even point probability calculations, might be intractable. We will proba-

bly need to limit our distribution classD only to tractable distributions, i.e. distributions

that have a representation supporting efficient marginal probability calculations. Note that

this restriction is imposed as a practical necessity of being able to make efficient use of

the resulting distribution, and not as part of the mathematical framework of distribution

estimation.

Other than tractable computation of marginal probabilities, we might be interested in

other representation or computational properties of the distribution, such as factorizability.

2.1.6 Other approaches

We consider an approach to density estimation by limiting the distribution to a class of

Markov network distributionsDk. This is of course not the only approach to density esti-

mation.

Other families of distributions

Many of the common methods for density estimation, and its closely associated problems

of regression and classification, follow a similar approach, but with different families of

distribution classes. Some of the common families used are Bayes networks and mix-

ture families, e.g. mixtures of Gaussians, or even mixtures of limited Bayes-networks or
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Markov networks.

Using a prior over distributions

Instead of restricting to a class of equally permissible distributions, while totally disallow-

ing any other distribution, one might choose to make a “softer” limitation. This can be

done using a prior distribution over the possible distributions ofX. We can then select the

distribution ofX with the highesta posterioriprobability: the a posteriori probability is the

probability ofX having a certain distribution given the observed samples, i.e. the product

of the likelihood of the distribution and its prior probability.

The prior distribution reflects our belief as to which models are a priori more or less

likely. For example, we might assign simpler models a higher prior than more complex

models.

A true Bayesian would argue that restricting to a class of distribution, and seeking the

maximum likelihood in the class, is just assigning a uniform3 prior over that class.

Learning the parameters of a specific structure

It is also common to impose a specific structure, determined beforehand by external prior

knowledge about the distribution, and fit the distribution within this model structure. For

example, a specific perceptron architecture may be specified, or a specific directed graph

for a Bayes network.

This is also often done with Markov networks, where a specific graph is predetermined,

and the most likely Markov network on it is sought. This requires extensive prior knowl-

edge about the distribution. This problem is well studied, and discussed in Section 2.3.

3with respect to some parameterization
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Regularization

Other approaches suggested by modern developments in statistical learning theory, aim to

balance the approximation error and estimation error dynamically. Instead of pre-limiting

the level of complexity and searching for the maximum likelihood distribution within those

limits, a “regularization penalty”, proportional to some measure of the distribution’s com-

plexity, is combined with the likelihood, seeking a model that is both likely and non-

complex. These approaches are not discussed in this work.

2.2 Markov Networks

In this section we give a brief introduction to Markov Networks. We formally define this

family of distributions, and describe some known results about the family. We do not prove

these results here, but most are proved, in a slightly different formulation, in Chapter 5.

2.2.1 Definition

We first formally define the family of distributions we refer to as Markov Networks. In

the discussion below,X is a random vector, andx is a possible outcome value forX. Xv

is an element ofX, i.e. a random variable corresponding to the value ofX in one of its

coordinates.xv is a possible outcome ofXv.

Definition 2.1. We writeA ⊥ B | C if for variable setsA, B, andC, conditioned on any

values of the variables inC, the variables inA are independent of those inB.

Definition 2.2 (Markov Network). A random vectorXV , indexed by vertex setV , is a

Markov networkover an undirected graph4G(V ) iff each random variableXv, conditioned

4A graphis a collection ofedgesbetweenvertices. Theneighborsof a vertex are the vertices to which it
has edges. See Chapter 3 for complete definitions
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on its neighbors, is independent of all other elements ofXV :

(∀v ∈ V ) (2.4)

Xv ⊥ {Xu | u 6= v, (u, v) /∈ G} | {Xu|(v, u) ∈ G}

It follows that ifC separatesA andB in G, then for the corresponding sets of random

variables,XA ⊥ XB|XC .

Every distribution is a Markov network over the fully connected graph (a graph in which

every two vertices are connected by an edge), since then the independence requirement is

satisfied vacuously. In a Markov network over the empty graph, all the variables are in-

dependent. As a more interesting example, any finite length Markov chain is a Markov

network whose underlying graph is a path: each variable is dependent on only its predeces-

sor and successor.

2.2.2 Hammersley-Clifford clique factorization

The Hammersley Clifford theorem characterizes the distributions which follow the Marko-

vian independencies given by a graph, for distributions without so-called “forbidden com-

binations” [Bes74]:

Definition 2.3 (Strictly Positive Distribution). A random vectorX is distributedstrictly

positively iff for each vector of outcomesx = (x1, x2, . . . , xn) for which each element has

positive marginal probabilityP (Xi = xi) > 0, thenP (x) > 0. That is, the support of the

distribution is a cartesian product of the supports for each element, meaning there are no

forbidden combinations of values.

Theorem 2.1 (Hammersley-Clifford Theorem). A strictly positively distributed random

vectorX is a Markov network specified byG(X) if and only if its distribution can be
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factored to the cliques inG:

PX(x) =
∏

h∈Clique(()G)

φh(xh) (2.5)

for some set ofclique factors{φ}, such thatφh is a function of the outcomes of random

variables indexed by the cliquexh = {xv|v ∈ h}

For each cliqueh, the factor functionφh assigns a value to each combination of possible

outcomes of variables in the clique.

The sizes of cliques in the Markov network determines the complexity of both ex-

pressing and learning the distribution. For a given Markov network, the description of the

distribution, and thus also the sample size needed to estimate it, is exponential in the clique

sizes. For each cliqueh, we need to specify the value of its factor functionφh for every

possible argument. A clique onk variables, even if they are only binary variables, takes on

2k compound values. We need to record (and to estimate) the value ofφh for each of those

2k input values.

2.2.3 Triangulated Markov networks

While equation (2.5) provides an explicit formula for using the clique factors to calculate

the probability of an outcome, calculating marginal probabilities using this representation

is not necessarily easy, and might require summation over all outcomes of nuisance vari-

ables. Similarly, there is no direct way of calculating the appropriate factors for a given

distributions.

In a certain class of graphs, however, such calculations are possible.

Triangulated graphsare graphs with no minimal cycles of more than three nodes. They

are discussed in detail in Section 3.3.4. Over such graphs, marginal, and hence also condi-

tional, probabilities can be calculated directly from the clique factors in linear time [WL83],

i.e. linear in the size of the tables used for computing the factors, and hence exponential in
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the clique sizes. Conversely, for triangulatedG, the clique factoring can be given explicitly

as a function of the marginal distributions over the cliques (proven in Theorem 5.1):

φh(xh) =
Ph(xh)∏

C′⊂C φC′(xC′)
. (2.6)

Note that this representation requires a product over all cliques in (2.5), including non-

maximal cliques. Factors corresponding to non-maximal cliques can of course be sub-

sumed into some containing maximal clique factor. However this leads to clique factors

which are dependent on the graph structure. The factors given by (2.6) are unique in that a

clique’s factor does not depend on the graphG, except the fact that it include the clique.

Local dependence on marginals Other than the efficient and explicit calculations, it is

also important to note that the dependence between the clique factors and the marginal

distributions islocal. That is, a clique factor dependsonly on the marginal distribution of

the clique, and the marginal distribution of a clique dependsonly on factors of the clique

and its sub-cliques. This is contrary to the non-triangulated case in which a change in a

marginal distribution can propagate to factors of far away cliques, and visa versa.

If G is triangulated, the Hammersley Clifford theorem holds for any distribution, in-

cluding distributions with forbidden combinations. This will be shown in Section 5.1.

The explicit factoring also allows for simple calculation of the maximum likelihood

Markov network over a specified triangulated graph. Following (2.6), it can be shown (see

Corollary 5.3) that the maximum likelihood Markov network over a given graph structure

G is given by:

φ̂h(xh) =
P̂h(xh)∏

C′⊂C φ̂C′(xC′)
(2.7)

WhereP̂h are the empirical marginal distributions over the cliques—that is, the fraction of

the observed data points that took on given values.
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2.3 Maximum Likelihood Markov Networks

When the triangulated graph is specified in advance, (2.7) makes it simple to assign the

maximum likelihood factor functions. In some cases, however, the structure of the depen-

dency graph is unknown, and we would like to determine both the best graphand the best

parameter settings for it based on the empirical data. This is the main problem with which

we are concerned: find a graph and a Markov network over the graph, which maximizes

the likelihood of the data.

The complete graph always has maximum likelihood

Lack of edges in the graph represent independencies which must hold. Thus, adding edges

to a graph relaxes the constraints on Markov networks defined by it. IfX is a Markov

network over graphG, then it is also a Markov network over a supergraphG′ ⊃ G, and

in particular also a Markov network over the fully connected graph (in which every two

vertices have an edge between them). In fact,everyrandom vectorX is a Markov network

over the fully connected graph. And so, the empirical distribution of the data, which is

always the maximum likelihood distribution, is a Markov network over the fully connected

graph. Thus, the fully connected graph can always be used to maximize the likelihood.

In most cases the fully connected graph will be the only graph which achieves the

maximum likelihood. Even if the real distribution from which the data is sampled is a

Markov network over a sparser graphG, the empirical distribution will almost surely5

deviate slightly from the true distribution, and willnotbe a Markov network overG.

Limiting the space of admissible models

As discussed in Section 2.1.1, the empirical distribution is in most cases a vast overfitting

of the data.

5Strictly speaking, for a continuous distribution, with probability one it will not be a Markov network over
G. If the distribution is not constant, then as the number of samples increases, the probability of the empirical
distribution being a Markov network will go to zero
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Instead, we would like to limit the space of admissible models, as represented by the

number of parameters allowed. As discussed above, the number of parameters is essentially

exponential in the clique sizes. We would thus like to limit the sizes of the cliques in the

graph.

A simple way of doing so is bounding the maximum clique size of the graph. We will

choose a clique size bound6 k+1. and search for a maximum likelihood distribution among

those which are Markov networks over a graph where all cliques are of size at mostk + 1.

Bounding the clique size bounds the number of parameters, however it is not equivalent

to bounding the number of parameters. A graph that contains a single clique ofk + 2

nodes, and no other edges would not be admissible. However, a graph which contains

many cliques of sizek + 1 might have more parameters (if the number of values a variable

can take is low, e.g. if all variables are binary).

In many ways, it might be more “correct” to bound the actual number of parameters,

and not the maximum clique size, in order to allow for such non-uniform graphs. This

would roughly mean bounding the sum of exponents of the clique sizes.

However, the uniform requirement of a bounded clique size yields substantially simpler

combinatorial properties, and is independent of the number of possible outcomes for each

random variable.

Limiting only to tractable models

For a non-triangulated graph, even if the graph structure is known, finding the maximum

likelihood parameters is hard. It is conceivable that finding the maximum likelihood struc-

tureandthe parameters is easier, especially if it is true that the maximum likelihood graph

always has some restricted structure. However, we do not know that this is the case, and

so we cannot expect that finding the maximum likelihood structure and parameters will be

easier. Additionally, a triangulated model is more useful as a predictive model since calcu-

lations (e.g. conditional and marginal probabilities) on it are feasible (linear in the number

6The choice ofk + 1 and notk will be motivated in Section 3.
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of parameters), whereas in a general graph they are difficult, as discussed before.

Because of this, we choose to limit the acceptable models to only triangulated graphs

with cliques size at most some boundk + 1.

Triangulated, bounded clique size, graphs also have a more “regular” number of param-

eters then general bounded clique-size graphs. The number of cliques of sizek + 1 is at

mostn− k and the number of parameters is at mostmk ((n− k)(m− 1) + 1)− 1 (where

n is the number of variables andm is the number of possible outcomes for each variable7,

and both of these bounds are attained by every maximal graph of the family. This regularity

provides for a better approximation to our underlying desire to directly bound the number

of parameters.

2.3.1 Summary: our learning goal

Our goal is thus to find a maximum likelihood Markov network over a triangulated graph

G with clique size at most some boundk + 1. As will be discussed later, this is equivalent

to requiring the graph havetree widthat mostk.

This is an extension of the work of Chow and Liu [CL68], which showed how to find

the maximum likelihood Markov network over a tree. A tree is a triangulated graph with

clique size at most 2, and so the Chow Liu algorithm solves the above problem fork = 1.

2.3.2 The learning goal as a projection problem

As was shown in Section 2.1.1, the maximum likelihood distribution in a distribution class

is the projection of the empirical distribution onto the class. Thus, we can view the problem

of finding a maximum likelihood distribution as a projection problem. In this thesis, we

take this approach and discuss the problem of projecting a distribution onto the class of

Markov networks over a triangulated graphG with clique size at mostk + 1.

7If the number of outcomes is not the same for all variables,m is the bound on the number of outcomes,
but the bound is not attained by maximal graphs, and different maximal graphs will have a different number
of parameters
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This more generalized setting has applications beyond maximum likelihood estimation.

We might have a target distribution that is specified in some other way, perhaps through a

more complex model, as we would like to realize it as best we can using a simpler Markov

network.

2.3.3 Learning a distribution versus learning a structure

One of the common uses of graphical models, including Markov networks, in unsupervised

machine learning, is to understand the dependency structure of a sampled distribution. That

is, given samples from an unknown distribution, learn the true, minimal, structure of its

dependency graphG, such that the distribution is a Markov network overG. For example,

for two variables, we would like to decide if they seem to be dependent or independent (i.e.

if their dependency graph is empty, or includes the edge between them).

This type of application is amodel selectionproblem, as described in Section 2.1.4, and

the straightforward maximum likelihood approach is not suited for it— adding edges will

always increase the likelihood.

We emphasize again that this work concerns learning a distribution, with the graphical

model being a convenient way to represent the learned distribution. The methods discussed

are generally not appropriate for learning the structure of a distribution.

In this sense too, this is an extension of Chow and Liu [CL68]. There too, the maximum

likelihood tree is found, even though some of its edges may be superfluous.
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Chapter 3

Treewidth and Hyperforests

In this chapter we introduce the concepts ofhyperforestsand thetreewidthof a graph,

and review the relevant background about them. We also formally define the maximum

hypertree problem — the subject of this thesis.

All of the material in this chapter is based on previously known results. However,

some of the definitions, formulations of theorems, and proofs vary from those in the cited

sources.

We first recall the basic definitions of graphs and hypergraphs and present the terminol-

ogy we use. In Section 3.1 we introduce hyperforests (also known as acyclic hypergraphs),

hypertrees, and the related measure of the treewidth of a graph. In the rest of the chapter

we review relevant known results about hyperforests and treewidth of graphs. In Section

3.2 we present some basic properties which we use throughout the thesis. In Section 3.3

we discuss several equivalent characterizations of hyperforests and treewidth. Section 3.4

points the interested reader to further work about, or using, hyperforests and treewidth.

Preliminaries: Graphs and Hypergraphs

We give the basic definitions of graphs and hypergraphs, and present the terminology used

in this thesis.

A graphG(V ) is a collection of unordered pairs (edges) of thevertexsetV : G(V ) ⊂

35
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(
V
2

)
. A path in a graphG(V ) is a sequencev1, v2, . . . , vr of distinct vertices, such that

∀1≤i<r{vi, vi+1} ∈ G.

A hypergraphH(V ) is a collection of subsets (edges, or sometimes explicitlyhyper-

edges) of the vertex setV : H(V ) ⊂ 2V . If h′ ⊂ h ∈ H then the edgeh′ is coveredbyH.

We slightly abuse set-theory notation and denoteh′ ∈ H even ifh′ is just covered byH. A

hypergraph (or graph)H ′ is covered byH iff ∀h′∈H′h′ ∈ H (all edges inH ′ are covered by

H, i.e. are a subset of an edge ofH); if so we writeH ′ ⊂ H. Another way of viewing this

notion of a hypergraph is requiring that a hypergraph include all subsets of its edges.

A hypergraph in which all maximal edges have the same sizek will be called ak-

edge-regular hypergraph. A graph is simply a 2-edge-regular hypergraph. To emphasize

the distinction between covered edges (which will have smaller size) and the maximal,

regularly-sized, edges, these edges will be referred to asregular edges.

If a vertex is contained in (hyper)edge, the edge is said to beincidenton the vertex.

Two vertices both belong to a common (hyper)edge are said to beadjacent. Theneighbors

of a vertex are all vertices to which it is adjacent.

For a (hyper)graphH(V ) and vertex setV ′ ⊂ V , we denote byH[V ′] the induced

sub-(hyper)-graphdefined byH[V ′] = {h ∩ V ′|h ∈ H}. Note that for hypergraphs, the

induced sub-hypergraph includes also hyperedgescoveredby the original hypergraph. For

example, ifH = {{a, b, c}, {c, d}} thenH[{a, b, d}] = {{a, b}, {d}}.

For setsV1 andV2, we use the notationV1 \ V2
.
= {v ∈ V1|v 6∈ V2}. For a setV and

an elementv ∈ V , we denoteV − v = V \ {v} and for an elementv 6∈ V we denote

V + v = V ∪ {v}.

3.1 Hyper Trees and Tree Decomposition

Hypertrees generalize trees (here referred to explicitly as 1-trees) to hypergraphs. It will be

simpler to introduce hypertrees by first introducing hyperforests, which generalize forests.

Recall that a forest is an acyclic graph, i.e. a graph with no cycles. The generalization of
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acyclicity to hypergraphs is somewhat more complex. There are several equivalent defi-

nitions for hypergraph acyclicity, which will be discussed in Section 3.3. Here, we define

acyclicity using the notion of a tree structure:

Definition 3.1 (Tree Decomposition).A hypergraphH(V ) is said to havetree structure

T (H) iff T is a tree over all the hyperedges ofH and the followingdecomposition property

holds:

• If (h1, h2, . . . , hk) is a path ofH-edges inT , then(∀1 < i < k) h1 ∩ hk ⊆ hi.

Definition 3.2 (Acyclic Hypergraph). A hypergraph isacyclic iff it has a tree decompo-

sition. An acyclic hypergraph is also referred to as ahyperforest.

A 1-treeH(V ) has the following tree structureT (H): if a vertex inv has degree 2 inH,

then the two edges incident on it inH are neighbors inT . If a vertexv has degree higher

than 2, choose one of its incident edgeshv ∈ H arbitrarily— all other edges incident onv

in H neighborhv in T . Note that ifH is not a path, the tree structure isnot unique, and

depends on the choice of the arbitrary mappingv 7→ hv.

Two hyperforestsH1(V1) andH2(V2), over disjoint1 vertex setsV1 ∩ V2 = ∅, with tree

decompositionsT1(H1) andT2(H2), can be joined to form a hyperforestH1∪H2, with tree

decompositionT1 ∪ T2 ∪ {(h1, h2)}, created by adding an arc between any two arbitrary

hyperedgesh1 ∈ H1 andh2 ∈ H2. Thus, a 1-forest, being a union of disjoint 1-trees, is a

hyperforest.

Unlike adding edges to a regular graph, adding hyperedges to a cyclic-hypergraph might

make it acyclic. In fact, a hypergraph containing the complete hyperedge (the hyperedge

containing all vertices) is always a hyperforest. The tree structure of such a hyperforest is

a star, with the complete hyperedge in the center.

Definition 3.3 (Width of a Hyperforest). Thewidth of a hyperforestH(V ) is the size of

the largest edge, minus one:maxh∈H |h| − 1.

1Note that it is essential that the vertex sets be disjoint. Even for 1-forests, joining two paths might create
a cycle. In Section 3.2.2 we relax the disjointness restriction somewhat.
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Thus, the width of a standard tree is 1. We will refer to a hyperforest of width at most

k as ak-hyperforest.

Definition 3.4 (Hypertree). A hyperforest that is maximal among hyperforests of width at

mostk (i.e. nok + 1-edge can be added to it) is said to be ak-hypertree.

Since we are concerned with maximum structures, we will be interested mostly in hy-

pertrees.

Definition 3.5 (Tree Decomposition of a Graph).A tree decompositionof a graphG(V )

is a covering hyperforestH(V ) ⊇ G(V ) with tree structureT (H).

Recall thatH coversG if every edge ofG is contained in some hyperedge ofH.

Definition 3.6 (Treewidth). The treewidthof a graph is the width of its narrowest tree

decomposition, i.e. the narrowest hyperforest covering it.

Every graph can be covered by the hyperforest containing the complete hyperedge, so

every graph has treewidth at mostn− 1.

A word about nomenclature To try to minimize confusion and ambiguity in the expo-

sition, we will take advantage of the common parallel nomenclatures for graphs: we will

use the termsvertexandedgeor hyperedgewhen discussing graphs such asG andH, and

reserve the termsnodeandarc for the tree structure of hyperforests.

3.2 Basic properties of hyperforests and tree decomposi-

tions

We present here some basic properties of hyperforests and tree decompositions, that we use

throughout the thesis.
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3.2.1 Cliques

Lemma 3.1. The treewidth of ak-clique is TreeWidthKk = k − 1.

Proof of Lemma:

Clearly TreeWidthKk ≤ k − 1. Suppose that TreeWidthKk < k − 1, and letH
be a minimum-width covering hyperforest with tree decompositionT (H). SinceH has
no hyperedge of sizek, it does not have a single hyperedge covering all vertices inG, so
there exist three verticesu, v, w ∈ G that are not all included in a single hyperedge of
H. Since all edges must be covered byH, for each pair of the three vertices, there must
be a hyperedge containing both of them:x, y ∈ h1; y, z ∈ h2;x, z ∈ h3;h1, h2, h3 ∈ H.
Consider the location ofh1, h2, h3 in the treeT (H), and the three paths between them.
SinceT is a tree, there must be a node inT , i.e. hyperedgeh′ ∈ H, in which the three
paths inT meet. The nodeh′ might be one ofh1, h2, h3 or a different hyperedge. By
the separation property ofT (H), {u} = h1 ∩ h2 ⊂ h′ and similarly also forv andw, so
u, v, w ∈ h′, contrary to the earlier argument.

Moreover, following this argument, any covering hyperforestH of a graphG must

cover all the cliques inG.

Lemma 3.2. If G is a subgraph ofG′ (G ⊂ G′), then TreeWidthG ≤ TreeWidthG′.

Proof of Lemma:

Any covering hyperforest ofG′ also coversG.

Corollary 3.3. TreeWidthG ≥ max Clique(G)− 1

3.2.2 Joining hyperforests

In Section 3.1 we noted that the union of two hyperforests is a hyperforest if their vertex

sets are disjoint, but may not be a hyperforest otherwise. We now extend this to a more

general situation:

Lemma 3.4. LetH1(V1) andH2(V2) be hyperforests with respective tree structuresT1(H1)

andT2(H2). If s = V1∩V2 is covered by bothH1 andH2, thenH1∪H2 is also a hyperforest.
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Proof of Lemma:

Let s ⊂ h1 ∈ H1 ands ⊂ h2 ∈ H2 be hyperedges coverings and consider the tree
structureT1 ∪ T2 ∪ {(h1, h2)}.

Since every clique in a graph must be covered, we also have:

Corollary 3.5. If G1(V1) andG2(V2) both have treewidth at mostk, andV1∩V2 is a clique

in bothG1 andG2, thenG1 ∪G2 also has treewidth at mostk.

3.2.3 Maximal hyperedges in hyperforests

We now show that it is enough to concentrate on the tree structure of the maximal hyper-

edges in a hypergraph.

Theorem 3.6. If a hypergraph has a tree decomposition, that might include maximal as

well as covered edges, then there is also a tree decomposition over the maximal edges only.

Proof of Theorem:

Let H(V ) be a hyperforest with tree structureT (H). We will show that any non-
maximal hyperedge ofH can be removed from the tree structure, i.e. forh′ ⊂ h ∈ H we
will show how to modifyT into T ′(H ′), a tree structure overH ′ = H \ {h′}.

Examine the path inT from h′ to h. All hyperedges on this path must containh′ ∩ h =
h′, and in particular this is true for the first hyperedge,h1, on the path, which is adjacent
to h′ in T . We will removeh′ from T by diverting all arcs incident onh′ in T , to go toh1

instead inT ′. T ′ remains a tree, and paths that before containedh′ now containh1 instead.
But sinceh′ ⊂ h1, the decomposition property still holds.

A tree structureT over the maximal edges of a hypergraph can always be extended to

all the subset edges, by connecting inT each subset hyperedge to a hyperedge containing

it. For this reason, we freely refer to subsets of edges as being part of the hyperforest, and

are concerned only with the tree structure over the maximal edges.

This theorem allows us to discuss hyperforests as if they consisted only of maximal

hyperedges, but freely add their covered hyperedges to the tree decomposition where nec-

essary.
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3.2.4 Minors

We have already seen, in Lemma 3.2, that taking a subgraph of a graph can only reduce the

treewidth. Taking aminor of a graph is a more general operation than taking a subgraph,

permitting investigation of more global structures in the graph. In addition to removing

vertices and edges, edgecontractionsare also allowed when taking a graph minor. Whereas

subgraphs can ignore the global structure and concentrate on the local structure in some

part of the graph, contractions can ignore some of the local structure and concentrate on

higher-level structure.

Definition 3.7 (Graph Minor). A graphG′(V ′) is a minor of a graphG if G′ can be ob-

tained fromG by a sequence of any number of operations from the following:

• Edge removal.

• Vertex removal (together with all incident edges).

• Edge contraction: an edge(v1, v2) can becontractedby replacing both vertices with

a new combined vertex that is incident on any edge on which eitherv1 or v2 were

incident.

We will extend this standard definition also for hypergraph minors. In this case, con-

traction is allowed for any edge covered by the hypergraph. That is, we do not need to

contract all vertices of a hyperedge, and are allowed to contract only some of them. Note

that any contraction of multiple vertices can be seen as multiple contractions of pairs of

vertices, or 2-edges.

Lemma 3.7. A hyperedge-contracted hyperforest is a hyperforest

Proof of Lemma:

It is enough to study contraction of a 2-edge. LetH(V ) be a hyperforest andH ′(V ′) be
the result of contracting the verticesv1, v2 into v12. The new combined vertexv12 replaces
either of the contracted vertices in any hyperedge in which either one appears.

We show that the tree decomposition onH is still valid for H ′. The decomposition
property holds for all vertices other thanv12. We need to show that it holds also forv12. Let
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v12 ∈ h′1, h′2 which correspond toh1, h2 in H. If both h1 andh2 contained the same vertex
v1 or v2 in H, then the path between them also contained this vertex, and now contains
v12. Otherwise, without loss of generality,v1 ∈ h1 andv2 ∈ h2. Let h12 be the hyperedge
covering(v1, v2) inH, and consider the possibly backtracking “path”2 fromh1 throughh12
to h2 in the tree structure. All hyperedges along this path must contain eitherv1 or v2, and
so inH ′ they will containv12. Since this path covers the path fromh′1 toh′2, we have shown
the decomposition property with respect tov12.

Note that some hyperedges might become identical, requiring modification to the tree
structure (as it is now over fewer nodes). Ifh1, h2 ∈ H become identical, then their
intersectionh1 ∩ h2, and thus also all hyperedges in the path between them, must contain
h1∪h2−v1−v2. Following the argument above, the path must also includev12, making all
hyperedges on the path betweenh1 andh2 identical, and allowing us to collapse the path.

The tree structure of the minor of the hyperforest is therefore the minor of the hyper-

forest’s tree structure formed by contracting hyperedges that differ only in which of the

contracted vertices they include.

Edge removals may turn a hyperforest into a non-hyperforest, but if a hypergraph has a

covering hyperforest, then the same hyperforest will still cover it after any edge or vertex

removals. Combined with Lemma 3.7, we can conclude that:

Theorem 3.8. A minor of a graph of treewidthk has treewidth at mostk, i.e. the class of

graphs of width at mostk is closed under taking minors.

This property is especially useful for proving high treewidth by proving the existence

of a high treewidth minor, such as a clique.

3.3 Equivalent characterizations of hyperforests

In this thesis, we have chosen to define treewidth and tree decompositions through the for-

malization of tree structures of hyperforests. However, this is only one of many equivalent

views (and definitions) of treewidth and the decomposition concept that appeared in previ-

ous work. In this section we present other characterizations and prove their equivalence.

2Since we allow backtracking, this is not formally a path, as defined earlier
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Presenting these equivalent characterizations serves several purposes: First, we will use

some of the alternate characterizations, and properties derived from them, in later sections

of the thesis (See below for details). Second, we hope that through these alternate views,

the reader will become more comfortable with the notions involved, and will get a better

intuition for these concepts. Each reader might find a different characterization appealing

to his intuition or background. Last but not least, through the presentation of these various

characterizations, we hope to demonstrate the tight connection of hypertrees to many graph-

theoretic concepts.

Characterizations on which later chapters depend Graham reductions, defined in Sec-

tion 3.3.1, are used extensively in the proofs in Chapter 5. This is essentially the only

characterization used in later sections. Triangulations (Section 3.3.4) were first discussed

in Chapter 2, since they are the most common characterization used in work on Markov

networks. They are referred to in later sections, but only to make connections with the

presentation in Chapter 2 and the machine learning literature.

3.3.1 Graham reduceability

A 1-forest always has a vertex of degree one, sometimes called aleaf3. Removing a leaf

from the 1-forest yields a new 1-forest, which again has a leaf (i.e. a different vertex of

degree one). The 1-forest can thus be reduced to an empty graph by iteratively removing

vertices of degree one. In fact, a 1-forest can be characterized as a graph that can be reduced

to an empty graph in such a way.

A very similar characterization applies for hyperforests:

Definition 3.8. A hypergraphH(V ) is Graham reduceableiff it is empty, or if it has some

vertexv ∈ V such thatv is incident on only one maximal hyperedge ofH, and the induced

sub-hypergraph onV \ {v} is Graham reduceable. The vertexv is called aleaf ofH and

the maximal hyperedge containing it is calledv’s twig.

3In fact, it always has at least two such vertices.
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Note that a twig of a leaf is a maximal hyperedge at the time of removal, but it might

be a non-maximal hyperedge in the original hypergraph. Twigs will be discussed in greater

detail in Section 3.3.2.

Theorem 3.9. A hypergraph is acyclic iff it is Graham reduceable

Proof of Theorem:

Every hyperforest is Graham reduceable It is enough to show that every hyperforest
has a vertex that is incident on only one maximal hyperedge. Since every induced sub-
hypergraph of a hyperforest is also a hyperforest, removing this vertex yields a hyperforest,
and the argument can be applied iteratively.

For a hyperforestH(V ) with tree structureT (H) over its maximal edges, leth1 be a
leaf (i.e. node of degree one) ofT , and leth2 be the only node adjacent toh1 in T . Any
vertex not unique toh1 must also be included inh2. Thus sinceh1 is a maximal hyperedge,
it cannot be contained inh2, and therefore must have some unique vertex.

Every Graham reduceable hypergraph is acyclic Similarly, it is enough to show that
if H ′(V ∪ {v}) is reduceable toH(V ) by removingv, andH is a hyperforest, thenH ′ is
also a hyperforest. Leth′ = h ∪ {v} ∈ H ′ be the unique maximal hyperedge coveringv in
H ′. The hypergraphH ′ is the union ofH and{h′}, which we will view as a one-hyperedge
hyperforest. The intersection of the vertex-sets of these two hyperforests is covered byh′

in {h′} and byh in H, so following Lemma 3.4 the union hypergraphH is acyclic.

3.3.2 Twig sequences

An approach similar to Graham reductions is that oftwig sequences. Twig sequences rep-

resent a reduction ordering of hyperedges, rather than of vertices as in Graham reductions.

Twigsin 1-trees are “outer” edges, connecting the tree to leaves. If done at the proper

order, from the outside inwards, all edges of a 1-tree can be removed such that every edge

is a twig at the time of removal. In a hypergraph a bit more care must be taken in defining

such “outer” hyperedges:

Definition 3.9 (Twigs and Twig Sequences).A hyperedgeh of hypergraphH is a twig iff

there exists another hyperedgeh′ ∈ H that contains the intersection ofh and the rest ofH:

h ∩ (∪(H − h)) ⊂ h′. The hyperedgeh′ is calleda branch toh.
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A series of hyperedges(h1, h2, . . . , hm) is a twig sequenceiff every hyperedgehi is a

twig in the hypergraph{h1, h2, . . . , hi}, i.e.: ∀i∃j<i∀k<ihi ∩ hk ⊂ hj

Twig sequences are presented assequencesand not as recursive reductions, like Gra-

ham reductions. However, these two methods of presentation (reduction sequences and

recursive reductions) are essentially the same, and do not represent a real difference be-

tween Graham reductions and twig sequences. As discussed above, the real distinction

is that twigs are hyperedges, whereas Graham reductions refer to vertices. The choice of

method of presentation (recursive versus sequence) is based on the common presentation

in the literature.

Theorem 3.10. A hypergraphH is a hyperforest iff there is an ordering of its hyperedges

that forms a twig sequence.

Proof of Theorem:

Every hyperforest has a twig sequence We will show that every hyperforest has a twig,
and that removing this twig yields a new hyperforest. For a hyperforestH with tree struc-
tureT (H), leth be a leaf ofT (a 1-tree always has leaves). We claim thath is a twig ofH:
as a leaf,h has only one neighborh′ in T . The path inT betweenh and any other hyper-
edge must pass throughh′, soh′ must contain the intersection ofh and any other hyperedge
ofH. Furthermore, note that sinceh is a leaf ofT , it can be removed fromT leaving a new
tree, which is a tree structure forH \ {h}. Thus, removingh yields a hyperforest.

Every twig sequence is a hyperforest We will show how a twig sequence can be Graham
reduced. Lethi be a twig ofHi = {h1, . . . , hi} with branchhj. Every vertex ofh is either
unique toHi (incident on no other hyperedge inHi) or included inhj. The unique vertices
can be Graham-reduced, leaving a hyperedge that is completely contained inhj, and thus
is not maximal and can be ignored. The resulting hypergraph is{h1, . . . , hi−1}, which is a
twig sequence. We can proceed recursively.

Note that the branches of a twig sequence correspond to the edges in the tree structure

of the hyperforest.

A useful feature of twig sequences is that any prefix of a twig sequence represents all

the connections between vertices included in it:
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Lemma 3.11. Let H = (h1, . . . , hm) be a twig sequence andHi = (h1, . . . , hi) be a

prefix ofH. Then any hyperedgeh′ ⊂ ∪Hi that is covered byH is also covered byHi.

Proof of lemma:

Consider a hyperedgeh′ ⊂ ∪Hi such thath′ ⊂ hj ∈ H, i < j. We will show thath′

is covered byHr for everyi ≤ r ≤ j, by induction onr from j down toi. Assumingh′

is covered byHr: if it is covered byhs, s < r, then it is also covered byhs in Hr−1. If
it is covered byhr, then leths be the branch to the twighr in Hr. Sinceh′ ⊂ hr ∩ ∪Hi,
according to the definition of a twig,h′ must be covered byhs, which is part ofHr−1.

Thus, every hyperedge in the twig sequences introducesall the connections between

the new vertices in it and the vertices already covered by the previous hyperedges in the

sequence.

3.3.3 Recursive separators

Hyperforests and tree decompositions relate directly to separators in graphs. First recall

the definition of a separator:

Definition 3.10 (Graph separator). LetG(V ) be a graph. A vertex setS ⊂ V separates

between verticesu, v ∈ G \ S iff every path betweenv andu in G passes throughS.

A vertex setS ⊂ V separatestwo disjoint vertex setsU1, U2 ⊂ V \ S iff S separates

everyu1 ∈ U1 andu2 ∈ U2.

If S is a separator inG(V ), then the induced graphG|V \S is not connected, and thus

there is a partitioning ofV into V = S ∪ U1 ∪ U2 such thatS separatesU1 andU2. We say

thatS separatesG(V ) intoU1, U2 (this is not necessarily a unique partitioning).

In a standard tree, every vertex separates the tree into the subtrees radiating out of the

vertex. We will see how this can be generalized to hyperforests.

First note that the removal of an arc from a treeT separatesT (not exactly in the same

sense) into two subtrees, are on each side of the arc. In a graphG with a covering hyperfor-

estH and tree decompositionT (H), every arc in the tree decomposition corresponds to a
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separator inG: let (h1, h2) ∈ T separateT intoH1, H2. Then the intersections = h1 ∩ h2

separatesT into (∪H1) \ s and(∪H2) \ s.

Note that the separator isnot the hyperedge, but rather the intersection of two hy-

peredges, corresponding to an arc in the tree decomposition. Being intersections of two

non-identical hyperedges of size at mostk+ 1, the separators are thus of size at mostk. Of

course, since the hyperedges include the intersection, the hyperedges themselves are also

separators.

Consider the two induced subgraphs ofG overV1 = ∪H1 and overV2 = ∪H2. These

two induced subgraphs are covered byH1 andH2, which are bothk-hyperforests. Thus, the

separation can be continued recursively, separatingG further and further, up to subgraphs

of k+1 vertices or less. A coveringk-hyperforest thus corresponds to a recursive separation

of G(V ), with separators of size at mostk. Note that, at each recursive stage, the separator

is part of both of the resulting subgraphs.

The converse is also true: given such a recursive separation using separators of size at

mostk, a coveringk-hyperforest can be constructed. We will formalize this in the following

definition and theorem:

Definition 3.11 (Recursive Separability).A graphG(V ) is recursively separablewith sep-

arators of size at mostk iff either: (1) |V | ≤ k + 1 or (2) there exists a separator|S| ≤ k

that separatesG(V ) into V1, V2 and the induced subgraphs ofG onV1 ∪ S and onV2 ∪ S

are both recursively separable.

Theorem 3.12. A graphG has a coveringk-hyperforest iff it is recursively separable with

separators of size at mostk.

Corollary 3.13. The treewidth of a graph is the minimumk for which it is recursively

separable with separators of size at mostk.

This provides an alternate characterization of treewidth, which might demonstrate the

decomposability of the graph more vividly. The graph can be decomposed into small com-
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ponents, the “glue” between the components being small in each level of the decomposi-

tion.

Connectivity

The recursive separability shows that no part of the graph is very highly connected. This

property is much stronger than the connectivity of a graph. A graph is said to bek-

connected if the minimal separator is of sizek. Clearly, the treewidth is at least equal

to the connectivity of the graph. However, a graph with low connectivity may have a small

separator separating two large cliques. Low treewidth, through the recursive separation

property, guarantees a uniformly low degree of connectivity, throughout the graph. In fact:

Theorem 3.14. A graph has treewidth at mostk iff every induced subgraph of it is at most

k-connected.

Proof. If G has a coveringk-hyperforestH, every induced graph ofG is covered by the

corresponding induced sub-hyperforest ofH, guaranteeing a separator of size at mostk.

If every induced subgraph ofG is at mostk-connected, thenG is recursively separable,

since after each separation we can use the separator over the new subgraphs to continue the

recursion.

3.3.4 Triangulations

Perhaps the most common essentially equivalent form of hyperforests found in the literature

is triangulated graphs.

Definition 3.12 (Triangulated Graph). A graphG(V ) is triangulatediff it has no minimal

cycles of more then three vertices.

In a triangulated graph, every cycle of four or more vertices must have achord, i.e. an

edge connecting two non-consecutive vertices of the cycle. Because of this, triangulated

graphs are sometimes referred to also aschordal graphs.
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Definition 3.13 (Triangulation). A triangulationof a graphG(V ) is a triangulated super-

graphG′(V ) ⊃ G(V ).

Hyperforests and tree decompositions are tightly associated with triangulated graphs

through a structure called ajunction tree.

Tree decomposition of a triangulated graph

Theorem 3.15 (Junction Tree Theorem).For any triangulated graphG(V ), let C be the

set of maximal cliques inG(V ). ThenC is a hyperforest, i.e. it has a tree decomposition

J(C).

The tree decomposition over the maximal cliques,J(C) is called thejunction treeof the

triangulated graphG.

The Junction Tree Theorem shows that the the width ofC, i.e. max Clique(G) − 1

is an upper bound on the treewidth ofG. But this upper bound matches the lower bound

obtained in Corollary 3.3, showing that:

Corollary 3.16. The treewidth of a triangulated graphG is max Clique(()G)− 1.

Moreover, since any covering hyperforestH of G must cover all ofG’s cliques, it also

coversC. The hypergraphC is thus the unique minimal covering hyperforest of the triangu-

lated graphG. Note that non-triangulated graphs do not necessarily have a unique minimal

covering hyperforest— different triangulations ofG correspond to different covering hy-

perforests.

The junction treeJ itself isnotunique—there may be several tree structures overC for

which the decomposition property holds.

Hyperforests as triangulated graphs

We showed that a triangulated graph has a natural hyperforest associated with it. This

correspondence is bi-directional. A hyperforestH can be seen as a triangulated graph:
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Definition 3.14 (Infrastructure graph of a hypergraph). The infrastructuregraph of a

hypergraphH is the graphG that contains all the possible 2-edges covered byH: G =

{(u, v)|∃h∈Hu, v ∈ h}

In the infrastructure graph, every hyperedge becomes a clique.

Theorem 3.17. The infrastructure graph of a hyperforest is a triangulated graph.

Proof of Theorem:

LetH be a hyperforest with tree decompositionT , and letG be its infrastructure graph.
AssumeG is not triangulated, and letc = (v1, v2, . . . , vk, v, 1) be a chordless cycle inG.

Every edge in the cycle must be covered by a hyperedge inH, but no non-consecutive
vertices can lie in the same hyperedge (otherwise the edge between them is a chord). This
implies there arek distinct hyperedgesh1, . . . , hk ∈ H, each containing the corresponding
edge4 (vi, vi+1) ∈ hi, but not other vertices fromc. Note that there may be several hy-
peredges that cover each edge inc, and we choose only one covering hyperedge for each
edge.

Consider the hyperedgesh1, . . . , hk as nodes inT and the paths inT between them. Let
pi be the path betweenhi−1 andhi in T . From the decomposition property, all hyperedges
in the pathpi must containhi−1 ∩ hi, which includesvi, so no two non-consecutive paths
can intersect (or else the hyperedges in their intersection contain non-consecutive vertices
of c, forming a chord).

We now argue that by choosing the covering hyperedgeshi appropriately, we can as-
sume without loss of generality that consecutive pathspi, pi+1 do not intersect (except at
the endpointhi). If the paths do intersect, all hyperedges in their intersectionpi∩pi+1 must
include bothvi (because they are inpi) andvi+1 (because they are inpi+1). Thus, every
hyperedge inpi ∩ pi+1 covers the edge(vi, vi+1) and is a candidate forhi. To eliminate any
intersection, we can choose the hyperedge in the intersection that appears first inpi, as our
“new” hi, truncatingpi andpi+1 appropriately.

Therefore,p1, p2, . . . , pk, p1 arek-connected, but not intersecting, paths inT , forming
a cyclehk

p1−→ h1
p2−→ h2 · · ·hk−1

pk−→ hk in T , contrary toT being a tree.

We see that the correspondence between triangulated graphs and hyperforests is very

tight. In fact, there is a one-to-one correspondence between triangulated graphs and hy-

perforests in which all hyperedges are maximal (i.e., in which no hyperedge is covered by

4Here, and later in the proof, we omit the implied modulo on the index
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another hyperedge). In such cases Theorems 3.15 and 3.17 give the two directions of the

one-to-one correspondence.

Moreover, a graphG is covered by a hyperforestH if and only ifG is a subgraph of the

infrastructure graph ofH. Combining this observation with the above paragraph, we see

that a graphG is covered by a hyperforestH if and only if the infrastructure graph ofH is

a triangulation ofG. This leads us to the following theorem:

Theorem 3.18. For a graphG, the treewidth ofG is equal to the minimum over all trian-

gulationsG′ ofG, of the maximal clique size inG′, minus one:

width(G) = min
triang G′⊇G

max Clique(()G′)− 1 (3.1)

This theorem provides an alternate definition of treewidth that does not use the notions

of a hypergraph or tree decompositions.

3.4 Further Reading

We point the interested reader to further topics related to concepts discussed in this section.

These topics are beyond the scope of this thesis and are not used in the following chapters.

3.4.1 Algorithms for calculating treewidth and finding tree decompo-

sitions and triangulations

Calculating the treewidth of a graph is NP-hard in general [CP87]. However, for a constant

k, deciding if a graph is widthk, and even finding a coveringk-hyperforest, can be done

in linear time [Bod96]. However, the dependence onk is so extreme that the linear time

algorithms are impractical even for very smallk (as low as 4 or 5). Several approxima-

tion algorithms [BGHK95] and heuristics [SG97] have been suggested for finding narrow

covering hyperforests (or equivalently, triangulations) with better dependence onk. See

[Bod97] for further references.
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3.4.2 Graph minors

Robertson and Seymour show that classes of graphs which are closed under taking minors

can be characterized by “forbidden minors”:

Theorem 3.19 (Wagner’s “conjecture”). If a classG of graphs is closed under taking

minors, there exists a finite set of graphsF , called theobstructionof G, such that for every

graphG,G ∈ G iff there is no graph inF that is a minor ofG.5

Since graphs of bounded treewidth are closed under taking minors, we can characterize

them, for any boundk, by their obstruction. This characterization is sometimes useful. For

example, the first quadratic time algorithm6 for deciding if a graph has tree width at most

k, for fixedk, was based on the obstruction characterization [RS95].

3.4.3 Applications

Tree decompositions are useful in many applications in which it is beneficial to decompose

the graph into simple elements on which computation can be done independently, propa-

gating information along the tree structure. The main application of interest in this thesis is

Markov networks, which were introduced in Chapter 2. The connection between Markov

networks and tree decompositions will be discussed in detail in Section 5.1.

In this section we mention several other applications which may be of interest to the

reader. For more applications see [Bod93].

Sparse matrix inversion

If the rows and columns of a sparse matrix can be partitioned such that each group of

rows has non-zero entries only in one group of columns, and vice versa, the matrix can be

inverted by inverting each such block separately. If the non-zero blocks overlap, this can

still be done as long as the blocks form a hyperforest. Note that in this application, the

5More formally, no graph ofF is allowed to be isomorphic to a minor ofG
6And in fact, first poly-time algorithm where the exponent does not depend onk
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dependence on the clique sizes is cubic, or even slightly sub-cubic, and not exponential as

in most other application.

Combinatorial queries on graphs

Many combinatorial problems on graphs, which in general are hard (NP-hard and even

PSPACE-hard) can be decided in polynomial, and sometimes even linear, time on graphs

of bounded treewidth, using the covering hyperforest’s tree decomposition [AP89]. More

generally, any predicate that can be expressed in (generalized) monadic second order logic

over the graph can be solved in linear time for graphs of bounded tree width [Cou90]. The

dependence on the treewidth is, of course, exponential.
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Chapter 4

Hypertrees and the Maximum

Hypertree Problem

We are now ready to state the central combinatorial optimization problem this work is

concerned with— the maximum hypertree problem. In this chapter we present the problem

(in Section 4.1) and its variants and prove that, even in a very restricted form, it is NP-hard

(4.2).

In Section 4.3 we present some properties of hypertrees that might be used in approach-

ing the maximum hypertree problem, but that are not used in our algorithms. This last

section can be skipped without loss of understanding of the rest of the thesis.

4.1 Problem Statement: The Maximum Hypertree Prob-

lem

As we will see, we would like to find a maximum weight hypertree. When working with

standard graphs, a weight function assigns a weight to each potential edge, i.e. pair of

vertices, and the weight of the graph is the sum of the weights of its edges. However, for

our applications, as will be described in Section 5.3, it is essential to assign weights also to
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larger subsets of edges. A hyper-weight function assigns a weight to subsets of vertices of

arbitrary size, and the weight of a hypergraph is the sum ofall the weights of edgescovered

by it: w(H) =
∑

h∈H w(h).

The maximum hypertree problem is:
Given as inputs:

• An integer treewidthk.

• A vertex setV and a weight functionw :
(
V
k+1

)
→ < on hyperedges of size up

to and includingk + 1.

Find a hyperforestH(V ) of width at mostk that maximizesw(H) =
∑

h∈H w(h).

For a non-negative weight function, ak-hyperforest can always be expanded to ak-

hypertree with at least as much weight. And so a maximum weight hyperforest can always

be taken to be a hypertree. If some candidate edges have negative weight, this might not be

the case.

However, we limit our attention only to weight functions which are monotone onk-

hyperforests, i.e. such that for anyk-hyperforestH and any sub-hyperforest ofH ′ of H,

w(H) ≥ w(H ′). The maximum weight hyperforest will thus be also maximal with respect

to covering, and so will be ak-hypertree. It is enough to limit our attention to hypertrees,

and we refer to this problem as the maximum hypertree problem and not the maximum

hyperforest problem.

In practice, in the algorithms presented here, we will use only a weaker property, re-

quiring monotonicity only on cliques of at mostk + 1 vertices. Since such cliques are

hyperforests, monotonicity on cliques follows from monotonicity on hyperforests.

Whenk = 1, the maximum hypertree problem is simply the maximum spanning tree

problem, which is equivalent to the minimum spanning tree problem, and can be solved in

polynomial time [CLR89].

Since a weight can be specified for each possible hyperedge of size up tok + 1, the

input can be of sizeΘ(nk+1), meaning any algorithm will, at best, have an exponential
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dependence onk. As most uses of tree decompositions are exponentially dependent onk,

this is not an overly exaggerated input size.

The weight function assigns a weight toeverysubset of at mostk + 1 vertices. Every

such vertex set will be referred to as acandidate edge.

We will also discuss variants in which there are only zero/one weights, and in which

the weights are only on edges of a specific size.

4.2 Hardness of Maximum Hypertree

We show that the Maximum Hypertree problem with nonnegative weights (and so also with

monotone weights) is NP-hard, even for a constantk = 2 (for k = 1 this is the maximum

spanning tree problem, which can be solved in polynomial time). Furthermore, it is hard

even when the weights are only on 2-edges, and the weights are only zero or one. Under

this restrictions, the problem can also be formulated as: given a graphG, find a subgraph

G′ ⊂ G of treewidth at most 2, maximizing the number of edges inG′.

We first relax the zero/one weight restriction, and show a reduction from 3SAT to the

2-maximum hypertree problem, with integer weights on 2-edges.

Theorem 4.1. The maximum hypertree problem is NP-hard, even for treewidth two, and

weights only on 2-edges.

To prove the hardness, we show a reduction from 3SAT.

Overview of the (integer-weight) reduction

Given a 3CNF formulaφ overn variablesx1, . . . , xn andm clausesc1, . . . , cm we will

construct a vertex setV and a weight functionw overV , such thatφ is satisfiable iff there

exists a 2-hypertree overV with weight above some specified threshold.

The construction will consist of three layers:

• A core structure with high weight that must be included in any hyperforest that passes

the threshold. The core structure by itself has treewidth two.
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• Two “assignment” edges for each variable, corresponding to the two possible truth

assignments. The core structure combined with both edges has treewidth three, guar-

anteeing that only one “assignment” edge is chosen per variable. The weights of

these edges are such that at least one per variable must be included to reach the

threshold.

• For each literal appearing in a clause, a “satisfaction” edge of weight one. The core

construction, together with an “assignment” edge and a disagreeing “satisfaction”

edge have treewidth 3, guaranteeing that only correct literals can satisfy a clause.

Additionally, the core structure combined with two or more “satisfaction” edges for

the same clause has treewidth three. This is needed to prevent counting the satisfac-

tion of the same clause twice.

We will show that if a satisfying assignment exists, then a graph consisting of the core

structure, the “assignment” edges corresponding to the assignment, and one correct “satis-

faction” edge for each clause, has a covering 2-hyperforest, and weight exactly equal to the

threshold. On the other hand, we will show that any treewidth 2 graph with weight equal to

or exceeding the threshold must include the entire core structure, exactly one of each pair of

“assignment” edges, and a correct “satisfaction” edge for each clause, thus demonstrating

a satisfying assignment.

Details of the reduction

The vertices ofV are:

• Two verticesO andA.

• Three verticesxi, xTi , x
F
i for each variable.

• A vertexcj for each clause.

The weights are as follows:
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Figure 4-1: The “core” structure

• The following “core” edges will have weightwc = 10nm:

– The edge(O,A).

– For each vertex, the edges(xi, x
T
i ), (xi, x

F
i ), (xTi , x

F
i ), (xi, O), (xi, A).

– For each clause, the edge(O, cj).

The “core” structure is illustrated in Figure 4.2.

• For each variable, the two “assignment” edges(xTi , O) and(xFi , O) will have weight

wa = 4m.

• For each literalxi = α in clausecj, the “satisfaction” edge(xαi , cj) will have weight

one.

• All other candidate edges have weight zero.

We will require a threshold ofT = 5nwc+wc+nwa+m = (5n+1)10nm+4nm+m.

We now show thatφ is satisfiable iff there exists a hypertreeH(V ) such thatw(H) ≥ T .
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If φ is satisfiable, then∃H(V )w(H) = T

Consider the hypergraphH which includes the following hyperedges:

• For each variablexi the hyperedges(A,O, xi) and(O, xi, x
α
i ), corresponding to the

valueα assigned toxi in the satisfying assignment.

• Each clausecj has at least one correct literal. Choose one such literalxi = α and

include the hyperedge(O, cj, xαi ).

This hypergraph covers all the “core” edges, one of each pair of “assignment” edges, and

one “satisfaction” edge per clause, exactly attaining the required threshold. To see thatH

is acyclic, consider the following tree-structureT over its maximal hyperedges, and the

non-maximal hyperedge(O,A):

• The neighbors of hyperedge(O,A) in T are the hyperedges(A,O, xi), for all vari-

ablesxi.

• For each variablexi which is assigned valueα, the hyperedge(O, xi, xαi ) is adjacent

to (A,O, xi) in T .

• Each hyperedge of the form(O, cj, xαi ) in H, is adjacent to(O, xi, xαi ) in T .

If ∃H(V )w(H) ≥ T , thenφ is satisfiable

First note thatH must cover all “core” edges: the threshold is greater than the total weight

of core edges, and the combined weight of all non-“core” edges is less then a single “core”

edge, and so no “core” edge can be ignored.

Similarly, since the total weight of all “satisfaction” edges is less than a single “assign-

ment” edge, at leastn “satisfaction” edges must be covered. But if the two “assignment”

edges for the same variablexi are covered, then together with “core” edges, the four-clique

{O, xi, xTi , xFi } is covered, contrary toH being a 2-hyperforest. Thus, exactly one “as-

signment” edge is covered for each variable. The covered “assignment” edges imply an

assignment. We will show that this assignment satisfiesφ.
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Figure 4-2: Subgraph of width three resulting from inconsistent clause satisfaction

After accounting for the “core” edges, andn “assignment” edges,mmore “satisfaction”

edges are required to reach the threshold. We will first see that if a satisfaction edge is

covered, the corresponding clause is indeed satisfied. If a satisfaction edge(xT , c) (w.l.o.g.)

is covered, and the “wrong” assignment edge(xF , O) is also covered, then the subgraph

shown in Figure 4.2 is covered. Contracting the edge(c, O) yields a four-clique minor,

contrary toH being a 2-hyperforest. Thus,(xT , O) must be covered,x be assignedT , and

the clausec satisfied.

To see that all clauses are satisfied, we will show that each of then covered “satisfac-

tion” edges satisfies a different clause. If two “satisfaction” edges(xα1 , c) and(xβ2 , c) of

the same clausec are covered, the subgraph shown in Figure 4.2 is covered. Contracting

(c, xβ2 , x2, A) yields a four-clique, contrary toH being a 2-hyperforest.

Zero/one weights

We now show how to extend the reduction to zero/one weights:

Lemma 4.2. The 2-maximum-hypertree problem, with integer weights on 2-edges, can be

reduced to the the 2-maximum-hypertree problem, with zero/one weights on 2-edges. The

reduction is pseudo-polynomial, i.e. polynomial in the value of the weights.
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Figure 4-3: Subgraph of width three resulting from covering two “satisfaction” edges to
the same clause

Proof. Given a weight functionw over candidate 2-edges in vertex setV , we show how to

construct a graphG′(V ′), representing a zero/one weight functionw′ overV ′, such that the

maximal hypertree with respect tow′ is a constant additive distance away from the maximal

hypertree with respect tow.

Overview of reduction We would like to replace each candidate edge(v1, v2) overV ,

with w(v1, v2) parallel edges inG′. Because we are seeking a simple graph, we cannot do

that directly. Instead, we will replace(v1, v2) with w(v1, v2) parallel paths.

The straight-forward approach of adding addingw(v1, v2) intermediate points, with a

path of length two through each one of them, does not work. One can collect half the

weight, without suffering any consequences, by covering only the edges incident onv1, but

not completing any path tov2.

To prevent this possibility of eating the cake while leaving it whole, we make the edges

from v1 to the intermediate points mandatory, regardless of whether(v1, v2) is covered. The

collectible weights are only between the intermediate vertices andv2, and covering even

one of them is enough to guarantee a minor in whichv1 andv2 are adjacent.
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Figure 4-4: The subgraph replacing a single edge of weight four betweenv1 andv2

We create mandatory edges betweenv1 and an intermediate vertexu, by adding yet

another level of intermediate points. But this time so many intermediate points, in fact

more then the whole weight inw, that any maximal hypertree must cover nearly all of them

(see Figure 4.2). In any case at least one path fromv1 to u must be covered, for every

intermediate vertexu on every edge(v1, v2). The weight on these mandatory edges causes

an additive constant between the weight of maximal trees with respect tow andw′.

Any 2-hyperforestH overV , can be extended to a 2-hyperforestH ′ overV ′, which

covers all mandatory edges, and all additional edges corresponding to 2-edges covered by

H. The weightw′(H ′) is thus equal tow(H), plus the weight of all mandatory edges,

which is a predetermined constant.

We constructively show how the maximal hypertreeH ′ with respect tow′, has a minor

H which covers weight of at leastw′(H ′) minus the weight of all mandatory edges. As

discussed above,H ′ must cover at least one pair of edges(v1, t), (t, u) for every interme-

diate vertexu on every edge(v1, v2). For everyv1, v2, u, contract those two edges, and
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delete any other second level intermediate vertices. The resulting minor isH. Consider a

non-mandatory edge(u, v2) covered byH ′. This edge was part of a path corresponding to

an edge(v1, v2), butv1 andu have now been contracted together, so(v1, v2) is covered by

H. For every(v1, v2), there are onlyw(v1, v2) such intermediate vertices, and so thew(H)

contains all the non-mandatory weight fromH ′.

SinceH is a minor ofH ′, it has treewidth at most 2, i.e. covered by a 2-hypertree, the

weight of which is at least the weight ofH.

Corollary 4.3. The maximum hypertree problem is NP-hard, even fork = 2, zero/one

weights, and weights only on 2-edges.

Proof of Corollary:

Although the reduction in Lemma 4.2 is pseudo-polynomial, note that the weights in
the reduction of Theorem 4.1 are polynomial in the size of the 3CNF formula.

Note that both reduction presented have a significant additive constant, and are thus not

L-reductions, and do not show hardness of approximation.

4.3 Properties of Hyper Trees and Maximal Hyper Trees

We present, without proof, some combinatorial properties of hypertrees. We discuss how,

like 1-trees, hypertrees display a rather regular structure, with a constant number of hyper-

edges, and a balance between acyclicity and connectedness. This regular structure allows

for equivalent alternate characterizations of hypertrees, which can be used in setting the

constraints of optimization algorithms. However, we are yet unable to leverage these con-

straints for efficient algorithms to solve, or at least approximate, the maximum hypertree

problem. We present the properties for reference only; they are not used in subsequent

sections or chapters.
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For a vertex setV with at mostk+1 vertices, the hypergraph{V } consisting of the full

hyperedge (the hyperedge containing all vertices) is a hyperforest of width at mostk. Since

this hypergraph obviously covers any other hypergraph, it is also the onlyk-hypertree. In

the discussion that follows, we will always assume there are at leastk + 1 vertices.

We would like to investigate what properties of 1-trees extend to hypertrees. Recall the

following equivalent definitions for a 1-tree:

• A maximal acyclic graph.

• An acyclic graph withn− 1 edges.

• A minimal connected graph.

• A connected graph withn− 1 edges.

• An acyclic connected graph.

The definition we have used so far is a generalization of the first of these definitions. We

will see that all of these equivalent characterizations can be generalized to hypertrees, if

“connectedness” is generalized properly.

We first note that a hypertree is always a regular hypergraph, i.e. all maximal hyper-

edges in ak-hypertree are of size exactlyk+ 1. Furthermore, ak-hypertree overn vertices

hasexactlyn− k regular (i.e. sizek + 1) edges. We get the second equivalent definition:

• a hypergraph with maximum edge-sizek + 1 is ak-hypertree if it is acyclic and has

exactlyn− k edges of sizek + 1.

It is also useful that the number of covered hyperedges of each size is constant. The

number of edges of sizer ≤ k covered by ak-hypertree is exactly
(
k
r

) (
n− k − 1 + k+1

r

)
.

In order to generalize connectivity, we introduce the following definitions:

Definition 4.1. Two hyperedges of a hypergraphh1, h2 ∈ H, both of sizek + 1, are said

to be strongly adjacentiff the size of their intersection isk: |h1 ∩ h2| = k. A series
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of hyperedges(h1, h2, . . . , hr) is said to be astrongly connected edge pathin a regular

hypergraphH iff consecutive hyperedges are strongly adjacent. A regular hypergraph

H(V ) is said to bestrongly connectediff for every two verticesu, v ∈ V , there exists a

strongly connected edge path inH, such thatu appears in the first hyperedge of the path,

andv appears in the last.

Hypertrees are always strongly connected, and the following hold:

• A hypergraph is ak-hypertree iff it is minimal strongly-connectedk + 1-regular

hypergraph.

• A hypergraph is ak-hypertree iff it is a strongly-connectedk+ 1 regular hypergraph

with exactlyn− k regular (sizek + 1) edges.



Chapter 5

Equivalence of Markov Network

Projections and Maximum Hypertrees

In this chapter we describe how the Markov network projection problem can be reduced to a

combinatorial problem of finding the maximum weight hypertree. That is, how the learning

problem can be solved using the combinatorial problem. We also describe the reverse

reduction and its implications about the hardness of the learning problem, and discuss the

connections between approximate solutions of the two problems.

In Section 5.1 we set the ground for the reductions by establishing the connection be-

tween the decomposition of Markov networks and the covering hyperforest of their un-

derlying graph. This connection was first alluded to in Section 2.2.3, where triangulated

Markov networks were discussed. In particular we prove the factoring specified in equation

(2.6). Section 5.1 is based on previously known results [WL83], although the presentation

here is different in that it uses the notion of hyperforests to discuss the cliques of a triangu-

lated graph.

The rest of the chapter presents original results, relating the Markov network projection

problem to the maximum hypertree problem.

The connection between hypertrees and Markov network projections was previously

addressed by Malvistutu [Mal91]. However, hyperedge weights were not discussed in that

67
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work, and to the best of our knowledge this is the first formulization of the maximum

hypertree problem in terms of sum-of-hyperedge-weights. This formalization leads to a

purely combinatorial problem (finding maximum hypertrees) which, as we show here, is

equivalent to the Markov network projection problem. To the best of our knowledge, this is

the first demonstration of a combinatorial problem proven to be equivalent to the Markov

network projection problem. This equivalence facilitates analysis of the hardness and of

the approximability of finding Markov network projections.

5.1 Decomposition Over Hyperforests

In this section we show how a Markov network is factorizable over a covering hyperforest

of its dependency graph. As we will define shortly, a distribution is said to befactorizable

over a hypergraphif it can be written as a product offactorscorresponding to the hyper-

edges of the hypergraph. For Markov networks, we present an explicit factorization and

prove it. We also discuss the converse, i.e. whether a factorizable distribution is a Markov

network.

The factorization presented here is essentially the same as the factorization over cliques

for a triangulated graph, given but not proved in equation (2.6) of Section 2.2.3. In fact,

since the cliques of a triangulated graph form a hyperforest (Theorem 3.15), we essentially

prove (2.6) and the Hammersly-Clifford Theorem (Theorem 2.1) for triangulated graphs.

Definition 5.1. A distributionP over a random vectorXV is factorizable over a hyper-

graphH(X) if the distribution can be written as:

P (x) =
∏
h∈H

φh(xh) (5.1)

for some set{φh}h∈H of factors, one factor for each hyperedge ofH. A factorφh corre-

sponding to hyperedgeh is a function only over the outcomes of the variablesXh (i.e. those

indexed by vertices inh).
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Note that it is enough to specify factors only over maximal hyperedges, since sub-edges

can always be “swallowed” inside them. However, in many cases, it is convenient to give a

factorization in terms of all covered, not necessarily maximal, hyperedges.

We will see how Markov networks are tightly connected with factorizations over hy-

pergraphs, and especially hyperforests.

Theorem 5.1. LetX be a Markov network over a graphG(X) with covering hyperforest

H(X). Then the distribution ofX is factorizable overH, with the following factors:

φh(xh)
.
=

Pr (xh)∏
h′⊂h φh′(xh′)

(5.2)

Note that a product of factors of all covered, not necessarily maximal, hyperedge should

be taken. Similar to equation (2.6) in Section 2.2.3, the factors (5.2) are recursively defined,

factors of larger hyperedges being based on the factors of their sub-edges.

Proof. By Theorem 3.9,H is Graham reduceable. We will prove by induction on the

reduction, that the factors given by (5.2) multiply out to the correct distribution. For an

empty graph, the factorization is empty, and trivially true. We will show that ifH has a

leafv and the factors for the induced subgraphH[V − v] given by (5.2) multiply out to the

marginal distribution ofXV−v:

Pr (xV−v) =
∏

h∈H[V−v]

φh(xh) (5.3)

then multiplying all the factors forH yields the complete distribution.

SinceX is a Markov network,Xv only depends on its neighbors inG. SinceH covers

G, all neighbors inG are also neighbors inH. But v is a leaf, and so there is a unique

maximal hyperedgeh ∈ H that includes it, and so also all its neighbors:

Pr (x) = Pr (xV−v)Pr (xv|xV−v)

= Pr (xV−v)Pr (xv|xh)
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Using the factorization (5.3) ofXV−v:

=
∏

h′∈H[V−v]

φh′(xh)Pr (xv|xh) (5.4)

We now have to show that the factors of the new hyperedgesH \ H[V − v] multiply out

to Pr (xv|xh). The only new hyperedges are those containingv, and the only maximal

hyperedge containingv is h, and so the new hyperedges areh itself, and the its sub-edges

containingv:

φh(xh)
∏

h′:v∈h′⊂h

φh′(xh′) =
Pr (xh)∏
h′⊂h φh′(x

′
h)

∏
h′:v∈h′⊂h

φh′(xh′)

=
Pr (xh)∏

h′⊂h−v φh′(xh′)
(5.5)

Using the induction assumption onXh−v with its induced hypergraphH[h− v] = {h− v},

we know thatPr (xh−v) =
∏

h′⊂h−v φh′(xh′). Inserting this in the denominator of (5.5)

yields:

φh(xh)
∏

h′:v∈h′⊂h

φh′(xh′) =
Pr (xh)

Pr (xh−v)
= Pr (xv|xh−v). (5.6)

Combining equations (5.4) and (5.6) yields the desired factorization ofXV .

The converse

Theorem 5.1 shows that factorization over a covering hyperforest is a necessary condition

for a distribution to be a Markov network. Is this also a sufficient condition ? The straight-

forward converse of the theorem is not always true. In the theorem statement we required

thatH be any covering hyperforest ofG. A complete hyperforest (a hyperforest with

the complete vertex set as an edge) covers any graph, and any distribution, even those

incompatible withG, trivially factorizes over it.

Even ifH is a minimal covering hyperforest, the converse does not necessarily hold.
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Figure 5-1: A graph on which the converse of Theorem 5.1 does not hold.

Consider the four-cycle in Figure 5.1. A possible minimal covering hyperforest isH =

{{a, b, c}, {b, c, d}}. A distribution over the binary random vector(Xa, Xb, Xc, Xd) where

P (xa, xb, xc, xd) =


1
8

If xb = xc

0 otherwise

is clearly factorizable overH, but is not a Markov network over the four cycle, sinceXb

andXc are dependent even givenXa andXd. To “fix” this, the edge(b, c), which is part of

the infrastructure graph ofH, would need to be added to the four-cycle. The edge(b, c) is

covered byH, and so distributions that include this dependency are factorizable overH.

The failure of the converse that we saw for a four cycle resulted from the covering

hyperforest covering “too much”, i.e. covering edges not in the original dependency graph.

If, however, the graphG includesall edges covered by a hyperforestH, i.e. G is the

infrastructure graph ofH, then the converse is true and every distribution factorizable over

H is a Markov network overG. 1

As shown in Section 3.3.4, the class of graphs that are infrastructure graphs of hyper-

forests is exactly the class of triangulated graphs, for which we discussed factorization in

Section 2.2.3. Thus, for a triangulated graphG, a distribution is a Markov network over

G if and only if it is factorizable over its minimal covering hyperforest, which is its clique

1Note that the converse is true forG if and only if G is an infrastructure graph ofH. This condition is
also equivalent toH being theuniqueminimal covering hyperforest ofG.
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hypergraph. If it is factorizable, a possible factorization is given by equation (2.6). Note

that there are many equivalent factorizations, (2.6) being only one of them.

5.2 Projection Over a Specified Graph

Even for a pre-specified graphG, projecting a distribution to a Markov network overG, is

not necessarily straight-forward. IfG is non-triangulated, calculating the Markov network

X overG which is closest to the target distribution might require iterative calculations and

cannot be specified explicitly [Pea97].

However, as indicated in Section 2.2.3, if the graphG is triangulated then the bidirec-

tional correspondence between Markov networks overG and factorizations over its clique-

forest can be used to specify the projection explicitly. We will show that the projection

of a distributionPT onto distributions factorizable over a specified hypergraphH is the

unique distribution that agrees withPT over all marginals corresponding to hyperedges in

H. Because of the bidirectional correspondence, Markov networks over a triangulatedG

form such a class (being exactly those distributions factorizable over the clique-forest of

G), and so this characterization of the projected distributions applies. We will then show

the factors of the this projected distribution can be explicitly calculated.

Theorem 5.2. For a specified hypergraphH, the projection of any distributionPT onto

the class of distributions factorizable overH, is the unique distribution̂P that agrees with

PT on all marginals corresponding toH:

∀h∈HPT(Xh) = P̂ (Xh) (5.7)

Note that we do not require thatH be a acyclic. However, this class of distributions

corresponds to a Markov networks over some graph only ifH is acyclic.
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Proof. The projected distribution is the one minimizing the information divergence:

arg min
P factorizable overH

H(PT||P ) = arg min
P

(
EPT

[
logPT

]
− EPT [logP ]

)
But EPT

[
logPT

]
is constant (does not depend onP ), and so:

= arg max
P factorizable overH

EPT [logP ] (5.8)

whereP is limited to distributions factorizable overH, i.e. P is any distribution that can

be written as:

P (x) =
1

z

∏
h

φh(xh), (5.9)

for any non-negative factorsφ, and an appropriate normalizing constantz. Previously,

we discussed factorizations which do not require an explicit normalizing constant. This

requires the factors to multiply out to a valid distribution, and so introduces constraints

on the possible sets of factors. However, we are now about to maximize over the factors,

and so would prefer eliminating such constraints, and instead introducing a normalization

factor that depends on all the factors:

z =
∑
x

∏
h

φh(xh). (5.10)

To solve the maximization problem (5.8), we shall set to zero the partial derivatives of

EPT [logP ] with respect toφš(x̌š), the value of the factorφš on the outcoměxš, for all

š ∈ H and for all possible outcomešxš of the variablesXš:
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0 =
∂EX∼PT [logP (X)]

∂φš(x̌š)

=
∂EX∼PT

[
log
(

1
z

∏
h∈H φh(Xh)

)]
∂φš(x̌š)

[using (5.9)]

=
∂
(∑

h∈H EX∼PT [log φh(Xh)]− EX∼PT [log z]
)

∂φš(x̌š)

(5.11)

We will take the derivatives of the two terms separately:

∂
∑

h∈H EX∼PT [log φh(Xh)]

∂φš(x̌š)
=
∑
h∈H

EX∼PT

[
∂ log φh(Xh)

∂φš(x̌š)

]

Forh 6= š, log φh(Xh) does not depend onφš(x̌š) and the derivative is zero. Accordingly,

the only relevant term in the sum ish = š:

= EX∼PT

[
∂ log φš(Xš)

∂φš(x̌š)

]

Similarly, φš(Xš) will only depend onφš(x̌š) if Xš = x̌š. This happens with probability

PT(x̌x̌), and in all other cases the derivative is zero:

= PT(x̌š)
∂ log φš(x̌š)

∂φš(x̌š)

= PT(x̌š)
1

φš(x̌š)
(5.12)
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As for the other term of (5.11), note thatz is constant with respect toX, and soE [log z] =

log z and we have:

∂EX∼PT [log z]

∂φš(x̌š)
=

∂ log z

∂φš(x̌š)
=

1

z

∂z

∂φš(x̌š)

=
1

z

∂
∑

x

∏
h φh(xh)

∂φš(x̌š)
=

1

z

∑
x

∂
∏

h φh(xh)

∂φš(x̌š)

=
1

z

∑
x

∂
∏

h 6=š φh(xh) · φš(xš)
∂φš(x̌š)

=
∑
x

∏
h 6=š φh(xh)

z

∂φš(xš)

∂φš(x̌š)

Again,φš(xš) depends onφš(x̌š) only if xš = x̌š, while in all other cases the derivative is

zero:

=
∑

x|xš=x̌š

∏
h 6=š φh(xh)

z

∂φš(xš)

∂φš(x̌š)

=
∑

x|xš=x̌š

∏
h 6=š φh(xh)

z

∂φš(x̌š)

∂φš(x̌š)

=
∑

x|xš=x̌š

∏
h 6=š φh(xh)

z
· 1

=
∑

x|xš=x̌š

∏
h φh(x)(xh)

z

1

φš(x̌š)

=
1

φš(x̌š)

∑
x|xš=x̌š

∏
h φh(x)(xh)

z

But this is exactly the distributionP , as given in (5.9):

=
1

š(x̌š)

∑
x|xš=x̌š

P (x)

=
P (x̌š)

φš(x̌š)
(5.13)
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Substituting (5.12) and (5.13) in (5.11):

0 =
PT(x̌š)

φš(x̌š)
− P (x̌š)

φš(x̌š)

PT(x̌š) = P (x̌š) (5.14)

This holds for alľs ∈ H and for allx̌, meaning thatPT and the distribution maximizing

(5.8), which is the projected distribution, must agree on all marginals corresponding to

hyperedges inH.

Corollary 5.3. For a specified triangulated graphG with clique-forestH, the projection

of any distributionPT onto Markov networks overG, is given explicitly by the following

factorization overH:

P̂ (x) =
∏
h∈H

φ̂h(xh) (5.15)

where the product is over allcoveredhyperedges, and the factors are given recursively by:

φ̂h(xh) =
PT(xh)∏
h′⊂h φ̂h(xh)

(5.16)

Proof. The class of distributions which are Markov networks overG is exactly the class

of distributions factorizable overH, and so by Theorem 5.2, the projection̂P onto this

class agrees withPT over all marginals corresponding toPT. By Theorem 5.1, the fac-

torization of a distribution overH, and in particularP̂ , is given by (5.2). Note that only

marginals corresponding to hyperedges inH appear in (5.2), and so we can replace them

with marginals ofPT, yielding (5.16).
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5.3 Reducing Markov Network Projection to Maximum

Hypertrees

In the previous section we saw that the projecting a distribution onto Markov networks

over aspecifiedtriangulated graph can be found explicitly, and in a straight-forward way.

We are now concerned with the true problem of this thesis— projecting a distribution onto

Markov networks over any graph of treewidth at mostk. That is, finding both a graph

G and a Markov network overG, that minimizes the divergence to the target distribution.

Note that finding theprojected graphG is enough, since we already know how to find

the closest distribution among the Markov networks over it. For a graphG, we call the

minimum information divergence to a Markov network overG, theinformation divergence

to the graphG.

A possible approach to finding the projected graph might be to enumerate over all

graphs of tree width at mostk, calculating the information divergence to each one, using

the explicit specification of projection onto the graph. However, the exponential number of

possible graphs makes this approach infeasible even for a fairly small number of variables.

5.3.1 Accumulating relative entropy using weights

A possible alternative approach, that might be more efficient, is to analyze the contribution

of local elements in the graph to reducing the information divergence. Adding edges to

the graph increases the space of admissible distributions, and thus reduces the information

divergence. We would like to decompose the reduction in the information divergence due

to “local elements”, e.g. edges, or small cliques. We might then be able to find a graph

which includes many such local elements with a high contribution.

Chow and Liu [CL68] analyzed the case in which the graphs are limited to be trees.

They showed that the reduction in information divergence, relative to the empty graph, can

be additively decomposed to edges. The contribution of each edge of the tree is the relative

information between its nodes. If a weight equal to the relative information is associated
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with each edge, the maximum weight tree is thus the minimum information divergence

tree. Such a tree can be found efficiently.

We show here that fork-bounded treewidth graphs, edges are not enough, butk + 1-

sized local elements are enough. We will specify weights onhyperedgesinstead of edges,

and show that the weight of a hyperforest is exactly the reduction in information divergence

of its infrastructure graph (versus the empty graph). Therefore, by maximizing the weight

of a hyperforest, the projected Markov network structure can be attained.

The minimum information divergence to a triangulated graph is:

H
(
PT‖G

)
= min

P is a
Markov net overG

EX∼PT

[
log

PT(X)

P (X)

]

which using the explicit factorization of the projected Markov network:

= EX∼PT

[
log

PT(X)∏
h∈Clique(G)

φ̂h(Xh)

]

= EPT

[
logPT

]
−

∑
h∈Clique(G)

EX∼PT

[
log φ̂h(Xh)

]

and setting the weight for each candidate clique towh = EPT

[
log φ̂h

]
:

= −H(PT)−
∑

h∈Clique(G)

wh (5.17)

An important point is that the weightswh dependonly on the target distributionPT, and

not on the structure of the graphG (as long as it is triangulated). This is because on a

triangulated graph the projected factors are given by (5.2), which, unrolling the recursion,

depends only on marginals ofPT insideh, and nothing else. Taking the weightswh =

EPT

[
log φ̂h

]
, the minimum information divergence toany triangulated graphG is given

by (5.17), summing over all cliques covered byG.
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As discussed, a weightwh depends only on the marginal ofPT overh, and is given by:

wh = EX∼PT

[
log φ̂h(Xh)

]
= EX∼PT

[
log

PT(Xh)∏
h′⊂h φ̂h′Xh′

]
= EX∼PT

[
logPT(Xh)

]
−
∑
h′⊂h

EX∼PT

[
log φ̂h′Xh′

]
= −H(PT(Xh))−

∑
h′⊂h

wh′ (5.18)

This provides for a simple recursive specification of the weights. Unrolling this recursion,

the weight of a candidate hyperedge can also be written as a sum:

wh = −
∑
h′⊆h

(−1)|h|−|h
′|H(PT(Xh′)) (5.19)

5.3.2 Negative, but monotone, weights

Note that some of the weights might be negative. For example, weights corresponding to

singletons{v} have no sub-cliques, and thereforew{v} = −H(Xv) < 0. In fact, returning

to the derivation of (5.17),
∑

h∈Clique(G)
wh = EPT

[
log P̂

]
< 0, and so the sum of the

weights is always negative. However, as more edges are added to the graph, the admissi-

ble distributions are less limited and projected distribution can become more similar to the

target distribution, thus increasingEPT

[
log P̂

]
(i.e. pulling it closer to zero). This means

that weights of edges beyond singletons should generally have a positive contribution, rep-

resenting the reduction in the information divergence, or equivalently the gain in negative

cross-entropy.

There might still be multiple-vertex cliques with negative weights. For example, con-

sider a Markov chain over three variablesX1 → X2 → X3. The candidate hyperedge

(1, 2, 3) has negative weight, equal to minus the mutual information betweenX1 andX3.

However, it is important to note that the weight is monotone onk-hyperforests. I.e. the

weight of ak-hyperforest is greater or equal to the weight of any sub-hyperforest, and so

the weight of the difference between two nested hyperforests is non-negative. LetG′ ⊂ G
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be nested hyperforests, then:

∑
h∈G\G′

wh =
∑
h∈G

wh −
∑
h∈G′

wh

=
∑
h∈G

EXh∼PT

[
log φ̂h(Xh)

]
−
∑
h∈G′

EXh∼PT

[
log φ̂h(Xh)

]
=
∑
h∈G

EXh∼P̂G

[
log φ̂h(Xh)

]
−
∑
h∈G′

EXh∼P̂G

[
log φ̂h(Xh)

]
= EX∼P̂G

[
log

∏
h∈G log φ̂h(Xh)∏
h∈G′ φ̂h(Xh)

]

= EP̂G

[
log

P̂G

P̂G′

]
= H

(
P̂G‖P̂G′

)
.
= HPT (G‖G′) ≥ 0 (5.20)

whereH (·‖·) is the, always non-negative, information divergence between distributions,

and we useHPT (G‖G′) to denote the information divergence between the projection of

PT on the respective graphs.

As suggested before, this monotonicity is not surprising, since by (5.17), the difference

in the weights of the hyperforests represents the difference in their minimum information

divergence from the target distribution. But any distribution that is a Markov network over

G′ is also a Markov network overG, and so the projected distribution overGmust be closer

to PT than the projected distribution overG′, yielding a smaller information divergence to

G, and so by (5.17) requiring the weight to be higher.

Note that these arguments hold only if bothG andG′ are acyclic. Otherwise (5.17)

does not hold, and the weight of the graph does not represent any meaningful information

quantity as the product of the factors does not multiply out to a valid distribution function,

let alone the projected distribution.

Negative weights may pose a problem to many algorithm, and this monotonicity helps

resolve this problem. The algorithms we present do not work well with general negative

weights, but we show that they work properly with weight functions which are monotone
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−H(PT)

−H(P̂G)

−H(P̂∅)

........
........
......................

...........................
........
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........
........
......................

...........................
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...........................
........
...

∑
wh

H
(
PT‖G

)

0

Negative Cross Entropy / Log Likelihood

Figure 5-2:H
(
PT‖G

)
= (EPT [log ∅]−H(PT))−

∑
h∈Clique(G),|h|>1

wh

onk-hyperforests.

Overall picture of the decomposition

In any graph, all single vertices will form cliques, and these would be taken in any case.

The sum of these weights correspond to the negative cross entropy of the empty graph

EPT [log ∅] and represent the base negative cross entropy, from which we only climb up.

This is represented in Figure 5.3.2. We would like to minimize the information divergence,

and so to maximize
∑

h∈Clique(G),|h|>1
wh = HPT (G‖∅), which is the gain in negative

cross entropy relative to the empty graph.
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5.3.3 The reduction

We have shown how the problem of projecting a distribution onto Markov networks of

bounded treewidthk (i.e. onto triangulated graphs of bounded clique sizek + 1) can be

reduced to finding a maximum weightk-hyperforest for a weight function which is mono-

tone on acyclic hypergraphs. If we knew how to find such a maximum weight hyperforest,

we would choose a weight function assigning to each possible cliqueh, of more then a

single vertex, the weight

w(h) = −H(PT(Xh))−
∑
h′⊂h

wh′ (5.21)

defined recursively on all sets of vertices, including singletons. This weight can be calcu-

lated immediately from the empirical marginalP̂C . The infrastructure graph of the maxi-

mum weight hyperforest would then be the projected graph.

As discussed in Section 2.3.2, the problem of finding the maximum likelihood Markov

network for a given sample can be formulated as a projection problem of the empirical

distribution, and so can be reduced in the same way.

5.3.4 The complexity of the reduction

The reduction yields a maximum hyperforest problem of sizeO(nk+1), as
(
n
k+1

)
weights

must be specified. As we have not considered the representation of the target distribution,

we cannot discuss the complexity of the reduction in terms of the problem ’size’, as this

of course depends on the representation. We do not want to go into the issues of input

representations of the distribution, except for one special case which originally motivated

us: when the distribution is an empirical distribution of some sample.

The “input representation” in this case is the sample itself, of sizeO(Tn logm), where

T is the sample size andm is the number of possible outcomes for each random variable.

And so, if k is part of the input, the reduction isnot polynomial in the sample, as it is

exponential ink while the sample is independent of it. Ifk is constant, then the reduction
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is polynomial.

As the number of parameters in the resulting model, and so also the complexity of

calculations on the resulting distribution, is also exponential ink, it is tempting to hope

that the reduction is at least polynomial in the resulting number of parameters. This is

essentially the output size of the learning problem, and practically also a bound on the

input size, as one would generally not have less data then there are parameters to learn.

However, this isnot the case. The number of parameters is onlyO
(
nmk+1

)
. Thus if

n >> m, the reduction is supper-polynomial even in the resulting number of parameters.

5.4 Reducing The Maximum Hypertrees Problem to the

Maximum Likelihood Markov Network Problem

It is also interesting to note that for every non-negative weight function of candidate hy-

peredges of a fixed size, there exists a distribution that yields weights proportional to this

set of weights. I.e. the problem of finding a maximum hyperforest, at least for a non-

negative weight function, can be reduced to projecting a distribution to Markov networks

of bounded treewidth. Furthermore, a “small” sample can be constructed, with an empiri-

cal distribution yielding weights which are close enough to these weights, conserving the

exact structure of the projected graph. I.e. the problem of finding a maximum hyperforest

(for non-negative weights) can also be reduced to finding a maximum likelihood Markov

network for empirical data.

This reduction is weak, in the sense that the sample size needed to produce specific

weights is polynomial in thevalueof the weights (and so exponential in the size of their

representation). Still, using hardness results from Chapter 5, this pseudo-polynomial re-

duction is enough in order to show NP-hardness of finding a maximum likelihood Markov

networks of bounded treewidth, even for treewidth two.
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5.4.1 A distribution yielding desired weights

For a given weight functionw :
(
V
k+1

)
→ [0, 1) on candidate edges of size exactlyk + 1,

we will consider each vertex as a binary variable, and construct a distributionPw over these

variables. The distribution will be such that using it as a target distribution in (5.21) will

yield weightsw′ proportional tow.

We will assume, without loss of generality, that∀Cw(C) < 1.

The distributionPw will be a uniform mixture of
(
n
k+1

)
distributionsP h

w, one for each

h ∈
(
V
k+1

)
. Each suchP h

w will deviate from uniformity only by a bias ofr(h) in the parity

of the variables inh. We show below how to selectr(h) according tow(h). Explicitly:

P h
w(x) =


1+r(h)

2|V |
If
∑

v∈h xv is odd

1−r(h)

2|V |
If
∑

v∈h xv is even
(5.22)

This results in a mixed distributionPw in which all marginals over at mostk variables

are uniform (and therefore have zero corresponding weight), while the marginal over a

hyperedgeh of size exactlyk + 1 has a bias ofb = r(h)

( n
k+1)

. The corresponding weight is

therefore

w′(h) = −H(Xh)−
∑
h′⊂h

w(h)

= −H(Xh)−
∑

v ∈ h(−H(Xv))

= |h| × 1−H(Xh)

= (k + 1) +
∑
xh

Pw(xh) logPw(xh)

= (k + 1) + 2k
1 + b

2k+1
log

1 + b

2k+1
+ 2k

1− b
2k+1

log
1− b
2k+1

= (k + 1) + 1
2

((1 + b) log(1 + b) + (1− b) log(1− b))− (k + 1)

= 1
2

((1 + b) log(1 + b) + (1− b) log(1− b)) (5.23)
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Using the natural logarithm and taking the Taylor expansion:

= 1
2

(
(1 + b)

∑
i=1

(−1)i−1

i
bi + (1− b)

∑
i=1

(−1)i−1

i
(−b)i

)
=

∑
i=2 even

1

i(i− 1)
bi

=
b2

2
+O(b4) =

1

2
(
n
k+1

)2 r(h)2 +O(r(h)4) (5.24)

(5.25)

Choosingr(h) to be approximately
√
w(h) (or more precisely, the inverse function of

(5.23)) yields weights proportional tow.

5.4.2 A sample yielding desired weights

We have shown a distribution that produces weights proportional to any desired non-

negative weight function. However, since this the biases in this distribution might be ir-

rational (and in fact if the weights are rational, the biases must be irrational, being the

inverse of (5.23)), there is no finite sample that has such a distribution as its empirical

distribution.

However, we will show a finite sample that results in weights which are close enough

to the desired weights, such that the optimal structure is conserved. Given a rational weight

functionw, we will show a sample with empirical distribution̂Pw that produces weights

w′′(h) = w′(h) + e(h) such thatw′ are proportional tow, and
∑

h |e(h)| < δ whereδ =

minh1,h2,w′(h1) 6=w′(h2) |w′(h1)− w′(h2)| is the granularity of the weights. This is enough,

since thew′ andw′′ weights of the optimal hypergraph will be withinδ, less then the

possible difference due to taking edges with differing weights.
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Constructing a sample with rational biases

We first show how to construct a sample which yields an empirical distribution similar

in structure toPw, with rational biases onk + 1 candidate edges. I.e. for any mapping

h 7→ ph
Q
< 1 (we assume a common denominator) we construct a sampleS p

Q
with empirical

distribution P̂ p
Q

such that for any|h| ≤ k, the empirical distribution is uniform, and for

|h| = k + 1:

P̂ p
Q

(xh) =


(

1 + ph

Q
(
n
k+1

)) 2−|V | If
∑

v∈h xv is odd(
1− ph

Q
(
n
k+1

)) 2−|V | If
∑

v∈h xv is even
(5.26)

Unlike the exactPw, parities of larger sets might be very biased. However, these do not

effect the resulting weights when searching for widthk Markov networks.

We will build the sample as a pooling of
(
n
k+1

)
equisized samplesShp

Q
, one for each

candidate edge of sizek + 1. Each suchShp
Q

will be constructed fromQ equisized blocks

of (k + 1)-wise uniformly independent sample vectors. . But forp of these blocks, we will

invert the elements ofh appropriately so as to set the parity ofxth to be odd for all sample

vectors in the block. Note that this can be done without disrupting the uniformity of any

other set of vertices of size at mostk + 1. The resultingShp
Q

will be uniform on all subsets

of size up tok + 1, except for a bias ofp(h)
Q

onh. Pooling these together yields the desired

empirical distribution.

Using [AS91],k + 1-wise independent blocks can be created of size2nk+1, yielding a

total sample size of
(
n
k+1

)
Q2nk+1 = O(Qn2k+2), whereQ is the common denominator of

the rational weights.

Approximating the weights with rational biases

We now know how to construct a sample with specifiedrational biases. However, the

biases corresponding to rational weights are not rational. We first show how to achieve

approximate weights (i.e. with total error less then their granularity) with biases which



5.4. MAXIMUM HYPERTREES TO MAXIMUM LIKELIHOOD 87

are square roots of rationals, and then show how these can be approximated with actual

rationals.

We saw in 5.25 that the biases of the mixture components should be approximately

the square root of the desired weights. Using biasesr′(h) =
√
w(h) yields the following

weights (whereb′ = r′(h)

( n
k+1)

< 1):

w′(h) =
∑

i=2 even

1

i(i− 1)
b′
i

=
b′2

2
+

∑
i=4 even

1

i(i− 1)
b′
i

<
b′2

2
+

∑
i=4 even

1

i(i− 1)
b′

4

=
b′2

2
+

ln 4− 1

2
b′

4

=
1

2
(
n
k+1

)2w(h) + e(h) (5.27)

(5.28)

Where:

∑
h

|e(h)| =
∑
h

e(h)

<

(
n

k + 1

)
ln 4− 1

2

(maxw)2(
n
k+1

)4

<
0.19(
n
k+1

)3 maxw2 (5.29)

(5.30)

Recall that we would like
∑

h |e(h)| < δ where δ is the smallest difference between

weights. Sinceδ scales linearly with the weights, by scaling the weights down we can

achieve this goal.

But since the weights might not be square rationals, taking their square root might
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produce irrational weights. This can be overcome in a similar fashion, by using a rational

approximation to the square root.

5.4.3 The reduction and hardness

We saw how to reduce the maximum hypertree problem to the maximum likelihood Markov

network problem, with the samek, and even if the variables are all binary. Note that

our reduction is only pseudo-polynomial, as the sample size needed is polynomial in the

value of the weights. However, since in Section 4.2 we show that the maximum hypertree

problem is NP-hard, even with zero/one weights, this is enough to show NP-hardness of the

maximum likelihood Markov network problem. The hardness result holds even fork = 2

(1-hypertrees are regular trees, for which the problem is tractable).

5.5 Approximating the Maximum Likelihood

In this thesis, we show that although finding the maximum weight bounded tree width graph

is hard, an approximate solution can be found in polynomial time. That is, a graph with

weight within a constant multiplicative factor of the optimal graph. We discuss how this

type of approximation for the combinatorial problem translates into a sub-optimal solution

for the maximum likelihood learning problem, as well as the general projection problem.

Recall the decomposition of the information divergence that was presented in Figure

5.3.2. When the target distribution is the empirical distribution, the negative cross entropy

relative to it is exactly the log likelihood. Figure 5.3.2 can be viewed as representing the

maximum log likelihoods of Markov networks over∅ (i.e. fully independent models),

Markov networks overG and and the maximum attainable log likelihood (the negative

entropy of the empirical distribution). The weight of the graph is then the gain in maximum

log likelihood versus the fully independent model. A constant factor approximation on

the weight of the graph translates to a constant factor approximation on the gain in log

likelihood.
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As can be seen in Figure 5.3.2, a constant factor approximation for the weight of the

graph doesnot provide for a constant factor approximation on the information divergence

itself, but only for the reduction in information divergence relative to the fully independent

model. Although approximating the likelihood itself is usually not of great interest (since it

is usually of very high magnitude, and so even the fully independent model might be within

a small factor of it), approximating the information divergence might be interesting, even

when the target is an empirical distribution. For example, if the empirical distribution is

“almost” a narrow Markov network, then approaching the optimal information divergence

to within a small factor is much stringer then approximating the gain.

5.6 Discussion

The reductions we have shown between the maximum likelihood Markov network problem

and the maximum hypertree problem are quite satisfactory in many ways. Both reductions

are L-reductions, and are sufficient for studying approximation algorithms and hardness.

Neither reduction, however, is strictly a polynomial reduction. Reducing Markov networks

to the maximum hypertree problem produces a number of weights which is exponential

in k, though the reduction is polynomial for a fixed width. The reverse reduction is only

pseudo-polynomial. This pseudo-polynomiality does not prevent us from attaining hard-

ness results, though it is interesting to see if the dependence on the value of the weights can

be reduces.

Perhaps the more interesting gap is that we only show a reduction for the maximum

hypertree problem with non-negative weights. Showing a reduction for monotone weight

functions is an interesting open problem. Such a reduction is not necessary for showing

the hardness results, but rather addresses a different interesting question: is the monotonic-

ity constraint the true constraint on the weight function ? Or is there perhaps a stronger

constraint that might aide in approximating the maximum hypertree.

Another interesting question is whether these techniques can be extended also to other
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measures of quality, beyond maximum likelihood, that incorporate in them also structural

penalties.



Chapter 6

Windmills

Hypertrees are complex to work with and maximize. This is mostly due to the global

nature of the characterization of hypertrees. There is no ’local’ criterion for hypertrees

or even hyperforests. By a local criterion we mean some constant-size propertyψ over a

finite number of vertices, such that a graph is a hypertree (or hyperforest) iffψ holds for all

subsets of vertices inH(V ).

As was discussed in Section 3.3, hypertrees can be defined using several criteria, in-

volving decomposition, strong connectivity and the number of hyperedges. But all three of

these properties are global and cannot be decomposed into local properties. We now intro-

duce a simpler graph structure that can be used to capture much of the weight in hypertrees,

and has a more local nature.

Let T (V ) be a rooted tree on the verticesV , with root r and depth at mostk (i.e. the

longest path beginning atr is of lengthk edges). The treeT (V ) defines the following

hierarchy of vertices:r is at level zero. For any other vertexv ∈ V , consider the path from

r to v. Vertexv is said to be on thelevelequal to the edge-length of the path.

Definition 6.1 (Windmill). A k-windmill based on a rooted treeT (V ) with depth at most

k is a hypergraph whose edges are the paths radiating fromr in T , i.e.

H(V ) = {hv = {r, . . . , v} is a path inT} .

91
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Figure 6-1: A 2-windmill

If all maximal paths radiating fromr in T are of lengthk edges, thenH is said to be a

regulark-windmill.

A k-windmill is a hyperforest with tree-structureT (H) where the hyperedgeshv re-

place each vertexv in T , i.e. T (H) = {{hv, hv′}|{v, v′} ∈ T}. Its Graham reduction fol-

lows the Graham reduction of leaves of the treeT . In particular, ak-windmill has treewidth

at mostk.

1-windmills are star graphs, and in some ways windmills are hyper-generalizations of

star-graphs. Figure 6 shows a 2-windmill (which resemble physical windmills). Note that

in a weighted 1-tree, there is always a disjoint set of stars that captures at least half of the

weight of the tree. We will show that this can be generalized also for hypertrees.

Definition 6.2 (Windmill Farm). Ak-windmill-farm is a hypergraph that is a disjoint col-

lection ofk-windmills.

Since each windmill is a hyperforest of width at mostk, a windmill-farm is also a

hyperforest of width at mostk.
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6.1 The Windmill Cover Theorem

In this section, we show that a hyperforest always has a windmill farm that captures a cer-

tain fraction of its weight. For simplicity, we first concentrate on the case of non-negative

weights.

Theorem 6.1 (Windmill Cover Theorem). For any hyperforestH(V ) of widthk and non-

negative weight functionw(·), there exists ak-windmill-farm F (V ) such thatw(H) ≤

(k + 1)!w(F ).

Proof. We use a labelling scheme followed by a random selection scheme in which each

hyperedge “survives” to be included in the windmill with probability at least1/(k + 1)!.

This means the total expected surviving weight is at leastw(F )/(k + 1)!, as desired. We

then show that the surviving edges form a windmill.

The scheme is based on a(k + 1)-coloring of the vertices, such that no two vertices in

the same hyperedge have the same color. The existence of such a coloring can be proven

by induction on the Graham reduction of the hyperforest: LetH(V ) be a hyperforest with

leafv, and recursively colorH(V − v). The leafv has at mostk neighbors (other members

of its unique maximal edge) inH(V − v), leaving a color available forv. This inductive

proof specifies an order in which the vertices get colored. This is the reverse of the order in

which vertices were Graham reduced. The order of coloring imposes on each hyperedge a

(possibly partial) permutation of the colors used—namely, the order in which those colors

were applied to vertices of the hyperedge.

From this ordering we construct our windmill farm. Choose a random permutation

(ordering)π of the colors. We define a windmill farmFπ to contain all hyperedges whose

color permutation (ordering) is consistent withπ. For hyperedges withk + 1 vertices,

consistent simply means equal; for a hyperedge with fewer vertices, consistent means that

the colors thatdoappear in the hyperedge form a prefix of the permutationπ.

The permutationπ of colors can be interpreted as a mapping between the colors and

the k + 1 levels of the windmill-farmFπ; each vertex now goes to the level of its color.
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Each vertex of the first colorπ(1) is the root of a windmill. Each vertexv of colorπ(i+ 1)

is at leveli, with its parent being the vertex coloredπ(i) in v’s twig (the unique maximal

hyperedge containingv whenv was removed). Note that if the twig does not have a vertex

of colorπ(i) then no hyperedge containingv is in Fπ: if v ∈ h ∈ Fπ, then the partial color

permutation imposed onh is at least ani+1-prefix ofπ and so must have a vertexu colored

π(i) which was colored beforev. But if u was colored beforev, then it was reduced after

v, so it should appear inv’s twig.

To show thatFπ is indeed a windmill-farm over this tree structure, it is enough to show

that for everyv ∈ h ∈ Fπ of color π(i + 1), the vertex of colorπ(i) in h is the parent of

v in the windmill’s rooted tree. Since the permutation ofh agrees withπ, a vertexu of

colorπ(i) exists inh and is colored beforev. The vertexu is thus inv’s twig, and so isv’s

parent.

The windmill-farmFπ might cover additional edges that were not explicitly selected

by the scheme above, but since these have non-negative weight, the weight is at least the

weight of the edges selected. A hyperedge of sizer is selected to be inFπ if it is consistent

with the permutation; this happens with probability(k + 1 − r)!/(k + 1)! ≥ 1/(k + 1)!.

Since the weight of edges is non-negative, the expected value contributed by any edge of

weightw to Fπ is at leastw/(k + 1)!.

In fact, windmills can achieve the1/d! approximation “simultaneously” for every edge

of sized:

Corollary 6.2. For any hyperforestH(V ) of widthk, and non-negative weight functionw,

let wd be the total weight of hyperedges of sized (so that the total weight of the hypertree

is
∑
wd). Then there exists ak-windmill-farm contained inH of weight at least

∑
wd/d!

Proof. We perform the above coloring and random selection, but include an edge inFπ if

its colors appear in the same order inπ, as a prefix or as an arbitrary subsequence. Then the

probability that we include an edge ofd vertices is1/d!. The parent ofv of colorπ(i + 1)

is selected to be the vertex inv’s twig of colorπ(j), for the maximumj ≤ i, for which the
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twig includes such a vertex.

Note that under this selection criterion,Fπ does not cover any additional edges not

explicitly selected, and soE [w(Fπ)] =
∑
wd/d! exactly.

Recall that we are actually interested in weight functions that are not necessarily non-

negative, but rather are monotone on hyperforests. Even for such weight functions, a1/(k+

1)! fraction can still be achieved:

Corollary 6.3. For any hyperforestH(V ) of widthk and monotone weight functionw(·),

there exists ak-windmill-farmF (V ) such thatw(H) ≤ (k + 1)!w(F ).

Proof. Perform the same selection process as in Theorem 6.1, but analyze the weight of the

resulting windmill farm differently. Instead of considering the weights of individual edges,

consider the weightg(v) gained when un-reducingv. That is, the difference in weight of

the hyperforests before and after reducingv. Since every edge will be “gained” at exactly

one reduction,
∑

v g(v) = w(H). Furthermore, the gain is a difference in weight between

two hyperforests, and so non-negative.

To analyze the expected weight ofFπ, start from an empty hypergraph and add vertices

according to their coloring (reverse reduction) order, keeping track of the weight of the

sub-windmill-farm induced byFπ on vertices colored so far. Each colored vertex adds

some non-negative gain. If the color permutation of a vertex’s twig is a prefix ofπ, then the

complete twig and all its subedges are covered by the farm, and the gained weight is exactly

g(v). Since this happens with probability at least1/(k+ 1)!, E [Fπ] ≥ w(F )/(k+ 1)!.

In Chapter 7 we will devise an approximation algorithm for finding a maximum weight

windmill farm, and use the above result to infer that the maximum weight windmill farm,

which is a hyperforest, is competitive relative to the maximum weight hypertree.
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6.2 Hardness of Approximation of Windmill

We now show that the maximum windmill forest problem is also NP-hard. In fact, we show

that it is max-SNP-hard, implying that there exists someδ > 0 such that it is NP-hard to

find a windmill forest with weight within a multiplicative factor1 + δ from the maximum

windmill forest. Unfortunately, this does not imply any hardness of approximation for the

maximum hypertree problem.

Theorem 6.4. For fixedk > 1, the maximum weightk-windmill problem (and even the

maximalk-windmill problem for unit weights) is max-SNP hard.

Proof. A reduction from max-2SAT

6.3 Discussion

We introduced a family of graphs, windmill farms, and showed that there always exists

such a windmill farm that captures1/(k + 1)! of the weight of a hyperforest. Is this figure

tight, or is the true approximation ratio of windmill farms to hyperforests tight ? Fork = 1

the ratio is indeed tight, but the answer is unknown for wider hyperforests. Note that even

for k = 1, a weighted tree is necessary in order to show the tightness, as for uniformly

weighted trees there is always a disjoint set of stars that captures2/3 of the weight.

Another interesting problem is using the hardness results on windmills to show hardness

of approximation for hypertrees.



Chapter 7

Approximation Algorithms

In this chapter we present approximation algorithms for the maximum windmill-farm prob-

lem. As a consequence of the Windmill Cover Theorem (Theorem 6.1), these algorithms

are also approximation algorithms for the maximum-hypertree problem.

In order to gradually introduce the reader to our approximation techniques, we first

present, in Section 7.1, an approximation algorithm for a restricted case of the maximum

2-windmill-farm problem. In particular, we give an integer program whose solution is the

maximum 2-windmill-farm. We then show how to round the solution of the correspond-

ing relaxed linear program. In Section 7.2 we generalize the techniques and describe an

algorithm for a windmill-farm of any width.

7.1 An Approximation Algorithm for 2-Windmills

In this section, we present some of our basic ideas in an algorithm for the 2-windmill

problem. Recall that a 2-windmill is based on a tree with a root, a child layer, and a

grandchild layer. We assume that there are weights only on triplets (not pairs or singletons),

but this assumption can be made w.l.o.g. by adding an additional vertexuv1,v2 for every pair

(v1, v2) and settingw(v1, v2, uv1,v2)
.
= w(v1, v2) while all other weights involving the new

vertexuv1,v2 are set to zero.

97
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7.1.1 Guessing Levels

For simplicity, we reduce to the case where the level of each vertex (root, child, or grand-

child) is fixed. We do so by assigning each vertex to a random level (probability 1/3 for

each). Any triple that appears in orderv1, v2, v3 in the optimal solutions will have its 3 ver-

tices given the correct layers with probability(1/3)3 = 1/27. Thus in expectation at least

1/27 of the weight of the optimum solution will fit the random level assignment, so we

expect there will be a solution that obeys the level assignment and has 1/27 of the optimum

weight.

7.1.2 An Integer Program

Given the levels, we specify an integer linear program corresponding to the maximum 2-

windmill problem. The variables in the IP are as follows:

• A variablexv1,v2 for every first-level nodev1 and second-level nodev2, which will be

set to 1 ifv2 is a child ofv1.

• A variablexv1,v2,v3 for every triplet of first-, second- and third-level nodes, respec-

tively, which will be set to 1 ifv3 is a child ofv2, andv2 is a child ofv1.

The integer program is then:

max
∑

v1,v2,v3

xv1,v2,v3wv1,v2,v3

(∀v2)
∑
v1

xv1,v2 = 1

(∀v3)
∑
v1,v2

xv1,v2,v3 = 1

(∀v1, v2, v3) xv1,v2,v3 ≤ xv1,v2

(∀v1, v2, v3) xv1,v2,v3 ≥ 0

(∀v1, v2) xv1,v2 ≥ 0
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The first two equalities specify that each vertex is only on one path from the root, and the

first inequality specifies thatv3 cannot be on pathv1, v2, v3 unlessv2 is descended from

v1—we will refer to this as requiring consistency of the paths.

Solving an integer program is not a straight-forward task. However, if we relax the

requirement that the variables be integers, and allow them to be fractional numbers, we get

a linear program, described by the same inequalities. All feasible solutions to the integer

program are also feasible solutions to the linear program, and so the optimal solution to

the linear program is at least as good the solution to the integer program. Such an optimal

fractional solution (to a linear program) can be found in polynomial time. We would now

like to round the fractional solution, without loosing too much of its value.

7.1.3 Rounding

We now show how to round a fractional solution, giving up a factor of less than 2 in the

objective function value. Our rounding uses the natural probability distribution arising from

the LP constraint that
∑

v1
xv1,v2 = 1; this suggests thatv2 can choose a parent vertex by

selectingv1 with probabilityxv1,v2. However, this does not show how to choose parents for

the third level vertices. We will, however, show that a simple two-step process works: first

we round the second-level vertices, and then we let each third-level vertex make a greedy

choice based on the previous level’s rounding.

More precisely, the rounding to an IP solutionx̃ from an LP solutionx will be per-

formed in two steps:

• For eachv2, assign onẽxv1,v2 = 1 at random according to the distribution given by

xv1,v2. The rest will receive value zero.

• For eachv3, assign onẽxv1,v2,v3 = 1 with the maximumwv1,v2,v3 among those(v1, v2)

for which x̃v1,v2 = 1. The rest will receive value zero.

Note that the above rounding outputs a feasible IP solution. To analyze its value, we
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will consider each third-level vertex, and its contribution to the integer solution value, sep-

arately.

Lemma 7.1. Consider a set of items such that itemi has weightwi. Suppose that each

item i becomes “active” independently with probabilitypi where
∑
pi ≤ 1. LetW be the

maximum weight of any active item. Then

E[W ] ≥ (1/2)
∑

wipi

Proof. By induction. Assume there aren weights ordered such thatw0 ≥ w1 ≥ · · ·wn.

Note that with probabilityp0 item 0 becomes active and we getW = w0, while with

probability1−p0 we get the maximum of the “subproblem” involving the remaining items.

By induction, the expected maximum active weight not including item 0 has value at least

(1/2)
∑

i>0 wipi. Observe also that
∑

i>0 wipi is (at worst, since
∑
pi ≤ 1) a weighted

average of items less thanw0, so has value at mostw0. It follows that

E[W ] = p0w0 + (1− p0)(1/2)
∑
i>0

piwi

= p0w0 + (1/2)
∑
i>0

piwi − p0(1/2)
∑
i>0

piwi

≥ p0w0 + (1/2)
∑
i>0

piwi − p0(1/2)

(∑
i>0

pi

)
w0

= (1/2)p0w0 + (1/2)
∑
i>0

piwi

as claimed.

This lemma can be applied to our rounding scheme. Fix a particular third-level vertex

v3. Its contribution to the fractional LP objective value is
∑

v1,v2
xv1,v2,v3wv1,v2,v3. Now

consider the rounding step. Vertexv3 is permitted to choose parent pair(v1, v2), contribut-

ing weightwv1,v2,v3 to the objective, ifv2 chooses parentv1, which happens with proba-

bility xv1,v2 ≥ xv1,v2,v3 . This almost fits the framework of the lemma with the variables
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pi set toxv1,v2,v3 . There are two differences but they only help us. First, we may have

xv1,v2 > xv1,v2,v3 ; however, this can only increase the odds of choosing a large weight.

Second, the variablesx are not independent. However, they are negatively correlated: the

failure to choose some pairv1, v2 can onlyincrease the chance that we instead choose some

other pair. This again only increases the expected contribution above the independent case.

It follows from the lemma that we expect a contribution of at least
∑
wv1,v2,v3xv1,v2,v3/2

from vertexv3.

This analysis holds for all third-level variables, and combining over all of them yields

an approximation ratio of2 between the rounded solution and the LP solution. The weight

of the farm is thus:

w(rounded IP farm) ≥ w(LP fractional farm)/2

≥ w(maximal farm conforming to imposed levels)/2

≥ w(maximal farm)/27/2

≥ w(maximal hypertree)/6/27/2 = w(maximal tree)/324

7.2 The General Case

Now we turn to the algorithm for general treewidth. We formulate a more general integer

program, for any widthk, and weights which are monotone on cliques, which does not

assume that the assignment to levels is known. Then we give a more general rounding

scheme—one that essentially applies the technique of the previous section one layer at a

time. Some care must be taken to re-optimize the LP after each layer is rounded so that

rounding can be applied to the next layer.
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7.2.1 A General Integer Program

Consider a variablexp for each simple path inG of length between1 andk. Settingxp to

one corresponds to havingp as a rooted path in a tree corresponding to a windmill in the

solution (in particular, the first node inxp is a root). We use the notation|p| for the length

of (number of nodes in) a path andp · q, or p · v to denote the concatenation of two paths,

or a path and vertex.

The weightwp of a path is the gain in weight of adding the last vertex ofp to the

windmill. That is, forp = q · v,wp =
∑

h⊆pw(h)−
∑

h⊆q w(h). Since the weight function

is monotone on cliques of size at mostk + 1, it follows that the weights of paths are non-

negative.

We first investigate the following integer program for the problem:

max
∑
p

xpwp

(∀p, v) xp·v ≤ xp

(∀v)
∑
q

xq·v ≤ 1

(∀p) xp ∈ {0, 1}

(7.1)

Both p in the first inequality andq in the second inequality vary over simple paths of

length up tok, including the empty path. The first inequality requires consistency of paths,

i.e. that every prefix of a path in the windmill is also in the windmill, as we did in the

2-windmill case. The second inequality constrains that there is only a single path from the

root to any vertex, i.e. that paths do not converge, but rather form a tree.

We would now like to relax the integer program (7.1) to a linear program, so that we

can solve the linear program and try to round the solutions. But instead of just relaxing the

variablesxp to non-negative real values, we replace the two inequalities with a single uni-

fied inequality. The unified inequality agrees with (7.1) for zero-one values, but is stronger

(more constrained) for fractional values. This constrains the fractional feasible polytope to
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be smaller, and so closer to the integral polytope, while still containing it. This reduces the

integrality gap, and will aid us in rounding.

The linear program has a single equation for each simple pathp · v, 0 ≤ |p| ≤ k.

The variablexε (for the empty path of length 0) appears in the linear program only for

uniformity of structure, but is set to one:

max
∑
p

xpwp

(∀p, v)
∑
q

xp·q·v ≤ xp

(∀p) xp ≥ 0

xε = 1

(7.2)

Both p andq in the inequality vary over simple paths of length up tok in the graph,

including the empty path. Since we are only concerned with simple paths of length up to

k + 1, v ∈ p is not allowed, and the sum is only over paths of length at mostk − |p| that

are disjoint fromp · v. Note that since only simple paths of length up tok+ 1 have positive

weight, allowing additional variables and equations for non-simple or longer paths will not

affect the optimal solution.

The key constraint of (7.2) requires that the total fractional quantity of paths that share

a prefixp and terminate atv is less than the fractional quantity of pathp. This is a stronger

inequality than the inequalities in (7.1):

• For anyv and|p| > 0, since all variables are non-negative, and focusing onq = ε,

the inequality impliesxp·v ≤ xp, the first inequality of (7.1).

• Forp = ε, we get
∑

q xq·v ≤ 1, the second inequality of (7.1).

For integer values{0, 1}, there can only be a single path leading to each vertex. Thus

for anyp, v, there can only be oneq with non-zeroxp·q·v, and so the inequality reduces to

xp·q·v ≤ xp, which follows from the path consistency. Therefore, on such values, (7.1) and

(7.2) are equivalent.
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7.2.2 A Rounding Scheme

Suppose now that we relax the integrality constraint and find a fractional solution. We

propose to round each level iteratively, in a fashion similar to the previous section.

• Start with a solutionx0 to the LP, and no rounded variablesx̃.

• For i = 1 to k:

1. For each nodev, the LP constrains that
∑

p x
i−1
p·v ≤ 1. So choose a single

path ending inv, or perhaps no path, such that each pathp · v is chosen with

probabilityxi−1
p·v . If p is of lengthi − 1, setx̃p·v ← 1. In any case, for all other

pathsp of lengthi− 1, setx̃p·v ← 0.

2. Re-solve the LP, fixing all variables corresponding to paths of length up toi to

be constants equal to their rounded valuesx̃. Takexi to be the solution to this

ith modified LP.

Note that since
∑

p:|p|=i−1 x
i−1
p·v may be less than one, it may be that no path ending at

vertexv will be rounded to 1 at some iteration. This corresponds to deciding that the vertex

is at a higher level, or perhaps does not appear in the farm at all.

After thek iterations, only variables corresponding to lengthk + 1 paths remain. The

optimal solution to this LP is integral and can be found greedily, just as the last layer was

found greedily in the 2-windmill algorithm.

This rounding method is a generalization of the rounding presented in the previous

section fork = 2 and predetermined level assignments. The first iteration (i = 1) is trivial

for predetermined levels, since all first-level vertices have only a single choice of ancestor

(the unique level 0 vertex). The greedy assignment of the third level vertices in the second

stage of rounding in the previous section exactly re-solves the linear program after rounding

the second level nodes.

Note that the rounding step (1) itself preserves the expected value of the solution, but it

might make the present solution infeasible. We show that after each step of rounding there
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is still a reasonably good feasible solution. To show this, we present an explicit solution to

theith modified linear program.

Theorem 7.2. Theith rounding iteration decreases the optimum LP value by a factor of no

worse than1/8(k + 1− i).

Proof. At the ith iteration, consider the following solutionx(i) to the modified LP:

• For each variablexp·q with |p| = i, if x̃p = 0, setx(i)
p·q ← 0 (this is mandated by the

LP). If x̃p = 1, set

x(i)
p·q ←

xi−1
p·q

4(k + 1− i)xi−1
p

. (7.3)

• For each nodev: if
∑

p x
(i)
p·v > 1, then set all variables for paths in whichv appears

to zero (i.e. for allp, q setx(i)
p·v·q ← 0). We say that the nodeoverflowedand so all

the paths it appeared on werepurged.

We claim that the solution presented satisfies the LP constraints (since we purge any

variables that violate the constraints) and that its value is at least1
8(k+1−i) of the value

before the iteration. The optimum LP value can only be better. Before proving this claim

rigorously, let us present the intuitive reasoning for why1
8(k+1−i) of the value is retained.

Consider a particular pathp · q, where|p| = i. The rounding scheme above rounds

the prefixp to 1 with some probabilityα, and to 0 otherwise (also zeroing the path), but

it also scales the pathp · q by 1/4(k + 1 − i)α if it does not zero it, so theexpected

value of xp·q after rounding is justxp·q/4(k + 1 − i). If that path has weightwp·q, we

would hope that it continues to contribute a1/4(k + 1 − i) fraction of its contribution to

the starting solution. This will be trueunlessit is purged—that is, participates in some

infeasible constraint. This happens if one of the vertices ofq ends up with too large an

“incoming value” on the fractional paths ending in it. To bound the probability of this

event, conditioned on roundingxp to one, we analyze the total incoming path-values into

vertices ofq. If this value is less than one, then surely no vertex inq overflows. We show
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that the expected value of this total, conditioned on roundingxp to one, is less than half,

and so with probability at least half there is no overflow.

To overcome the conditioning on roundingxp, for each vertexv on q, we partition

paths ending inv into those that sharep as a prefix and those that do not. For those that do

sharep, the LP constraint for(p, v) guarantees an incoming value of at mostxi−1
p before

scaling, and so1/4(k + 1 − i) after scaling. For paths not sharingp, the conditioning just

decreases the expected contribution, and the LP constraint forε, v guarantees an expected

total incoming value of at most1/4(k + 1 − i) (after the scaling). Summing these two

contributions over allk+ 1− i vertices ofq yields an expected total incoming value of one

half.

It follows by induction that the value of the (integer valued) LP optimum in the final

step is no worse than1/8kk! times the original LP value. We therefore solve the windmill

forest problem with an approximation ratio of1
8kk!

and the hypertree problem with a ratio

of 1
8kk!(k+1)!

.

We return to proving that the explicit solutionx(i) to the rounded LP, is in fact a feasible

solution retaining 1
8(k+1−i) of the value, in expectation:

For anyi ≥ 1, let xi−1 be a solution of thei − 1th linear program, andx(i) be the

solution of theith linear program as specified in Theorem 7.2. For uniformity and brevity

of notation, we will include in these solutions also variables substituted as constants from

x̃. We will show thatx(i) is a feasible solution and that:

E

[∑
p

x(i)
p wp|x(i−1)

]
≥
∑
p

x(i−1)
p wp (7.4)

Feasibility of solution

We investigate the LP constraints for everyp, v, and show that they are all satisfied:

• For |p| > i andv, write p = r · s where|r| = i:
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– If x̃r = 0 or one of the vertices onp overflowed, then all variables in the con-

straint are nulled: ∑
q

x(i)
p·q·v = 0 ≤ 0 = x(i)

p

– Otherwise, the constraint is a rescaled version the corresponding constraint in

the(i−1)th LP, with some of the variables on the left-hand-side possibly nulled:

∑
q

x(i)
p·q·v =

∑
q

x(i)
r·s·q·v

≤
∑
q

xi−1
r·s·qv̇

4(k + 1− i)xi−1
r

≤ xi−1
r·s

4(k + 1− i)xi−1
r

= x(i)
r·s = x(i)

p

• Forp = ε, purging overflowing nodes guarantees that:

∑
q

x(i)
ε·q·v =

∑
q

x(i)
q·v ≤ 1 = xε

• For 1 ≤ |p| ≤ i: the value ofxp is already rounded, and so the constantx̃p appears

in the LP.

– If x̃p = 1 then using the constraint onε, v, which we already saw is satisfied:

∑
q

x(i)
p·q·v ≤

∑
q

x(i)
q·v ≤ 1 = xp

– If x̃p = 0 and |p| < i then this constraint already appeared in the previous

iteration’s LP, and since zero-valued variables do not get their values increased
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in the rounding process, it is still true that:

∑
q

x(i)
p·q·v = 0 = xp

If x̃p = 0 and|p| = i then we have just set allx(i)
p·q to zero and the above still

holds.

Expected value of solution

We will show that for everyp:

E
[
x(i)
p |xi−1

]
≥

xi−1
p

8(k + 1− i)
(7.5)

For |p| < i, x(i)
p = xi−1

p and (7.5) holds. For|p| = i:

E
[
x(i)
p |xi−1

]
= E

[
x̃p|xi−1

]
= xi−1

p

and (7.5) holds.

We will denote byx(i′) the value assigned tox(i) before possible purging, i.e. in the

first step of the explicit rounding. All the expectations and probabilities in the following

discussion are implicitly conditioned onxi−i. We will analyze the expected value for any

x
(i)
p·q such that|p| = i:

E
[
x(i)
p·q
]

= Pr (x̃p = 1)Pr (q is not purged|x̃p = 1)E
[
x(i′)
p·q |x̃p = 1 ∧ q is not purged

]
= xi−1

p Pr (q is not purged|x̃p = 1)
xi−1
p·q

4(k + 1− i)xi−1
p

=
Pr (q is not purged|x̃p = 1)xi−1

p·q

4(k + 1− i)
(7.6)

To bound the probability of purgingq, consider a vertexv ∈ q, and analyze the expected
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value of paths ending inv, before checking for overflow. We will partition all such paths

to paths which havep as a prefix, and paths which do not havep as a prefix. For paths that

havep as a prefix:

∑
r

E
[
x(i′)
p·r·v|x̃p = 1

]
≤

∑
r

xi−1
p·r·v

4(k + 1− i)xi−1
p

(7.7)

=

∑
r x

i−1
p·r·v

4(k + 1− i)xi−1
p

≤ x(i− 1)p
4(k + 1− i)xi−1

p

=
1

4(k + 1− i)
(7.8)

To bound (7.8) we used the linear program constraint forp, v.

For all other paths, not that conditioning onx̃p = 1 can only decrease the probability of

their prefix to be chosen in the rounding step:

∑
s w/o prefixp

E
[
x(i′)
s·v |x̃p = 1

]
≤

∑
s w/o prefixp

E
[
x(i′)
s·v

]
≤

∑
s

E
[
x(i′)
s·v

]
=

∑
s

xi−1
s·v

4(k + 1− i)

=

∑
s x

i−1
s·v

4(k + 1− i)
≤ 1

4(k + 1− i)
(7.9)

The last inequality follows from the linear constraint forε, v.

Combining (7.8) and (7.9) we get:

E

[∑
t

x
(i′)
t·v |x̃p = 1

]
≤ 2

4(k + 1− i)
=

1

2(k + 1− i)

To show that with reasonable probabilitynonof the vertices inq overflow, we will sum
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the above over all vertices inq. |p · q| ≤ k + 1 and|p| = i and so|q| ≤ (k + 1− i):

E

[∑
v∈q

∑
t

x
(i′)
t·v |x̃p = 1

]
≤ k + 1− i

2(k + 1− i)
=

1

2

We can now use Markov’s inequality to bound the probability of purgingq:

Pr (q is not purged|x̃p = 1) = Pr (no vertex onq overflows|x̃p = 1)

≥ Pr

(∑
v∈q

∑
t

x
(i′)
t·v ≤ 1|x̃p = 1

)
≥ 1

2

Combining (7.6) and (7.10) to prove (7.5):

E
[
x(i)
p·q
]

= Pr (q is not purged|x̃p = 1)
xi−1
p·q

4(k + 1− i)

≥ 1

2

xi−1
p·q

4(k + 1− i)
=

xi−1
p·q

8(k + 1− i)
(7.10)

7.3 Discussion

We presented an integer program for the maximum windmill farm problem, and showed

an iterative rounding algorithm for obtaining an integer solution from a fractional solution,

retianing 1
8kk!(k+1)!

of the value of the fractional solution. Whether this ratio reflects the

true integrality gap, or can be improved on, is an open question.

7.3.1 Iterative rounding

We suggested re-optimizing the LP after each iteration. But in the proof, a feasible (but

not necessarily optimal) LP solution is explicitly constructed at each step. Thus, it is not

technically necessary to re-solve the LP at each step—one can achieve the approximation

ratio after just a single LP solution.

Note that there is a fundamental difference between the LP re-solving rounding, and
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the explicit rounding for which we prove the approximation ratio: The explicit rounding

takes the optimal fractional solutionx0, and using only this solution, constructs an integer

solution x̃. After initially solving the LP, the input to the problem (the weights) are no

longer needed, and̃x is determined solely byx0. It follows that for any fractional solution

to the LP, there exists an integer solution such that foreveryset of non-negative weights, it

is within 1
8kk!

of the fractional solution. This is achieved by havingE [x̃] = x0

8kk!
.

However, in the iterative LP re-solving method, the weights are used each time the LP is

re-solved. The rounded solutioñx might be different, even though the fractional optimum

x0 is identical. This is, in fact, what we did for the casek = 2, when the values for the third

layer were rounded according to their weights, so as to maximize the weight. Fork = 2,

rounding the third level according to the values themselves, disregarding the weights, we

would be able to prove an approximation ratio (for the IP) of only1/4, instead of the1/2

we achieved using the weights.

Is is conceivable that a better approximation ratio can be proven also in the general case,

when the LP is properly re-solved at each iteration, using the knowledge of the precise

objective function.
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Chapter 8

Conclusions and Discussion

In this thesis, we have presented a graph algorithmic problem, the maximum hypertree

problem, that is equivalent, in a rather strict sense, to the maximum likelihood Markov net-

work problem. Hardness and approximability results on the maximum hypertree problem

extend also to the maximum likelihood Markov network problem,

We believe that the maximum hypertree problem is an interesting and important com-

binatorial optimization problem, worthy of further study and analysis. We show how maxi-

mal hypertrees can be approximated by windmill-farms. We analyze the hardness of finding

maximal windmill-farms, and present an approximation algorithm that achieves a constant

approximation ratio for constant tree-width. But a wide gap remains between our hardness

results for the maximum hypertree problem, and the approximation algorithm we suggest.

As was argued above, the exponential dependence of our algorithm’s running time on

the target tree-widthk is unavoidable and non-problematic. However, an important open

question is whether, given that we are willing to spend this much time, we can achieve an

approximation factor that is a constantindependentof k. We believe that the analysis of

our algorithm’s performance can be improved, but that the explicit rounding method will

have an undesirable dependence on the tree-width. A direct analysis of the value of the

iterative linear programs might yield a qualitative better approximation ratio.
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