
When is Clustering Hard?

Nati Srebro
University of Toronto

Gregory Shakhnarovich
Massachusetts Institute of Technology

Sam Roweis
University of Toronto



Outline

• Clustering is Hard
• Clustering is Easy
• What we would like to do
• What we propose to do
• What we did



“Clustering”
• Clustering with respect to a specific model / structure / 

objective
• Gaussian mixture model

– Each point comes from one of k “centers”
– Gaussian cloud around each center
– For now: unit-variance Gaussians, uniform prior over choice of center

• As an optimization problem:
– Likelihood of centers:

Σi log( Σj exp -(xi-µj)2/2 )
– k-means objective—Likelihood of assignment:

Σi minj (xi-µj)2



Clustering is Hard

• Minimizing k-means objective is NP-hard
– For some point configurations, it is hard to 

find the optimal solution.
– But do these point configurations actually 

correspond to clusters of points?
• Likelihood-of-centers objective probably 

also NP-hard (I am not aware of a proof)
• Side note: for general metric spaces, hard to 

approximate k-mean to within factor < 1.5



“Clustering is Easy”, take 1:
Approximation Algorithms

• (1+ε)-Approximation for k-means in time 
O(2(k/ε)constnd) [Kumar Sabharwal Sen 2004]

cost([µ1,µ2]) ≈ ∑i minj (xi-µj)2 ≈ d·n
cost([0,0]) ≈ ∑i minj (xi-0)2 ≈ (d+25)·n

⇒ [0,0] is a (1+25/d)-approximation

• Need ε < sep2/d, time becomes O(2(kds)constn)

0.5 N(µ1,I) + 0.5 N(µ2,I)
µ1 = ( 5,0,0,0,…,0)
µ2 = (-5,0,0,0,…,0)



“Clustering is Easy”, take 2:
Data drawn from a Gaussian Mixture

x1, x2,…, xn ~ 1/k N(µ1,σ2I) + 1/k N(µ2,σ2I) + L + 1/k N(µk,σ2I)

|µi-µj|>s·σ

Spectral projection, 
then distances 

n =
Ω(d3k2log(dk/sδ))

s = Ω(k¼ log dk) Vempala
Wang 
2004

Distance baseds = Ω(d¼ log d)Arora
Kannan
2001

2 round EM with 
Θ(k·logk) centers

n = poly(k)s = Ω(d¼)
(large d)

Dagupta
Schulamn
2000

Dasgupta
1999

s > 0.5d½ n = Ω(klog2 1/δ) Random projection,  
then mode finding

all
between-class

distance

all
within-class

distance 

>

General mixture of Gaussians:
[Kannan Salmasian Vempala 2005] s=Ω(k5/2log(kd)), n=Ω(k2d·log5(d))
[Achliopts McSherry 2005] s>4k+o(k), n=Ω(k2d)



“Clustering isn’t hard—
it’s either easy,

or not interesting”



Effect of “Signal Strength”

Not enough data—
“optimal” solution is 
meaningless.

Lots of data—
true solution creates 
distinct peak.
Easy to find.

Just enough data—
optimal solution is 
meaningful, but hard to 
find?

~Informational
limit

Computational
limit ~

Large separation,
More samples

Small separation,
Less samples



Effect of “Signal Strength”
Infinite data limit:
Ex[cost(x;model)] = KL(true||model)

Mode always at true model

Determined by
• number of clusters (k)
• dimensionality (d)
• separation (s)

Actual log-likelihood

Also depends on:
• sample size (n)

“local ML model” ~
[Redner Walker 84]

true
model

);trueN( 11 −
Fishern J



Informational and
Computational Limits

sample
size (n)

separation (s)
Centers no longer 

modes of distribution

• What are the informational and computational limits?

• Is there a gap?

• Is there some minimum required separation for 
computational tractability?
• Is the learning the centers always easy given the true 
distribution?

Analytic, quantitative answers.
Independent of specific 
algorithm / estimator



Empirical Study

• Generate data from known mixture model
– Uniform mixture of k unit variance spherical 

Gaussians in d

– Distance s between every pair of centers (centers at 
vertices of a simplex)

• Learn centers using EM
– Spectral projection before EM
– Start with k·logk clusters and prune down to k

• Also run EM from true centers or true labeling
(Cheating attempt to find ML solution)



EM with Different Bells and Whistles:
Spectral Projection, Pruning Centers

Select k·logk points at 
random as centers

Select k points at 
random as centers

PCA

PCA

lift back

EM

EM EMprune

EM

EM

EM

prunelift back

EM EM

prune lift back

EMEM

candidate models



EM with Different Bells and Whistles:
Spectral Projection, Pruning Centers
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label error =
wrong edges in “same 
cluster” graphs
i.e., fraction of pairs of 
points that are in the 
same true cluster, but 
not the same 
recovered cluster, or 
visa versa



Behavior as a function of Sample Size
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Behavior as a function of Sample Size:
Lower dimension, less separation
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Behavior as a function of Sample Size:
Lower dimension, less separation
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Behavior as a function of Sample Size:
Lower dimension, less separation
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Informational and Computational Limits as 
a function of k and separation
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Informational and Computational Limits as 
a function of d and separation
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Limitations of Empirical Study

• Specific optimization algorithm
– Can only bound computational limit from above

• Do we actually find the optimum (max likelihood) 
solutions?
– Can see regime in which EM fails even though there 

is a higher likelihood solution which does correspond 
to true model

– But maybe there is an even higher likelihood solution 
the doesn’t?

• True centers always on a simplex
• Equal radius spherical Gaussians



Imperfect Learning

• So far, assumed data comes from specific model 
class (restricted Gaussian mixture)

• Even if data is not Gaussian, but clusters are 
sufficiently distinct and “blobby”, k-means / 
learning a Gaussian mixture model is easy.

• Can we give description of data for which this 
will be easy?

But for now, I’ll also be very happy with results 
on data coming from a Gaussian mixture…



Other Problems with Similar Behavior

• Graph partitioning (correlation clustering)
– Hard in the worst case
– Easy (using spectral methods) for large graphs with a 

“nice” statistically recoverable partition [McSherry 03]

• Learning structure of dependency networks
– Hard to find optimal (max likelihood, or NML) 

structure in the worst case [S 04]

– Polynomial-time algorithms for the large-sample limit 
[Narasimhan Bilmes 04]



Summary
• What are the informational and computational limits on 

Gaussian mixture clustering?
• Is there a gap?
• Is there some minimum required separation for 

computational tractability?
• Is the learning the centers always easy given the true 

distribution?
• Analytic, quantitative answers
• Hardness results independent of specific algorithm

• Limited empirical study:
– There does seem to be a gap
– Reconstruction via EM+spectral projection even from small 

separation (and a large number of samples)
– Computational limit (very) roughly ∝ k1.5d




	When is Clustering Hard?
	Outline
	“Clustering”
	Clustering is Hard
	“Clustering is Easy”, take 1:Approximation Algorithms
	“Clustering is Easy”, take 2:Data drawn from a Gaussian Mixture
	Effect of “Signal Strength”
	Effect of “Signal Strength”
	Informational andComputational Limits
	Empirical Study
	EM with Different Bells and Whistles:Spectral Projection, Pruning Centers
	EM with Different Bells and Whistles:Spectral Projection, Pruning Centers
	Behavior as a function of Sample Size
	Behavior as a function of Sample Size:Lower dimension, less separation
	Behavior as a function of Sample Size:Lower dimension, less separation
	Behavior as a function of Sample Size:Lower dimension, less separation
	Informational and Computational Limits as a function of k and separation
	Informational and Computational Limits as a function of d and separation
	Limitations of Empirical Study
	Imperfect Learning
	Other Problems with Similar Behavior
	Summary
	

