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Abstract

We consider different types of loss functions for
discrete ordinal regression, i.e. fitting labels that
may take one of several discrete, but ordered, val-
ues. These types of labels arise when preferences
are specified by selecting, for each item, one of sev-
eral rating “levels”, e.g. one through five stars. We
present two general threshold-based constructions
which can be used to generalize loss functions for
binary labels, such as the logistic and hinge loss,
and another generalization of the logistic loss based
on a probabilistic model for discrete ordered labels.
Experiments on the 1 Million MovieLens data set
indicate that one of our construction is a signifi-
cant improvement over previous classification- and
regression-based approaches.
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ization of binary regression (as in, e.g., logistic regression),
which can be seen as a degenerate case in which only two
levels, “positive” and “negative”, are available. As with bi-
nary regression, we learn a real-valygdictor z(x) (e.g.

in linear binary regression, we would learn a linear function
of the features), minimizing somesslosg z(z);y) on the
target labels. Common choices for the loss function are the
logistic loss (as in logistic regression), and the hinge loss (dis-
tance from the classification margin) used in Support Vector
Machines. Here, we consider various generalizations to these
loss functions suitable for multiple-level discrete ordinal la-
bels.

Threshold-based approaches

Crammer and Singd2007 suggest a generalization of the
Perceptron algorithm for discrete ordinal labels: instead of
the single threshold of the perceptron, they i5e 1 thresh-
olds to separate the real line to regions correspondingy to
possible rating levels. Shashua and Lel2003 suggest a
similar generalization to Support Vector Machine (SVM): the

In many systems, users specify preferences by selecting, fQfingle margin constraints (for each observation) of standard
each item, one of several rating “levels”, e.g. one though fivesy/\s are replaced with a pair of margin constraints on the
“stars”. When learning to predict further preferences, thesgnresholds bounding the “correct” region (the region corre-
rating levels serve as target labels (responses). This type %bonding to the target label).
discrete ordered labels differs from more standard types of \when slack is allowed, Shashua and Levin's approach can
target labels encountered in other machine learning problemgs seen as regularized regression with a specific generaliza-
binary labels (as in classification tasks), discrete, unordereggn to the hinge loss, which we describe in Section 3.1 as
labels (as in multi-class classification tasks) and Cominuouﬁheimmediate-thresholgeneralization of the hinge loss. In
real-valued labels (as in typical regression tasks). Rating levsaction 3.2 we discuss a different generalization, alie
els are discrete with a finite number of possibilities, like classhreshold generalization, where constraints (and slack) are
labels in multiclass classification. However, unlike a standar¢ gnsidered for allk — 1 thresholds and not only those im-
multiclass classification setting, the labels are ordered—a rafhediately bounding the correct region. We argue that such a
ing of “three stars” is between a rating of “two stars” and ageneralization better penalizes predictions which violate mul-
rating of “four stars”. o _ tiple thresholds and present experimental evidence suggesting
Two obvious approaches for handling discrete ordinal laj¢ might be more appropriate. We also discuss how other loss

bels are (1) treating the different rating levels as unrelategnctions, such as the logistic loss or smooth variants of the
classes and learning to predict them as in a multiclass classifginge |oss, can also be generalized in the same way.

cation setting, and (2) treating them as a real-valued responses
and using a standard regression setting with a loss functioRrobabilistic approaches
such as sum-squared error. However, neither of these refledBther than these threshold-based generalizations, we also
the specific structure of discrete ordinal labels. suggest a different generalization to logistic regression, which

) . we term “ordistic regression” (Section 4), that, like logistic
1.1 Ordinal regression regression, can be viewed as fitting a conditional probabil-
In this paper we view fitting rating levels as a regression probity model P(y|z). We note that Chu and Ghahram§2004
lem with discrete ordered labels. We view this as a generalrecently suggested a different generalization to the logistic



conditional model for discrete ordinal labels. In this paper, we focus oh,-regularized linear prediction,
Probabilistic models for discrete ordinal response have alswherez(z) = w'z+wy is a linear (or more accurately, affine)

been studied in the statistics literatufdcCullagh, 1980; function ofz € R¢, parametrized by a weight vectarc R?

Fu and Simpson, 2002However, the models suggested areand a bias termvy, € R. We seek a linear predictor that

much more complex, and even just evaluating the likelihoodninimizes a trade-off between the overall training loss and

of a predictor is not straight-forward. On the other hand, inthe (Euclidean) norm of the weights:

the ordistic model both the log-likelihood and its derivatives A

can be easily computed, using calculations similar to those J(w) = Z losgw'z" + wo; y') + = |wl|? 1)

used in standard (binary) logistic regression. t 2

1.2 Other approaches where\ is a trade-off parameter set using cross-validation.

We briefly mention another approach suggested for handling.1  Binary Regression

discrete ordinal ratings. Herbricét al. [200d suggest ex- e first review common loss functions used with binary la-

tracting from the rating levels binary comparison relation-pels (i.e. in a binary classification setting), where= +1.

ships on the rated items and thus mapping the problem to @hese serve as a basis for our more general loss functions

partial ordering problem. Herbricét al. then study a gen- for discrete ordinal labels. We go into some detail regarding

eralized SVM for learning from binary comparison relation- aspects of these loss functions which will be relevant in our

ships. A drawback of this approach is the number of ordeconstructions in the following sections.

constraints orf” items with observed labels can be of order

T2, even though the original input to the problem (the ob-£€r0-One error

served labels) is only linear if. Our objective in binary regression is to be able to correctly
predict a binary label. The obvious way of predicting a bi-
1.3 Specific contribution nary label from a real-valued predictofx) = w'a + wq is

. I . . L thresholding the predictor, and predicting gigfx)). The

The main contribution of this paper is studying, in a SyStem-g, |0t conceivable loss function is a loss function counting

atic way, different loss functions for discrete ordinal regres- - .
) ; > S . the number of prediction errors:

sion. Since our main interest is in how to handle discrete

ordinal labels, we focus on regularized linear prediction in _ 0 ifyz>0

a simple learning setting, which we clarify in Section 2. In losg(z; y) = 1 ifyz<0 @)

Section 2.1 we review various loss functions for binary la- o T )

bels and discuss their properties. In Section 3 we preseriowever, this simple loss function is problematic for several

the immediate-threshold and all-threshold constructions merf€asons:

tioned above, using the loss functions from the previous sec- e It is not convex, and minimizing it is a difficult (in fact,

tions as building blocks. In Section 4 we present the ordistic ~ NP-hard) optimization problem.

model which generalizes the logistic. In Section 5 we com-

pare the various methods through experiments using the dif-

ferent loss functions, and compare them also to standard mul-

e |t is not continuous, let alone differentiable, and so even
local optimization is difficult.

ticlass and sum-squared-error regression approaches. e Itis insensitive to the magnitude of and so also to the

We have already used the immediate-threshold and all- ~ Magnitude ofw. Regularizingw is therefore meaning-
threshold generalizations of the hinge-loss in our work on  l€ss, as shrinkingy andw, towards zero would yield
collaborative prediction using Maximum Margin Matrix Fac- the same error, but with a regularization term approach-
torizations[Srebroet al., 2009. Here, we present these con- Ing Zero.

structions in detail and more generally, as well as the ordistigargin

model. The third problem can be addressed by requiring not only that
o z predicty correctly, but that it does so with a margin:
2 Preliminaries .
0 ifyz>1

Since our main object of interest is how to handle discrete or- losqz;y) = ;

! ; ; S i 1 ifyz<1
dinal labels, we focus on a simple learning setting in which
we can demonstrate and experiment with various loss funcFhis modified loss function is sensitive to the magnitude,of
tions. We are given a training sét?, y*);—;. .7 of T rated  and therefore also to the magnitudeuaf Summing this loss
items, where for each itera;’ € R? is a feature vector de- function corresponds to counting the number of violations of
scribing the item ang? is the rating level for the item. We the constraintg(w’z +wg) > 1. Rewriting these constraints

want to predict preferences of future Liitems. We do so bYaSy(%er I%)I) > ﬁ we can interpr% as a geometrical
learning aprediction mappinge(z) : R® — R such that a0 around the separating hyperplane, specified by its nor-
for an item with feature vectat, z(x) corresponds as well |2 Minimizing the | 3 I lari

as possible to the appeal of the item (i.e. is high if the ite al - inimizing the loss (3) as well as thi, regularizer

is highly rated and low otherwise). We investigate different|w| can therefore be interpreted as maximizing the separation
loss functiondosgz; y) for measuring the goodness of the margin M = & while minimizing the number of training
correspondence betweefr:!) and the target rating levef. points not classified correctly with a margin of at leAst
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Figure 1: Different margin penalty function&yz) (left to right): (1) sign agreement, (2) margin agreement, (3) hinge, (4)
smooth hinge, (5) modified least squares, (6) logistic.

Hinge loss but such a linear (at least) dependence is unavoidable in a
Minimizing the margin loss (3) might be a good ideal, but convex loss function. The modified least squares goes be-
this loss function is still non-convex and non-continuous. Theyond this necessary dependence on the magnitude of the er-
common approach to large-margin classification is thereforgor, and introduces an unnecessary (from the point of view of

to minimize thehinge loss convexity) quadratic dependence, further deviating from the
zero/one margin error.
loss, (23 y) = h(yz) (4) o _
. ) . Logistic regression

whereh(z) is thehinge function Another common loss function, which can also be written as

0 it 2> 1 a function of the classification margirz, is the logistic loss:

h(z) = max(0,1 —z) = L (5) .

1—2z ifz<1 loss; (z3y) = g(y=) 8)
This is the loss function typically minimized in soft-margin 9(2) =log(1+¢7%) ©)
Support Vector Machine (SVM) classification. In the context The logistic loss can be viewed as a negative conditional
of SVMs, the hinge loss is usually written as a sum over mariog-likelihood losg(z;y) = — log P(z[y) for a logistic con-
gin violations¢" included in the constrainig(w’z + wo) > ditional modelP(y|z) « e¥* (i.e. Y is a Bernoulli random
1—¢", variable, with natural paramete). The predictorz(z) =

Animportant property of the hinge-loss is that it is an uppery’z + w, minimizing the summed logistic loss is thus the
bound on the zero-one misclassification error (2), and thugaximum conditional likelihood estimator among the para-
large-margin generalization error bounds bounding its valugnetric class of conditional model3(y|z) o e¥(w'#+wo) |n-
on examples not in the training set also bounds the value Qfoducing anL, regularizer as in (1) corresponds to maxi-
the zero-one misclassification error, which is perhaps the trug,ym a-posteriori (MAP) estimation with a Gaussian prior on
object of interest. the weight vectorw.

Smoothed hinge loss As_ discusse_d_ aboye,_logistic _regre_zssion corre_s_ponds to
Other loss functions share properties of the hinge, but are ea§1@ximumconditionallikelihood estimation for @onditional

ier to minimize since they have a smooth derivative. We in-Parametric modeP(y|z). It is worth noting that this para-
troduce “smooth” hinge loss as an approximation to the hingénetric family of conditional models(y|z) o ey(w'z+wo)

that is easier to minimize: is exactly the family of conditional distributionB(y|x) for
) joint distributionsP(y, «) where X |Y” follows a multivariate
0 !f 221 spherical Gaussian distribution with variance which does not
h(z)=q(1—=2)%/2 fo<z<1 (6)  depend ort’, and a mean which does dependioni.e.:
0.5 — if 2<0 1
? °= P(z|y) x e5oz T nyl® (20)

Modified least squares
Zhang and Ole§2001 suggest a different loss function with
a smooth derivative, in which the hinge function is replace

wherep_1, 11 € R4 ando € R, as well as the prior proba-
ility P(Y = 1) are the parameters of the joint distribution

, . odel.
with a truncated quadratic: For our purposes below, it would also be useful to view the
0 if 2>1 conditional modelP(y|z) « e¥* similarly, as the conditional
h(z) = {(1 Ca2? ifa< (7)  distribution arising from a joint distributio#(y, z) in which

Py=1)=3}andZ|Y ~ N(1,Y),ie.

The modified least squares loss based on (7) is much more Lamy?

sensitive to outliers and large errors then the hinge loss using P(z]y) e e? - (11)
(5) or smoothed hinge loss using (6).

The margin error (3), which we might want to view as a Loss as a function of classification penalties We note that
non-convex “ideal”, does not pay any attention to the magni-all loss functions discussed here can be viewed as penalties
tude of the error, and penalizes all errors equally. This allowsossy; z) = f(yz) imposed on thelassification margingz,
for a few outliers fairly cheaply, but leads to a non-convexand differ only in themargin penalty functiorf () used. The
objective. The hinge loss, as well as the smoothed hinge, invarious margin penalty functions discussed are shown in Fig-
troduce a linear dependence on the magnitude of the erroare 1.



segment, namely < 0, corresponding to negative labels
y = —1, and a semi-infinite segment,> 0 corresponding to
positive labels. In fact, the bias term in the binary setting can
| be viewed as specifying a threshold. TRe— 1 thresholds
1 replace this single bias term / threshold.

| " / | ! / We describe two different constructions for loss functions
Ty v vy AT based on such thresholds. The constructions differ in how
predictors outside the segment segment corresponding to the
Figure 2: Threshold-based loss constructions: (left)‘correct” label (or too close to its edges) are penalized. Both
immediate-threshold, and (right) all-threshold. Both plotsconstructions are based on combining penalties for threshold
show a generalization of the hinge loss for an example wittviolation, where each threshold violation is penalized using
labely = 4. some margin penalty functiofy-).

3.1 Immediate-Threshold

. . ) For the immediate-threshold construction, we consider, for
So far, we discussed loss functions for binary labels £1.  gach [abeled example;, ), only the two thresholds defining

However, the main topic of this paper is loss functions forhe «correct” segmentd,_, . 6,), and penalize violations of
discrete ordinal labels. In this scenario, the lahetan take  hese thresholds:

on K distinct values which we denotd, 2, ..., K}.

In the next section, we present different constructions for losgz;y) = f(z — 0y—1) + f(0, — 2), (12)
generalizing margin-based loss function for binary labels, of ) ) _
the form loséz;y) = f(y2), to discrete ordinal labels. We Wherez = z(z) is the predictor output for the example. Fig-
do so by introducings — 1 thresholds, instead of the single Ure 2 gives an example visualization fpr 4. Note that iff
threshold (zero) in the binary case. is an upper bour_1d on the binary cla§S|f|cat|on Zero-one error,

We also introduce a generalization of the logistic loss inthen the immediate-threshold loss is an upper bound on the
which the joint probabilistic modeP(y, z) is generalized to ordinal regression zero-one error. The immediate-threshold
a mixture of K’ unit-variance Gaussians (instead of a mixturel0Ss is ignorant of whether multiple thresholds are crossed.
of two unit-variance Gaussians as in the binary case).

ycase). 35 All-Threshold

2.3 Beyond Feature-Based Regression In a multi-class classification setting, all mistakes are equal;

Although the main setting we focus on is a feature-based linthere is no reason to prefer one incorrect label over another.
ear regression setting, the loss functions we describe are aphis is not true in ordinal regression where there is a distinct
plicable in more general settings where a real-valued predicerdering to the labels. It is better to predict ‘4’ than ‘1" if the
tor needs to be related to a discrete ordinal label. In fact, ouffue labelis ‘5. This is evident in the evaluation criterion. We
study originated in matrix-completion approaches to collabots€ mean absolute error for ordinal regression, which counts
rative prediction (completing unobserved entries in a partiallythe sum of distances between the true and predicted labels.
observed matrix of user preferences), where the “predictorsimmediate-threshold bounds zero-one error, but not (neces-
are entries in a proposed matf&rebroet al, 2005. sarily) mean absolute error.

We focus on linear regression using explicit features, but \We introduce a construction that bounds mean absolute er-
we note that all methods discussed here can also be "kerndlor- The all-threshold loss is a sum of all threshold violation
ized”, as in Support Vector Machines. Both the immediatePenalties. If the binary loss function bounds zero-one error,
threshold and all-threshold constructions with a hinge losghen the all-threshold loss bounds mean absolute error. De-
can also be seen as generalizations of SVMs and can be sta_t@,qes(l; y) = -1 !f I<y Then the all-threshold loss is
as quadratic programs to which optimization techniques typi- +1 ifl>y
cally employed in learning SVMs apply (in fact, Shashua and

2.2 Discrete Ordinal Regression

Levin [2009 introduce the immediate-threshold construction =1

in the context of SVMs). loss(z;y) = ) f(S(l; y) (6 — Z))- (13)
=1

3 Threshold-Based Constructions where f(-) is some margin penalty function. Figure 2 gives

To extend binary loss to the case of discrete ordinal regre2n €xample visualization for = 4. Note that the slope of the
sion, we introduce( — 1 threshold¥; < 6, < --- < O _1 0ss increases each time a threshold is crossed. Thus, solu-

partitioning the real line td segments. The exterior seg- tions are encouraged that minimize the number of thresholds

ments are semi-infinite, and for convenience we defipte  (hat are crossed.
—oo andfx = +oo. Each of theK segment corresponds to .
one of theK labels and a predictor value 6f_; < z < 6, 3.3 Learning Thresholds

(i.e. in theyth segment) corresponds to a ratingyof This  Fitting an ordinal regression models involves fitting the pa-
generalizes the binary case, where we used a single threstameters of the predictor, e.g:(z) = w'x, as well as the
old, namely zero, separating the real line into a semi-infinitehreshold®, . .., 0. Learning the thresholds, rather than



fixing them to be equally spaced, allows us to capture the diff’(y|z) o z,(z) = wy,x + wye. This conditional model cor-
ferent ways in which users use the available ratings, and alleesponds to a joint distributiof(y, =) where X|Y follows
viates the need for per-user rating normalization. In a setting unit-variance spherical Gaussian distribution with mean
in which multiple users are considered concurrently, e.g. g € R<. This model differs from the ordistic model in that
collaborative prediction, a different set of thresholds can behe means of thé& Gaussians are allowed to fall in arbitrary

learned for each user. positions inR<. On the other hand, in the ordistic model, we
model Z, rather thenX, as a Gaussian mixture. An alternate
4 A Probabilistic Generalization view of the ordistic model would be to vieW as a Gaussian

o ) ) mixture, but in this case, all means would be constrained to
Recall that the logistic loss for binary labels can be viewedhe co-linear, since the same weight vectois used for all
as the negative conditional log-likelihood lp8sz) =  |apels. This constraint captures the core difference between a
—log P(y|z) for a conditional modelP(y|z) o €  gtandard softmax model and the ordistic model: the ordistic
corresponding to a mixture-of-Gaussians joint distributionmodel constrains the different labels to correspond to differ-
P(y, z), as described in Section 2.1. Here, we generalize thgnt extents along the same direction (hence collinear means),

logistic by generalizing this probabilistic model to a mixture yather then arbitrary variations in different directions.
of K Gaussians, resulting in a similar simple form for the

conditional modelP(y|z). We refer to this model, and the 4.2 Derivatives
resulting loss, as the “ordistic” model.

Unlike the threshold-based constructions which ar
parametrized byK — 1 thresholds, the ordistic model is
parametrized by théd{ meansy; < ps < -+ < g,
and possibly also th& prior probabilitiespy,...,px > 0,
> p; = 1. Considering a joint probability model in which
P(y) = py, andZ|Y ~ N(uy, 1), the conditional distribu-

As with the logistic model, the derivatives of the ordistic loss
ave a simple form. In order to simplify the derivatives, it will

e useful to refer to expectation and probabilities with respect
to the joint probabilistic (Gaussian mixture) model f&f, V)
discussed above. The gradient with respect tivom which

the gradient with respect to the weights can be calculated, is:

tion P(y|z) is: 0l0ss,(z;y) _ > i M €Xp (M,Z + (mi — M?/Q))
pye G2 0z VS e iz + (o — 2/2)
Plylz) = S pie— G-/ =iy + Y wiPr(Y =i|Z =z, 7)

2
exp (uyz + (Wy Ny/Q)) (14) =~y +Eux [y |Z = 2] (15)

doiexp (piz + (m; — pi7 /2)) . o :
o . Similarly, the derivative with respect to the log-priars
pi = % these terms drop from the conditional distribution.

The ordistic loss, with paramete(ig;, 7;) is obtained by con- dloss,(2;y) 7. o
sidering the negative log-likelihood: or, Pr(Y =ilZ =zp,m) — by (16)
2 oloss,(z;y) :
(o 2+ (my =113 /2)) 0% — (Pr(Y =i|Z =z, ) — 8y.4) (2 — i
loss,(y; z) = —log P(y|z) = — log ¢ O (P i Zp ) = 0y)(z = o)

S olnizt(mi—n?/2)) _ _ _
¢ whered, ; is one ify = ¢ and zero otherwise.

If all meanspu., ..., ux are allowed to vary freely, regular- )

izing the weight vectow is meaningless, since rescaling it 5 Experiments

can be corrected by rescaling the means. In order to IMPOSFy determine the appropriateness of the different construc-

a f'xfdlscglrﬁi’kg?h:gsﬂg d?égfgjemﬂgggsﬁpbzs}l ari]s tions discussed earlier, we conducted experiments on a well-
HE = ’ arm ﬁown collaborative filtering data set. We implemented the

?ﬁ;g'\ig‘:l: f]ll;]r%ebgr]?)flocz:;g%]e?értsh?o?)g:]egr]gisntqigar'gg(jlzlf:/)\(/ﬁh o threshold-based constructions discussed in Section 3. We
. 1 P also implemented multi-class classification and sum-squared
fixedp; = 7 is therefore the same as the number of parame

. . error regression constructions to compare against.
ters in the threshold cor)structlonﬁ(f 1 parameters for the We used the “1 Million” MovieLens data set for evaluation.
K — 2 means and the bias term, iir — 1 parameters for the

thresholds, in addition to the weight vector). Allowing priors The data set contains 1,000,209 rating entries, made by 6040
introducesi( _ 1 additional parameters : users on 3952 movies. Similar to t_he work of Crammer and
The ordistic degenerates to the Iogis.tic wheén= 2 _S|nger{2002] and Shashua and LeJ800d, we used the rat-
' ings of the top 200 users as “features” to predict the ratings of
- . the remaining users. To deal with “missing” ratings, we sub-
4.1 Difference from soft-max multi-class tracted the user’s mean rating and filled-in empty values with
classification zero. We used the remaining 5840 users’ ratings as labels
A common generalization of logistic regression to multi-classfor ordinal regression. For each user, we used one randomly
classification is to learn a predictey(x) = wjz + w;o for selected rating for testing, another for validation and the re-
each class and fit a soft-max conditional model in whichmaining ratings for training. We limited our experiments to



Multi-class | Imm-Thresh| All-Thresh

Test MAE Test MAE | Test MAE
Mod. Least Squares 0.7486 0.7491 0.6700 (1.74e-18)
Smooth Hinge 0.7433 0.7628 0.6702 (6.63e-17)
Logistic 0.7490 0.7248 0.6623 (7.29e-22)

Multi-class | Imm-Thresh| All-Thresh

Test ZOE Test ZOE Test ZOE
Mod. Least Squares 0.5606 0.5807 0.5509 (7.68e-02)
Smooth Hinge 0.5594 0.5839 0.5512  (1.37e-01)
Logistic 0.5592 0.5699 0.5466 (2.97e-02)

Table 1: Mean absolute error (MAE) and zero-one error (ZOE) results on MovieLens. For each construction/loss and error type,
we selected the regularization parameter with lowest validation error. Numbers in parenthgs&alaes for all-threshold

versus the next best construction. As a baseline comparison, simple sum-squared-error (L2) regression achieved test MAE of
1.3368 and test ZOE of 0.7635.
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