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Abstract

We present a simple, yet effective, approach
to Semi-Supervised Learning. Our approach
is based on estimating density-based dis-
tances (DBD) using a shortest path calcu-
lation on a graph. These Graph-DBD es-
timates can then be used in any distance-
based supervised learning method, such as
Nearest Neighbor methods and SVMs with
RBF kernels. In order to apply the method
to very large data sets, we also present a novel
algorithm which integrates nearest neighbor
computations into the shortest path search
and can find exact shortest paths even in
extremely large dense graphs. Significant
runtime improvement over the commonly
used Laplacian regularization method is then
shown on a large scale dataset.

1 Introduction

The notion of a similarity measure is central to learn-
ing algorithms, and many learning methods take as
input a distance matrix between data points. The
premise behind semi-supervised learning is that the
marginal distribution p(x), can be informative about
the conditional distribution p(y|x). It is natural, then,
to use a distance measure that takes into considera-
tion the marginal distribution. Our approach to semi-
supervised learning is to use p(x) to compute more
informative distances between unlabeled points and la-
beled points. These can then be used in any supervised
learning method that takes distances between points
as inputs.

Denoting the probability density function in Rd by
f(x), we can define a path length measure through Rd

that assigns short lengths to paths through highly den-
sity regions and longer lengths to paths through low
density regions. We can express such a path length
measure as

Jf (x1
γ� x2) =

� 1

0
g

�
f(γ(t))

�
� γ

�(t) �p dt, (1)

where γ : [0, 1] → Rd is a continuous path from γ(0) =
x1 to γ(1) = x2 and g : R+ → R is monotonically
decreasing (e.g. g(u) = 1/u). Using Equation 1 as
a density-based measure of path length, we can now
define the density based distance (DBD) between any
two points x1, x2 ∈ Rd as the density-based length of
a shortest path between the two points

Df (x1, x2) = inf
γ

Jf (x1
γ� x2) (2)

Figure 1a) depicts the intuition behind these density-
based distances. Distances through low-density re-
gions should be much larger than distances through
high-density regions. We would say that points A

and B in the figure are more similar, or have a lower
density-based distance between them, than points A

andC, even though pointsA andC are closer together
in terms of their Euclidean distance.

Density-based distances make sense under both the
manifold and the cluster assumptions commonly found
in the semi-supervised learning literature. When the
density is uniform over a manifold, a density-based dis-
tances simply measures distances along the manifold
(e.g. Figure 1a)), and so using density-based distances
essentially corresponds to following the natural geome-
try of the manifold. When the data appears in distinct
high-density clusters separated by low density regions
(e.g. as in Figure 1b)), density-based distances within
clusters will be low, while density-based distances be-
tween points in different clusters will be high.

To exactly compute the density based distance requires
not only a search over all possible paths, but also
knowledge of the density p(x) and its support, i.e. the
data manifold. In a semi-supervised learning scenario
we typically do not have direct access to the marginal
p(x), but instead have access to large amounts of un-
labeled data. We could then use the unlabeled data as
a surrogate for the true marginal density and estimate
such density-based distances using the unlabeled data
points.

Density based distances were first discussed in the con-
text of semi-supervised learning by Sajama and Orlit-
sky (2005), who suggested estimating the density using



kernel density estimation, and then approximating the
density-based distances using this estimated density.
However, as noted by the authors, kernel density esti-
mation is not very efficient and for high dimensional
data one needs a large amount of data to reasonably
approximate the true density. This yields poor results
on high dimensional data (Sajama & Orlitsky, 2005).
In a manifold setting, one can also use a non-linear
dimensionality reduction method to estimate the data
manifold, and then calculate distances along the mani-
fold (Weinberger & Saul, 2004; Belkin & Niyogi, 2003).
Avoiding explicitly recovering the manifold structure
leads to a significantly simpler computational method
which is less reliant on the specifics of the “manifold
assumption” to semi-supervised learning. Not estimat-
ing the distances explicitly allows us to handle much
higher dimensional data, in which the sample complex-
ity of density estimation is prohibitive.

Alternatively, a simple heuristic was suggested by Vin-
cent and Bengio (2003) in the context of clustering,
and is based on constructing a weighted graph over
the data set, with weights equal to the squared dis-
tances between the endpoints and calculating shortest
paths on this graph. In Section 3 we discuss how this
relates to the density-based distances defined in (2).
In this paper, we investigate this Graph Based Den-
sity Based Distance estimate (Graph-DBD), apply it
for semi-supervised learning, and extend it to give it
more flexibility and allow it to better capture the true
density-based distances.

Calculating the Graph-DBD involves a shortest path
computation over a large dense graph. For small and
medium-sized data sets, this shortest path computa-
tion can be done efficiently using Dijkstra’s algorithm.
However, our problem is fundamentally different from
the traditional shortest-path problem in that we im-
pose no restrictions on the set of all valid sequences:
our graph is implicitly fully connected— each point in
the data set connects to all other points. Traditional
search algorithms assume low vertex degree and would
therefore scale quadratically with size of the data set
in our setting.

To circumvent this problem, we developed a novel vari-
ant of Dijkstra’s shortest-path algorithm which inte-
grates the nearest-neighbor computation directly into
the search and achieves a quasi-linear complexity in
the size of the data set whenever nearest neighbor
queries can be solved in logarithmic time (Section 4).
Our empirical analysis demonstrates substantial prac-
tical computational gains using Dijkstra* while retain-
ing provable correctness guarantees. Dijkstra* allows
us to use the Graph-DBD for semi-supervised learning
on very large data sets.

2 Nearest Neighbor and Local Density

A simple intuition serves the analysis in this section. If
the distance between nearby neighbors in some neigh-
borhood is small then one can expect the neighbor-

hood to be a high density region. Thus we seek to
establish a relation between the nearest neighbor dis-
tances and the neighborhood density. This is quanti-
fied by the following relationship:

Theorem 2.1. Let f(x) be a smooth density in Rd and
let x0 ∈ Rd be a fixed arbitrary point in the interior
of its support. Consider a random sample X1, ..., Xn
drawn i.i.d from f(X). Define the random variable
Z = minj ||x0 −Xj ||p measuring the �p distance from
x0 to its nearest neighbor in the sample, and denote
the median of this random variable as mZ . Then as
n → ∞:

f(x0) =
ln(2)

n

1

cp,dm
d
Z

+O(
1

n2
) (3)

where cp,d = 2dΓ(p+1
p )d/Γ(p+d

p ) is the volume of the

�p unit sphere in Rd.

Proof. For any radius r we have that Pr(Z > r) =
(1 − pr)n where pr = Pr(||X − x0||p < r) =�
||x−x0||p<r f(x)dx is the probability mass of the ra-

dius r �p-ball around x0. Since the density is smooth,
for small enough r we have pr → f(x0)rdcp,d. For
the median mZ we thus have 1/2 = Pr(Z > mZ) =
(1− f(x0)md

Zcp,d)
n. Solving for the density yields (3).

Theorem 2.1 suggests using the following nearest-
neighbor based estimator for the density:

f̂(x) =
ln(2)

n

1

cp,dZ
d(x)

(4)

where as before Z(x) = minj � x − Xj �p is the dis-
tance to the nearest neighbor in the sample. Such
estimators, based on nearest neighbors, were first pro-
posed by (Loftsgaarden & Quesenberry, 1965). The
Theorem establishes that this estimator is asymptoti-
cally median-unbiased, i.e.

median(f̂(x)) = f(x) +O(1/n2). (5)

Unfortunately, although f̂(x) is asymptotically
median-unbiased, it is not a consistent estimator and
its variances remains constant even as n → ∞. This
is demonstrated in Figure 1 c) which shows the me-
dian, as well as the 25th and 75th percentiles of f̂(x0),
for the fixed point x0 under a uniform density on the
unit square. Although the median does converge very
quickly to the true density (namely, 1), the 25th and
75th percentiles remain roughly constant and far from
the median, indicating a non-diminishing probability
of the estimator being far from the true density.

One way to obtain a consistent estimator is to base the
estimator not on the distance to the nearest-neighbor,
but rather to the log(n) nearest-neighbors (Devroye,
1977). Fortunately, this is not necessary for our pur-
poses. As discussed below, we will be satisfied with
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Figure 1: a) Cluster Assumption: From a density-based perspective point B is closer to point A than C since they are
connected by a path through a region of high density. b) Manifold Assumption: point B is closer to point A than C since
they are connected by a path through a high density manifold. c) 25th, 50th and 75th percentile of the estimator f̂(x0)
at an arbitrary x0. d) The Graph Based DBD estimate of the distance between (0, 0) and (1, 1), for a uniform density
over [0, 1]2 as a function of the number of points n in the sample. Here p = 2 and q = 2 and the DBD was calculated as
is described in the text, and then multiplied by

√
n.

a constant-variance estimator as our density-based-
distance estimator will essentially be an average of
many such density estimators.

3 Graph DBDs

The nearest-neighbor based density estimate discussed
in the previous Section motivates using the distance
between neighboring points as a proxy for the inverse
density along the path between them. At least if the
points are indeed close together, and are nearest neigh-
bors, or close to being nearest neighbors, the discus-
sion above suggests that the distances between them
will indeed be indicative of the inverse density. That
is, for points xi and xj that are close together, and
using g(f) = 1/fr, we can approximate:

Df (xi, xj) ≈ g(f(around xi and xj)) � xi − xj �p
∝ g(� xi − xj �−d

p ) � xi − xj �p=� xi − xj �rd+1
p =

� xi − xj �qp
where q = rd + 1. Setting q = 1 yields the standard,
non-density-weighted, �p distance. An important
point is that Theorem 2.1 refers to a d-dimensional
density. Under the manifold assumption, when the
data is supported on a low dimensional manifold, there
is no density with respect to the ambient dimension,
but only a lower dimensional density on the manifold.
The dimensionality d in the discussion above should
therefore be thought of as the intrinsic dimensionality,
i.e. the dimensionality of the manifold supporting the
data. This dimensionality is typically not known, but
luckily in order to apply the proposed method, there is
no need to estimate this dimensionality. The method
relies on choosing the tuning parameter q > 1 (set via
cross-validation, or to an arbitrarily chosen moderate
value), which can be interpreted as q = rd + 1 where
d is the intrinsic dimensionality and r is the exponent
in g(f) = 1/fr determining how strongly to weight by
the density, but in order to use the method there is no
need to tease these two apart.

Returning to approximating the DBD between two
further away points, the DBD along a path xπ(0) →

xπ(1) → xπ(2) → · · · → xπ(k) hopping between close
neighbors could then be approximated as the sum of
local DBD estimates along the path:

Jf

�
xπ(0)

π� xπ(k)

�
=

k�

i=1

Df (xπ(i−1), xπ(i))

≈∝
k�

i=1

� xπ(i−1) − xπ(i) �qp (6)

Finally, the density-based-distance between two points
could be estimated as the minimum density-based dis-
tance over all paths π starting at the first point, hop-
ping between other points in the sample, and ending
at the other. Note that even though the estimates
above were discussed for paths hopping between close-
by points, there is no need to restrict the path π to
only include edges between nearby points: Consider
some edge xπ(i) → xπ(i+1) along a path π. If xπ(i)
and xπ(i+1) are not close together in the sample, and
there are other points in between them, then a path
going through these intermediate points will have an
estimated DBD based on high density estimates, and
would thus have a shorter estimated DBD. Since we
defined the DBD in terms of the shortest DBD path,
we would prefer a path making short hops over the
original path making a long hop.

As discussed in previous Section, using 1/� xi − xj �d
as a density estimate (up to some global scaling) at
each edge is a very rough approximation, with variance
that does not shrink with the sample size. However,
as the sample size increases, the number of edges on
each path increases, with non-neighboring edges being
essentially independent. And so, the number of inde-
pendent contributions to the length of the path grows,
and we might expect the variances of its normalized
length to decrease. This intuition is confirmed in Fig-
ure 1 d) which shows the convergence of estimate of
the DBD between two corners of a unit square with
uniform density. Further consideration, coping with
the dependencies between distances and the minimiza-
tion over many paths, is necessary in order to solidify
this intuition.



Figure 2: Our algorithm efficiently finds a path from an unlabeled point to the closest labeled point. Although each pair
of adjacent points are very similar, the point may change significantly across the entire path. This figure shows an optimal
path (of length 15) from query point (left) to labeled point (right) through a data set containing the subset of all MNIST
digits 5 and 2 using 10 labeled points from each class (20 in all). We set parameters p and q to 5 and 8, respectively.

In summary, given a sample x1, ..., xn ∈ �d, and �p
metric, and an exponent q > 1, we suggest the follow-
ing approach to semi-supervised learning:

1. Compute a weight matrix between all pairs of points
xi and xj (training and test) given by:

Wij =� xi − xj �qp . (7)

2. Compute shortest path distances DG(i, j) between
test and the labeled points in a fully connected graph
with weights Wij .

3. Use a distance-based supervised learning method,
such as a Nearest Neighbor method, Parzen Windows
method, or Kernel method with a distance-based (e.g.
Gaussian) Kernel, with the distances DG(i, j).

Comparison With ISOMAP Distances

ISOMAP (J. B. Tenenbaum & Langford, 2000)
is a popular method for non-linear dimensionality
reduction, which begins with a global distance cal-
culation similar to our Graph Based DBD. ISOMAP
distances are also shortest path distances along
a graph, but graph edge-lengths are defined as
Wij = �xi − xj� if xi, xj are k-nearest-neighbors
of each other, and infinity (i.e. no edge) otherwise.
ISOMAP distances then correspond to geodesic dis-
tances along the data manifold, but do not take into
consideration varying density: a path through a high
density region will have the same length as a path
through a low density region. If the data distribution
is indeed uniform on a manifold, then with enough
points the Graph Based DBD and the ISOMAP
distances should be similar. But true distributions
are never exactly uniform on a manifold and zero
outside the manifold, and so we believe the Graph
Based DBD can better capture the relevant distances
between points. This is demonstrated on synthetic
two-dimensional data in Figure 3, and in experiments
later on.

Computing the Graph-DBD Distances For
small data sets, the matrix W can be computed fully,
and a Dijkstra’s algorithm can be used in order to per-
form step 2 above. For larger data sets, where it is im-
practical to compute the entire matrix W , or to invoke
Dijkstra on a fully connected graph. One approach is
to consider a k-nearest-neighbor graph in step 1, thus
also reducing the computational cost of Dijkstra’s al-
gorithm in step 2. However, this would only be an ap-
proximation to the Graph-DBD presented above, and
it is not clear a-priori what value of k should be chosen.

It is important to note that unlike methods like
ISOMAP that depend delicately on the choice of the
number of neighbors, here calculating more neighbors
is always beneficial, since the Graph DBD is defined in
terms of the full graph. In ISOMAP, a too high value
of k would cause distances to approach the distances
in the ambient space, ignoring the manifold structure,
and k is an important parameter controlling in a sense
the “resolution” of the manifold structure sought. For
Graph-DBD, the exponent q plays a similar role, but
if we restrict ourselves to a k-nearest-neighbor graph,
this is only for computational reasons, and a larger
value of k would always be preferable. Of course these
would also be more computationally expensive.

Instead of limiting ourselves to such a k-nearest-
neighbor graph, in the next Section we present a novel
algorithm, which we call Dijkstra* , that calculates
shortest paths in the fully connected graph, as in the
discussion of the Graph-DBD above. However, Dijk-
stra* only requires access to the few nearest neighbors
of each point and is much more computationally effi-
cient than either a full Dijkstra computation on the
full graph, or even on a k-nearest-neighbor graph with
a moderate k.

4 Dijkstra*: Shortest Paths Through
Dense Graphs

The discussions above reduced the problem of semi-
supervised learning to a search for shortest-paths in
graphs. Our problem, however, differs fundamentally
from more traditional search settings in that comput-
ing Graph DBDs implies searching through a dense
fully-connected data graph. This section introduces
a novel variant of Dijkstra’s algorithm we call Dijk-
stra* that integrates the nearest neighbor computa-
tion into Dijkstra’s inner loop by exploiting a subtle
property of the priority queue, thereby allowing it to
efficiently search directly through the fully-connected
graph. This algorithm obviates the need for a sep-
arate k nearest-neighbor graph construction stage to
approximate the problem.

4.1 An inefficiency in Dijkstra’s algorithm

Dijkstra’s algorithm is very effective for many short-
est path graph search problems. Specifically, the al-
gorithm solves the problem of finding a shortest path
from each vertex in the graph to one or more goal
vertices. In our case, the set of goals G in our prob-
lem is the set of all labeled points in the data set as
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Figure 3: a) Toy example demonstrating the difference between DBD and Isomap distances. For each method, we plot
the relative distances between three pairs of points, as we change the parameter q or the radius of the �-ball used to
construct the ISOMAP graph.

we would like to find the shortest path between ev-
ery point and every labeled point. Central to the al-
gorithm is the maintainence of a priority queue con-
taining a collection of candidate paths from the goal.
(Typically, implementations represent these paths effi-
ciently as unique paths through a search tree, but there
are conceptual advantages to interpreting the contents
of the queue as distinct paths.) It is easy to prove that
if the queue is initialized to contain the zero-length
paths represented by the goals (labeled points) alone,
a simple greedy expansion procedure is guaranteed to
produce shortest paths through the graph as is de-
scribed in the paragraphs below.

We will treat the priority queue Q as simply a set of
paths where each path in the queue ξ = (x0, . . . , xl) ∈
Q starts in the goal set (x0 ∈ G). We can de-
note the operation of popping the shortest path from
the queue as ξ∗ = argminξ∈Q J(ξ), where J(ξ) =�l

i=1 �xi−1−xi�qp is simply the path length used by the
Graph DBD approximation. (Note that we implicitly
assume removal from the queue after each pop opera-
tion.) The priority queue data structure (T.H. Cormen
& Stein, 2003) provides an efficient representation for
Q giving logarithmic complexity to the argmin and set
addition operators.

Every iteration of Dijkstra’s algorithm pops the cur-
rent shortest path from the queue ξ∗ = (x∗

0, . . . , x
∗
l ) =

argminξ∈Q J(ξ). This path is guaranteed to be the
shortest path from x∗

0 ∈ G to it’s final point x∗
l ∈ X .

The algorithm then adds a collection of new paths to
the queue of the form (ξ∗, xl+1), where xl+1 ranges
over all neighbors N (x∗

l ) of the final point x
∗
l . Adding

this collection to the queue maintains the optimality
guarantee of subsequent iterations (T.H. Cormen &
Stein, 2003).

Unfortunately, for our problem, since we search
through fully connected graphs, the expansion step
of Dijkstra’s algorithm can be prohibitively expensive:
at each iteration, the algorithm would add on the or-
der of |X | new paths to the priority queue. A sim-
ple intuition, however, underscores an inefficiency in
this approach, which we exploit in deriving Dijkstra*:
although Dijkstra adds all neighboring paths to the
queue during a given iteration, it is always the single
shortest of these paths that is the first to be popped if

Algorithm 1 Dijkstra* search

1: initialize Q = {(x0)}x0∈G .
2: while |Q| > 0 do

3: pop from queue,
ξ∗ = (x0, . . . , xT ) ← argminξ∈Q J(ξ)

and remove xT from X
4: push next(Q, ξ∗)
5: if T > 0 then push next(Q, ξ∗T−1)
6: end while

Algorithm 2 push next(Q, ξ = (x0, . . . , xT ))

1: compute nearest-neighbor
x� = argminx∈X �x− xT �p

2: add extended path ξ� = (x0, . . . , xT , x
�) to Q

any are popped at all. We can therefore just add the
single best neighboring path, as long as we systemati-
cally add the next best path once that path is popped
(if it ever is).

4.2 The Dijkstra* algoritm

Following the intuition of the preceeding section, we
suggest a novel variant of Dijkstra’s algorithm called
Dijkstra* designed to avoid expanding all neighbors of
a given vertex simultaneously, as the degree of each
vertex in our setting is very large.1 Algorithm 1
lists pseudocode for Dijkstra*, and Theorem 4.1 be-
low proves its correctness (proof not given because of
lack of space)

Theorem 4.1. If ξ = (x0, . . . , xT ) is popped from Q

during Step 3 of Algorithm 1, then ξ is an optimal path
from x0 to xT ∈ S. Moreover, each node x ∈ X will
eventually be the end point of some popped path ξ.

4.3 Achieving O(n log n) using space

partitioning trees

In the worse case, nearest neighbor queries are funda-
mentally hard and take O(n) time to perform. How-
ever, when the geometric structure of the data is nice

1In the tradition of A*, we interpret the * in Dijk-
stra*’s name as the UNIX wildcard pattern denoting “all
versions”.



k 15 20 30 50 100 speedup

Dijkstra* 2.429 2.929 3.745 5.206 10.567 -
Dijkstra 4.144 5.976 10.023 15.410 52.586 5x
Laplacian Reg. 18.484 24.25 35.581 57.67 117.79 11x
unreachable 2335 1757 988 621 527 -

Table 1: Timing results in seconds for semi-supervised
classification of the CoverType data set using k-nearest-
neighbor graphs with k ranging from 15 through 100 using
100 labeled points. Each values is the average over 10
different independent samplings of the 100 labeled points.
The final row depicts the average number of points that
were residing in components disconnected from the labeled
set as k varies. The final column shows the multiplicative
speedup of Dijkstra* over both alternative algorithms for
k = 100.

(e.g. low intrinsic dimensionality) space partitioning
trees such as the Cover Tree have proven effective in re-
ducing that complexity to O(log n) both theoretically
and practically (Beygelzimer & Langford, 2006). Dijk-
stra* can easily use these data structures to improve its
inner loop complexity. Denoting the total number of
vertices and edges in a graph as V and E, respectively,
the generic running time of Dijkstra’s traditional al-
gorithm is O((V + E) log V ) when the priority queue
is implemented using a binary heap (T.H. Cormen &
Stein, 2003). For our problem, however, E = O(V 2)
and V = n (the number of data points) so the complex-
ity is expressed more precisely as O(n2 log n) = �O(n2).
When n is large, this quadratic complexity is compu-
tationally infeasible. However, when space partition-
ing trees achieve O(log n) performance on the near-
est neighbor query and point removal operations, the
O(n) inner loop complexity of Dijkstra* vanishes and
the overall complexity reduces to O(n log n).

Note that additionally, although we always need to
compute nearest neighbors, by integrating this com-
putation directly into Dijkstra*, we avoid arbitrarily
choosing a single global vertex degree k across the en-
tire data set. Dijkstra* more efficiently uses each near-
est neighbor query by avoiding previously closed nodes
(see Figure 4 and its caption for details).

5 Experiments

We divide the experiments into two sets, one studying
the medium sized benchmarks detailed in (O. Chapelle
& Zien, 2006) and the other addressing the larger scale
CoverType and MNIST datasets. We show compara-
ble and sometimes better accuracy on large data sets
while achieving far superior runtime performance.

5.1 Medium-Size Benchmarks

In this set of experiments we show results on the
semi-supervised learning benchmarks described in
(O. Chapelle & Zien, 2006). We used the datasets
Digit11, USPS, COIL, BCI and TEXT. The first four
are described as “manifold-like” and are assumed to
lie on a low dimensional manifold. The last dataset
is described as “cluster-like” and assumed to contain

Algorithm k=15 k=20 k=30 k=50 k=100
1-NN Isomap 0.44079 0.445 0.45351 0.46539 0.47442

1-NN DBD(p=2,q=4) 0.4345 0.43446 0.43446 0.43453 0.43439
Laplacian Reg. 0.43194 0.43246 0.43307 0.43433 0.43458
1-NN Euclidean 0.5175 0.5175 0.5175 0.5175 0.5175

Table 3: Quantitative average classification results on the
CoverType data set. The results (error rates) are averaged
over 10 randomly chosen subsets of 100 labeled and the rest
unlabeled points. The algorithms are run on these subsets
for varying k for the underlying nearest neighbor graphs.

label-homogeneous clusters. The datasets can be ob-
tained at (Data, 2006).

The methods against which we compare have also been
described in the above reference and the results for
these algorithms are reproduced from that publication.
These algorithms include manifold and cluster based
algorithms. Please see (O. Chapelle & Zien, 2006) for
more details on the data and the algorithms.

Table 2 shows the results on the benchmark datasets.
For the 10 labeled point case the results reported are
the best obtained on the test set. In the 100 labeled
point case the parameters p and q were obtained us-
ing 10-fold cross validation over each of the 12 labeled
subset of points and a subset of the unlabeled points.
Thus for each subset we have a parameter pair (p, q).
A simple nearest neighbor classifier using Graph DBDs
is very competitive with the state-of-the-art while be-
ing significantly more computationally efficient than
the competing algorithms.

We also show results for the fixed values of p = 2 and
q = 8 in the last row. These values were chosen ar-
bitrarily and represent a reasonable choice for most
datasets. Most of the best performing methods on the
manifold-like data involves very heavy computations
on the graph Laplacian including computing eigenvec-
tors and solving linear equations (O. Chapelle & Zien,
2006). In comparison our Graph DBD computation
requires only a distance matrix and a shortest path
calculation. The choice of the parameters p and q also
seems to be a relatively easy problem since for most
of the datasets we the only choices that seem to work
well lie between 2 and 8.

Throughout these experiments we used a very simple
1-nearest-neighbor classifier using our Graph DBDs.
More sophisticated distance-based supervised learning
methods may lead to better results.

5.2 Large Scale Experiments

In the final set of experiments we used the MNIST
(n = 60000, d = 784) and the CoverType (n =
581012, d = 54) datasets. For both datasets we av-
erage results over 10 random splits of labeled and un-
labeled points each.

For datasets of these sizes we would ideally integrate
an efficient nearest-neighbor data structure directly
into the Dijkstra* algorithm. Unfortunately, such al-
gorithms are known to achieve only approximately lin-



Supervised Digit1 USPS COIL BCI Text
1-NN 23.47 19.82 65.91 48.74 39.44
SVM 30.6 20.03 68.36 49.85 45.37
Semi-supervised
MVU+1-NN 11.92 14.88 65.72 50.24 39.4
LEM+1-NN 12.04 19.14 67.96 49.94 40.84
QC+CMN 9.8 13.61 59.63 50.36 40.79
Discrete Reg. 12.64 16.07 63.38 49.51 40.37
SGT 8.92 25.36 - 49.59 29.02
LDS 15.63 17.57 61.9 49.27 27.15
Laplacian RLS 5.44 18.99 (54.54) 48.97 33.68
CHM (normed) 14.86 20.53 - 46.9 -
TSVM 17.77 25.2 67.5 49.15 31.21
Cluster-Kernel 18.73 19.41 67.32 48.31 42.72
Data-Dep. Reg. 12.49 17.96 63.65 50.21 -
1-NN(DBD) (11.06) (14.24) (59.40) (48.44) (37.25)
1-NN(DBD)(p=2,q=8) 14.838 15.57 60.37 49.06 37.20

Supervised Digit1 USPS COIL BCI Text
1-NN 6.12 7.64 23.27 44.83 30.77
SVM 5.53 9.75 22.93 34.31 26.45
Semi-supervised
MVU+1-NN 3.99 6.09 32.27 47.42 30.74
LEM+1-NN 2.52 6.09 36.49 48.64 30.92
QC+CMN 3.15 6.36 10.03 46.22 25.71
Discrete Reg. 2.77 4.68 9.61 47.67 24
SGT 2.61 6.8 - 45.03 23.09
LDS 3.46 4.96 13.72 43.97 23.15
Laplacian RLS 2.92 4.68 (11.92) 31.36 23.57
CHM (normed) 3.79 7.65 - 36.03 -
TSVM 6.15 9.77 25.8 33.25 24.52
Cluster-Kernel 3.79 9.68 21.99 35.17 24.38
Data-Dep. Reg. 2.44 5.1 11.46 47.47 -
1-NN(DBD) 4.80 6.55 9.65 44.86 28.7
1-NN(DBD)(p=2,q=8) 4.75 6.64 9.98 45.61 28.7

Table 2: Test Errors (%) with 10 and 100 labeled points respectively. The best performing algorithm is italicized and in
bold. Model selection for results in parenthesis was performed with respect to the test set.
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Figure 4: Left: Dijkstra* makes on average only 7 to 8 nearest neighbor queries per node. However, since these queries
explicitly avoid all previously closed nodes, the effective “depth” of the query is much larger. This plot, computed using
the MNIST data set, shows the proportion of edges along optimal paths whose true nearest neighbor depths exceeds a
particular value. Middle: Error rates for the entire MNIST training set with 60000 digits with the results averaged over
10 splits of labeled/unlabeled. 1-NN dbd outperforms both 1-NN Isomap and Graph regularization. right: Results of
DBD nearest neighbor classification on the CoverType data set.

ear query performance on the MNIST data set, and
our cover tree implementation was substantially slower
than the code provided by the authors of (Beygelz-
imer & Langford, 2006), which implements only batch
nearest-neighbor operations. We therefore compute
the Graph DBD between points using K-NN graphs
in both cases. For the MNIST data set, we computed
nearest-neighbors using a simple brute force compu-
tation, and for the CoverType data set, we used the
above mentioned code provided by the authors.

MNIST. For the MNIST data set, we arbitrarily set
K to 200. and compared the performance of our Graph
DBD approach (1-NN DBD) to 1-NN classification
under both Isomap and Euclidean distances (1-NN
Isomap and 1-NN Euclidean, resp.), and to the Graph
Regularization approach of (Zhou & Bousquet, 2003).
In this experiment, we varied the number of labeled
points from 10 points per class (100 total) through 50
points per class (500 total). The parameters p, q for
our DBD and the parameter σ for the Gaussian ker-
nel in the Graph regularization method were chosen
by cross-validation on a labeled set of size 100. The
validation was performed over 5 random splits of 40 la-
beled and 60 unlabeled points. Figure 4 depicts these
results. Our 1-NN DBD algorithm generally outper-
forms all other methods, except for graph regulariza-
tion on the smallest labeled set sizes.

CoverType For our final experiment, we ran our al-
gorithm on the CoverType data set consisting of over
half a million points. The experiments detailed here
demonstrate that our algorithm is effective and effi-
cient even on very large data sets.

We compare our method against 1-NN classifiers using
both Isomap and Euclidean distances and to the Graph
regularization approach. We fixed p = 2 in the paper
for our DBD. The parameter for the Gaussian kernel
used in the Graph regularization algorithm and the
value of q for our method were tuned manually on the
labeled dataset.

We show the results for different K values used to
construct the underlying nearest neighbor graph. We
can see in Table 3 that we perform almost as well as
Graph regularization and generally outperform both
competing 1-NN classification variants (under Isomap
and Euclidean distances). However, as depicted by the
runtime statistics of Table 1, the Graph Regulariza-
tion method (where we use Matlab’s large scale sparse
linear solver) takes increasingly long as K increases.
The method will clearly become infeasible if we were
to assume a dense graph since it will have to solve a
huge (roughly half million times half million) dense lin-
ear equation. Our method does not suffer from these
limitations as our timing results show, even with a



fixed K-NN graph we see an improvement over the
traditional Dijkstra algorithm simply because it avoids
adding extraneous nodes to the queue that will never
be popped.

Note that 1-NN Euclidean results obviously do not de-
pend on the underlying graph.

Moreover, the rightmost subplot of Figure 4 shows that
our approach continuously transitions from a efficient
competitive semi-supervised learning technique to a
high-performing supervised learning algorithm as the
number of labeled points l increases. At l = 100 and
l = 500 this problem is squarely within the class of
semi-supervised learning and we achieve errors of 42.7
and 35.0, respectively. However, when l is increased
to 100, 000 and 500, 000, we achieve errors of 7.0 and
3.6, which are competitive with the state-of-the-art in
supervised classification for this data set. For each set-
ting of l, we sample over 10 randomly chosen labeled
sets. The plot gives the average accuracy in blue and
the standard deviation error bard in red. For this ex-
periment we chose p = 2 and q = 8 arbitrarily without
attempting to optimize the parameters.

6 Conclusions

We present a simple and computationally light ap-
proach to semi-supervised learning: estimate density-
based distances using shortest path calculations on
a graph containing all labeled and unlabeled points,
then use these distances in a supervised distance-based
learning method. These shortest path distance ap-
proximations can be computed efficiently even through
a dense fully connected graph. We presented experi-
mental results on benchmark datasets demonstrating
that this simple approach, even when combined with
a simple 1-nearest-neighbor classifier, is often compet-
itive with much more computationally intensive meth-
ods. In particular, the prediction results are often bet-
ter than those obtained using other, more complex,
methods for learning distances using unlabeled data,
e.g. by explicitly learning the data manifold.

A point we would like to emphasize, and we hope
was made clear by the experimental results, is that
semi-supervised learning does not require explicit es-
timation of neither the data manifold nor the density,
and estimating these objects is often more complicated
then just calculating density-based distances for use in
semi-supervised learning. Moreover, our algorithm is
fairly robust to the choice of parameters. In the ex-
periments on the benchmark datasets we tried using
q = 8 for all data-sets and all sample sizes, generally
obtaining good results.
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