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Abstract

We study the problem of minimizing the loss of a linear predictor with a con-
straint on the `1 norm of the predictor. We describe a forward greedy selection
algorithm for this task and analyze its rate of convergence. As a direct corollary
of our convergence analysis we obtain a bound on the sparsity of the predictor as
a function of the desired optimization accuracy, the bound on the `1 norm, and the
Lipschitz constant of the loss function.

1 Outline of main results
We consider the problem of searching a linear predictor with low loss and low `1 norm.
Formally, let X be an instance space, Y be a target space, and D be a distribution over
X × Y . Our goal is to approximately solve the following optimization problem

min
w

E(x,y)∼D[L(〈w,x〉, y)] s.t. ‖w‖1 ≤ B , (1)

where L : R × Y → R is a loss function. Furthermore, we would like to find an
approximated solution to Eq. (1) which is also sparse, namely, ‖w‖0 = |{i : wi 6= 0}|
is small.

We describe an iterative algorithm for solving Eq. (1) that alters a single element
of w at each iteration. Assuming that L is convex and λ-Lipschitz with respect to its
first argument, we prove that after performing T iterations of the algorithm it finds a
solution with accuracy O((λB/ε)2). Our analysis therefore implies that we can find
w such that

• ‖w‖0 = O((λB/ε)2)

• For all w? with ‖w‖1 ≤ B we have E[L(〈w,x〉, y)] ≤ E[L(〈w?,x〉, y)] + ε

In a separate technical report, we show that this relation between ‖w‖0, B, and ε is
tight.
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2 Problem Setting
Let c : Rn → R be the function

c(w) = E[L(〈w,x〉, y)] .

Consider the problem
min
w

c(w) s.t. ‖w‖1 ≤ B , (2)

and let w? be the minimizer of the above. Recall that our goal is to find a vector w
such that c(w)− c(w?) ≤ ε and ‖w‖0 = O(B2/ε2).

In this report we present an iterative algorithm for solving Eq. (2). The algorithm
initializes w1 = 0 and at each iteration it alters a single element of w. Therefore,
‖wt+1‖0 ≤ ‖wt‖0 + 1. We prove that the algorithm finds an ε-accurate solution of
Eq. (2) after performing at most O(B2/ε2) iterations. As an immediate corollary we
obtain that if we stop the procedure after performing T = Θ(B2/ε2) iterations we
will have c(wT ) ≤ c(w?) + ε and ‖wT ‖0 ≤ T . That is, we obtain a sparsification
procedure that finds a good sparse predictor without first finding a good low `1-norm
predictor. Naturally, this procedure must be aware of the function c, that is, it should
know (at least approximately) the distributionD and the loss function L. This stands in
contrast to the randomized sparsification procedure described in the previous section,
which is oblivious to D and L. Furthermore, to simplify our derivation we assume
throughout this section that D is a distribution over a finite training set. Additionally,
we assume that L is a proper convex function w.r.t. its first argument.

The report is organized as follows. Initially, we describe and analyze a forward
greedy selection algorithm assuming that L has β Lipschitz continuous derivative (see
Definition 1 below). We prove that the procedure finds an ε-accurate solution after per-
forming at most O(B

2

β ε ) iterations. Next, we provide a mechanism for approximating
any λ-Lipschitz function, L, by a function with β Lipschitz continuous derivative, L̃,
with β = ε

λ2 . This implies that we can run the forward greedy selection algorithm and
find an ε/2-accurate solution of c̃ = E[L̃(〈w,x〉, y)] after O(λ

2 B2

ε2 ) iterations. Com-
bining this with the fact that c̃ approximates c, namely for all w |c(w)− c̃(w)| ≤ ε/2,
we obtain a guaranteed sparsification procedure for any λ-Lipschitz convex function.

Definition 1 A loss function L has β Lipschitz continuous derivative if it is differen-
tiable (w.r.t. its first argument) and its derivative (w.r.t. its first argument) satisfies

∀y ∈ Y, ∀a1, a2 ∈ R, |L′(a1, y)− L′(a2, y)| ≤ β |a1 − a2| .

3 A forward greedy selection algorithm
We now describe a greedy forward selection algorithm for solving Eq. (2). The algo-
rithm initializes the predictor vector to be the zero vector, w1 = 0. On iteration t, we
first choose a feature by calculating the gradient of c at wt (denoted θt) and finding

2



INPUT: Loss function L : R× Y → R ; `1 constraint B ;
Training set {(x1, y1), . . . , (xm, ym)} with ‖xi‖∞ ≤ 1 for all i

ASSUMPTION: L has β Lipschitz continuous derivative (see Definition 1)
(if not, see Sec. 4)

INITIALIZE: w1 = 0

FOR t = 1, 2, . . .

θt = ∇c(wt) where c(w) = 1
m

∑m
i=1 L(〈w,xi〉, yi)

jt ∈ arg maxj |θj |
(w.l.o.g. assume sign(θ)jt = −1)

ηt = min
{

1, β (〈θt,wt〉+B ‖θt‖∞)
4B2

}
wt+1 = (1− ηt)wt + ηtB ejt

STOPPING CONDITION: 〈θt,wt〉+B ‖θt‖∞ ≤ ε

Figure 1: A greedy algorithm for solving Eq. (2) when L has β Lipschitz continuous
derivative.

its largest element in absolute value. Then, we calculate a step size ηt and update the
predictor according to

wt+1 = (1− ηt)wt + ηtB ejt .

The step size and the stopping criterion are based on our analysis below. Note that
the update form ensures us that ‖wt‖1 ≤ B and that ‖wt‖0 ≤ t. A pseudo-code
describing the algorithm is given in Fig. 1.

The following theorem bounds the number of iterations required by the algorithm
to converge.

Theorem 1 Assume that the algorithm in Fig. 1 is run with a loss function L that has β
Lipschitz continuous derivative and with a training set such that for all i, ‖xi‖∞ ≤ 1.

Then, the algorithm stops after at most O
(
B2

β ε

)
iterations.

We now turn to the proof of Thm. 1. For all t, let εt be the sub-optimality of the
algorithm at iteration t, that is,

εt = c(wt)− min
w:‖w|1≤B

c(w) .

We also use w? to denote an optimal solution of Eq. (2).
The following lemma provides us with an upper bound on εt. Its proof using duality

arguments (see the appendix for more details).

Lemma 1 For all t we have 〈θt,wt〉+B ‖θt‖∞ ≥ εt.
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Proof From Fenchel duality, for any θ we have

−c?(θ)−B ‖θ‖∞ ≤ min
w:‖w‖≤B

c(w) ≤ c(wt) .

Therefore,
εt ≤ c(wt) + c?(θ) +B ‖θ‖∞

In particular, it holds for θt = ∇c(wt). But, in this case we also know from Lemma 7
that c(wt) + c?(θt) = 〈wt,θt〉. This concludes our proof. ut

The next central lemma analyzes the progress of the algorithm.

Lemma 2 Assume that L has β Lipschitz continuous derivative and that for all i,
‖xi‖∞ ≤ 1. Then,

εt − εt+1 ≥ ηt εt −
2 η2

t B
2

β
.

Proof Denote ut = ηt(Bejt −wt) and thus we can rewrite the update rule as wt+1 =
(1− ηt)wt + η B ej = wt +ut. Let ∆t = εt− εt+1 = c(wt)− c(wt+1). Since L has
β Lipschitz continuous derivative we can use Lemma 8 to get that for any a1, a2 ∈ R
and y ∈ Y we have

L(a1 + a2, y)− L(a1, y) ≤ L′(a1) a2 +
a2
2

2β
. (3)

Therefore,

∆t =
1
m

(
m∑
i=1

(L(〈wt,xi〉, yi)− L(〈wt + ut, xi〉, yi))

)

≥ 1
m

(
m∑
i=1

(
−L′(〈wt,xi〉, yi) 〈ut, xi〉 −

(〈ut, xi〉)2

2β

))

= −〈θt,ut〉 −
1
m

m∑
i=1

(〈ut, xi〉)2

2β
,

where the first equality follows from the definition of c, the second inequality follows
from Eq. (3), and the in the last equality we used the definition of θt. Next, we use
Holder inequality, the assumption ‖xi‖∞ ≤ 1, and the triangle inequality, to get that

〈ut,xi〉 ≤ ‖ut‖1‖xi‖∞ ≤ ‖ut‖1 ≤ ηt(‖Bejt‖1 + ‖wt‖1) ≤ 2 ηtB .

Therefore,

∆t ≥ −〈θt,ut〉 −
2 η2

t B
2

β
= ηt

(
〈θt,wt〉 −B 〈θt, ejt〉

)
− 2 η2

t B
2

β
. (4)

The definition of jt implies that 〈θt, ejt〉 = −‖θt‖∞. Therefore, we can invoke
Lemma 1 and this concludes our proof. ut

Equipped with the above lemma we are now ready to prove Thm. 1.

4



INPUT: Loss function L : R× Y → R ; `1 constraint B ; accuracy ε
ASSUMPTION: L is proper, convex, and λ-Lipschitz w.r.t. its first argument
STEP 1:

Set β = ε
2λ2

For each y define L̃(α, y) = infv 1
2 β v

2 + L(α− v, y)

STEP 2:

Run the algorithm in Fig. 1 with L̃ and with accuracy ε
2

Figure 2: A greedy algorithm for solving Eq. (2) for L being convex and λ-Lipschitz.

Proof [of Thm. 1] The definition of ηt implies that (see the proof of Lemma 2)

∆t = εt − εt+1 ≥ max
η

(
ηεt −

2η2B2

β

)
.

Note also that εt is monotonically decreasing. We consider two phases. At phase 1, we
have εt > 4B2

β . In this case, β εt
4B2 > 1 and thus by setting η = 1 we obtain ∆t ≥ 2B2

β .

Therefore, the number of iterations in phase 1 is at most ε1 β
2B2 = O(1). At phase 2, we

have εt ≤ 4B2

β we can set η = β εt
4B2 and get that ∆t ≥ β ε2t

8B2 . Finally, Lemma 9 tells us

that the number of iterations in phase 2 is at most 1 + 8B2

β ε . ut

4 Approximating a Lipschitz-convex function by a func-
tion with a Lipschitz continuous gradient

Let L : R → R be a proper, convex, λ-Lipschitz function. The infimal convolution of
L and the function f(α) = 1

2 β ‖α‖
2 is defined as

L̃(α) = inf
v

1
2β

v2 + L(α− v) . (5)

The following lemma states that L̃ approximates L and it has Lipschitz continuous
gradient. Its proof is also useful for deriving a closed form of L̃ using the Fenchel
conjugate operator.

Lemma 3 Let L be a proper, convex, λ-Lipschitz function and let L̃ be as defined in
Eq. (5). Then,

• ∀α, |L(α)− L̃(α)| ≤ β λ2

2

• L̃ has β Lipschitz continuous gradient
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Proof Throughout the proof we use some definitions from convex analysis. In partic-
ular, the Fenchel conjugate of a function g is denoted by g?. See the appendix for more
details. First, using Lemma 4 and the definition of the function f we know that

L̃?(θ) = f?(θ) + L?(θ) =
β

2
θ2 + L?(θ) .

Therefore, L̃? is β strongly convex (see appendix) and therefore using Lemma 8 we
get that L̃ has β Lipschitz continuous gradient. This establishes the second claim of the
lemma. Next, using Lemma 5 and the fact that L is λ Lipschitz we get that dom(L?) ⊆
[−λ, λ]. Thus,

L̃?(θ) ≥ L?(θ) = L̃?(θ)− β θ2

2
≥ L̃?(θ)− β λ2

2
.

Finally, using Lemma 6 we conclude that

L̃(α) ≤ L(α) ≤ L̃(α) +
β λ2

2
.

ut
Based on the above lemma we obtain a following sparsification procedure that is

applicable for any proper, convex, and λ Lipschitz loss function L. The sparsifica-
tion procedure is outlined in Fig. 2. Combining Thm. 1 with Lemma 3 we obtain the
following theorem:

Theorem 2 If the sparsification procedure given in Fig. 2 is run with a proper, convex,
and λ Lipschitz function L, then it finds w s.t. c(w) ≤ c(w?) + ε and

‖w‖0 = O

(
λ2B2

ε2

)
Proof Using Thm. 1 and the definition of β we get that the output of the sparsification
procedure satisfies

‖w‖0 ≤ O
(
B2

β ε

)
= O

(
λ2B2

ε2

)
.

Let c̃(w) = E[L̃(〈w,x〉, y)]. Using Lemma 3, for any w we have

|c̃(w)− c(w)| =
∣∣∣E[L̃(〈w,x〉, y)− L(〈w,x〉, y)]

∣∣∣
≤

∣∣∣E[|L̃(〈w,x〉, y)− L(〈w,x〉, y)| ]
∣∣∣ ≤ β λ2

2
=
ε

4
.

Let w? be the minimizer of c(w) and let w̃? be the minimizer of c̃(w). Then,

c(w)− c(w?) = c(w)− c̃(w) + c̃(w)− c̃(w?) + c̃(w?)− c(w?)

≤ ε

4
+
ε

2
+
ε

4
= ε .

This concludes our proof. ut
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A Convex Analysis and Technical Lemmas
We first give a few basic definitions from convex analysis. We allow functions to output
+∞ and denote by dom(f) the set {w : f(w) < +∞}. The Fenchel conjugate of a
function f : Rn → R is defined as

f?(θ) = max
w
〈w,θ〉 − f(w) . (6)

If f is closed and convex then f?? = f .
The Fenchel weak duality theorem (see e.g. theorem 3.3.5 in [BL06]) states that

for any two functions f, g we have

max
θ
−f?(−θ)− g?(θ) ≤ min

w
f(w) + g(w) .

The following lemma is a convolution theorem for infimal convolution.

Lemma 4 If f(w) and g(w) are proper and convex functions and h(w) = infv f(v)+
g(w − v) is their infimal convolution, then h? = f? + g?.

The following lemma relates the Lipschitz property of c to the domain of its conju-
gate function.

Lemma 5 If c : R→ R is λ-Lipschitz then: dom(c?) ⊆ [−λ, λ].

Proof From Lipschitz property we have c(v) − c(0) ≤ λ|v − 0| = λ|v| and thus
−c(v) ≥ −(λ|v|+ c(0)). Therefore,

c?(θ) = max
v
〈v, θ〉 − c(v)

≥ max
v
〈v, θ〉 − λ|v| − c(0) =

{
∞ if |θ| > λ

−c(0) else

ut
Our next lemma is a perturbation lemma for Fenchel conjugate. Its proof can be

found in [SSS06].
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Lemma 6 Let f, g be two functions and assume that for all w ∈ S we have g(w) ≥
f(w) ≥ g(w)− z for some constant z. Then, g?(θ) ≤ f?(θ) ≤ g?(θ) + z.

The next lemma states a sufficient condition under which the Fenchel-Young in-
equality holds with equality. Its proof can be found in ([BL06], Proposition 3.3.4).

Lemma 7 Let f be a closed and convex function and let ∂f(w) be its differential set
at w. Then, for all θ ∈ ∂f(w) we have, f(w) + f?(θ) = 〈θ,w〉 .

Next, we define the notion of strong convexity.

Definition 2 A continuous function f is σ-strongly convex over a convex set S if S is
contained in the domain of f and for all v,u ∈ S and α ∈ [0, 1] we have

f(αv + (1− α) u) ≤ α f(v) + (1− α) f(u)

−σ
2
α (1− α) ‖v − u‖2 .

The next lemma underscores the importance of strongly convex functions. For a
proof see for example Lemma 18 in [SS07].

Lemma 8 Let f be a proper and σ-strongly convex function over S. Let f? be the
Fenchel conjugate of f . Then, f? has a σ Lipschitz continuous gradient. Furthermore,
for all θ1,θ2 ∈ Rn, we have

f?(θ1 + θ2)− f?(θ1) ≤ 〈∇f?(θ1),θ2〉+
1

2σ
‖θ2‖2

This technical lemma is used for proving the convergence of our greedy forward
selection algorithm.

Lemma 9 Let r ∈ (0, 1/2) and let 1
2r ≥ ε1 ≥ ε2 ≥ ... be a sequence such that for all

t ≥ 1 we have εt − εt+1 ≥ r ε2t . Then, for all t we have εt ≤ 1
r(t+1) .

Proof We prove the lemma by induction. First, for t = 1 we have 1
r(t+1) = 1

2r and the
claim clearly holds. Assume that the claim holds for some t. Then,

εt+1 ≤ εt − rε2t ≤ 1
r(t+1) −

1
r(t+1)2 , (7)

where we used the fact that the function x−rx2 is monotonically increasing in [0, 1/(2r)]
along with the inductive assumption. We can rewrite the right-hand side of Eq. (7) as

1
r(t+2)

(
(t+1)+1
t+1 · (t+1)−1

t+1

)
= 1

r(t+2)

(
(t+1)2−1
(t+1)2

)
.

The term (t+1)2−1
(t+1)2 is smaller than 1 and thus εt+1 ≤ 1

r(t+2) , which concludes our
proof.
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