Iterative Loss Minimization with ℓ_{1}-Norm Constraint and Guarantees on Sparsity

Shai Shalev-Shwartz and Nathan Srebro
Toyota Technological Institute-Chicago, USA
\{shai, nati\}@tti-c.org

July 3, 2008

Abstract

We study the problem of minimizing the loss of a linear predictor with a constraint on the ℓ_{1} norm of the predictor. We describe a forward greedy selection algorithm for this task and analyze its rate of convergence. As a direct corollary of our convergence analysis we obtain a bound on the sparsity of the predictor as a function of the desired optimization accuracy, the bound on the ℓ_{1} norm, and the Lipschitz constant of the loss function.

1 Outline of main results

We consider the problem of searching a linear predictor with low loss and low ℓ_{1} norm. Formally, let \mathcal{X} be an instance space, \mathcal{Y} be a target space, and D be a distribution over $\mathcal{X} \times \mathcal{Y}$. Our goal is to approximately solve the following optimization problem

$$
\begin{equation*}
\min _{\mathbf{w}} \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}}[L(\langle\mathbf{w}, \mathbf{x}\rangle, y)] \quad \text { s.t. }\|\mathbf{w}\|_{1} \leq B \tag{1}
\end{equation*}
$$

where $L: \mathbb{R} \times \mathcal{Y} \rightarrow \mathbb{R}$ is a loss function. Furthermore, we would like to find an approximated solution to Eq. (1) which is also sparse, namely, $\|\mathbf{w}\|_{0}=\left|\left\{i: w_{i} \neq 0\right\}\right|$ is small.

We describe an iterative algorithm for solving Eq. (1) that alters a single element of \mathbf{w} at each iteration. Assuming that L is convex and λ-Lipschitz with respect to its first argument, we prove that after performing T iterations of the algorithm it finds a solution with accuracy $O\left((\lambda B / \epsilon)^{2}\right)$. Our analysis therefore implies that we can find w such that

- $\|\mathbf{w}\|_{0}=O\left((\lambda B / \epsilon)^{2}\right)$
- For all \mathbf{w}^{\star} with $\|\mathbf{w}\|_{1} \leq B$ we have $\mathbb{E}[L(\langle\mathbf{w}, \mathbf{x}\rangle, y)] \leq \mathbb{E}\left[L\left(\left\langle\mathbf{w}^{\star}, \mathbf{x}\right\rangle, y\right)\right]+\epsilon$

In a separate technical report, we show that this relation between $\|\mathbf{w}\|_{0}, B$, and ϵ is tight.

2 Problem Setting

Let $c: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the function

$$
c(\mathbf{w})=\mathbb{E}[L(\langle\mathbf{w}, \mathbf{x}\rangle, y)]
$$

Consider the problem

$$
\begin{equation*}
\min _{\mathbf{w}} c(\mathbf{w}) \text { s.t. }\|\mathbf{w}\|_{1} \leq B \tag{2}
\end{equation*}
$$

and let \mathbf{w}^{\star} be the minimizer of the above. Recall that our goal is to find a vector \mathbf{w} such that $c(\mathbf{w})-c\left(\mathbf{w}^{\star}\right) \leq \epsilon$ and $\|\mathbf{w}\|_{0}=O\left(B^{2} / \epsilon^{2}\right)$.

In this report we present an iterative algorithm for solving Eq. (2). The algorithm initializes $\mathbf{w}_{1}=\mathbf{0}$ and at each iteration it alters a single element of \mathbf{w}. Therefore, $\left\|\mathbf{w}_{t+1}\right\|_{0} \leq\left\|\mathbf{w}_{t}\right\|_{0}+1$. We prove that the algorithm finds an ϵ-accurate solution of Eq. (2) after performing at most $O\left(B^{2} / \epsilon^{2}\right)$ iterations. As an immediate corollary we obtain that if we stop the procedure after performing $T=\Theta\left(B^{2} / \epsilon^{2}\right)$ iterations we will have $c\left(\mathbf{w}_{T}\right) \leq c\left(\mathbf{w}^{\star}\right)+\epsilon$ and $\left\|\mathbf{w}_{T}\right\|_{0} \leq T$. That is, we obtain a sparsification procedure that finds a good sparse predictor without first finding a good low ℓ_{1}-norm predictor. Naturally, this procedure must be aware of the function c, that is, it should know (at least approximately) the distribution D and the loss function L. This stands in contrast to the randomized sparsification procedure described in the previous section, which is oblivious to D and L. Furthermore, to simplify our derivation we assume throughout this section that \mathcal{D} is a distribution over a finite training set. Additionally, we assume that L is a proper convex function w.r.t. its first argument.

The report is organized as follows. Initially, we describe and analyze a forward greedy selection algorithm assuming that L has β Lipschitz continuous derivative (see Definition 1 below). We prove that the procedure finds an ϵ-accurate solution after performing at most $O\left(\frac{B^{2}}{\beta \epsilon}\right)$ iterations. Next, we provide a mechanism for approximating any λ-Lipschitz function, L, by a function with β Lipschitz continuous derivative, \tilde{L}, with $\beta=\frac{\epsilon}{\lambda^{2}}$. This implies that we can run the forward greedy selection algorithm and find an $\epsilon / 2$-accurate solution of $\tilde{c}=\mathbb{E}[\tilde{L}(\langle\mathbf{w}, \mathbf{x}\rangle, y)]$ after $O\left(\frac{\lambda^{2} B^{2}}{\epsilon^{2}}\right)$ iterations. Combining this with the fact that \tilde{c} approximates c, namely for all $\mathbf{w}|c(\mathbf{w})-\tilde{c}(\mathbf{w})| \leq \epsilon / 2$, we obtain a guaranteed sparsification procedure for any λ-Lipschitz convex function.

Definition 1 A loss function L has β Lipschitz continuous derivative if it is differentiable (w.r.t. its first argument) and its derivative (w.r.t. its first argument) satisfies

$$
\forall y \in \mathcal{Y}, \quad \forall a_{1}, a_{2} \in \mathbb{R}, \quad\left|L^{\prime}\left(a_{1}, y\right)-L^{\prime}\left(a_{2}, y\right)\right| \leq \beta\left|a_{1}-a_{2}\right|
$$

3 A forward greedy selection algorithm

We now describe a greedy forward selection algorithm for solving Eq. (2). The algorithm initializes the predictor vector to be the zero vector, $\mathbf{w}_{1}=\mathbf{0}$. On iteration t, we first choose a feature by calculating the gradient of c at \mathbf{w}_{t} (denoted $\boldsymbol{\theta}_{t}$) and finding

```
Input: Loss function \(L: \mathbb{R} \times \mathcal{Y} \rightarrow \mathbb{R} ; \quad \ell_{1}\) constraint \(B\);
    Training set \(\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)\right\}\) with \(\left\|\mathbf{x}_{i}\right\|_{\infty} \leq 1\) for all \(i\)
ASSUMPTION: \(L\) has \(\beta\) Lipschitz continuous derivative (see Definition 1)
(if not, see Sec. 4)
InITIALIZE: \(\mathbf{w}_{1}=\mathbf{0}\)
FOR \(t=1,2, \ldots\)
    \(\boldsymbol{\theta}_{t}=\nabla c\left(\mathbf{w}_{t}\right)\) where \(c(\mathbf{w})=\frac{1}{m} \sum_{i=1}^{m} L\left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle, y_{i}\right)\)
    \(j_{t} \in \arg \max _{j}\left|\theta_{j}\right|\)
        (w.l.o.g. assume \(\operatorname{sign}(\theta)_{j_{t}}=-1\) )
    \(\eta_{t}=\min \left\{1, \frac{\beta\left(\left\langle\boldsymbol{\theta}_{t}, \mathbf{w}_{t}\right\rangle+B\left\|\boldsymbol{\theta}_{t}\right\|_{\infty}\right)}{4 B^{2}}\right\}\)
    \(\mathbf{w}_{t+1}=\left(1-\eta_{t}\right) \mathbf{w}_{t}+\eta_{t} B \mathbf{e}^{j_{t}}\)
Stopping condition: \(\left\langle\boldsymbol{\theta}_{t}, \mathbf{w}_{t}\right\rangle+B\left\|\boldsymbol{\theta}_{t}\right\|_{\infty} \leq \epsilon\)
```

Figure 1: A greedy algorithm for solving Eq. (2) when L has β Lipschitz continuous derivative.
its largest element in absolute value. Then, we calculate a step size η_{t} and update the predictor according to

$$
\mathbf{w}_{t+1}=\left(1-\eta_{t}\right) \mathbf{w}_{t}+\eta_{t} B \mathbf{e}^{j_{t}}
$$

The step size and the stopping criterion are based on our analysis below. Note that the update form ensures us that $\left\|\mathbf{w}_{t}\right\|_{1} \leq B$ and that $\left\|\mathbf{w}_{t}\right\|_{0} \leq t$. A pseudo-code describing the algorithm is given in Fig. 1.

The following theorem bounds the number of iterations required by the algorithm to converge.
Theorem 1 Assume that the algorithm in Fig. 1 is run with a loss function L that has β Lipschitz continuous derivative and with a training set such that for all $i,\left\|\mathbf{x}_{i}\right\|_{\infty} \leq 1$. Then, the algorithm stops after at most $O\left(\frac{B^{2}}{\beta \epsilon}\right)$ iterations.

We now turn to the proof of Thm. 1. For all t, let ϵ_{t} be the sub-optimality of the algorithm at iteration t, that is,

$$
\epsilon_{t}=c\left(\mathbf{w}_{t}\right)-\min _{\mathbf{w}: \|\left.\mathbf{w}\right|_{1} \leq B} c(\mathbf{w})
$$

We also use \mathbf{w}^{\star} to denote an optimal solution of Eq. (2).
The following lemma provides us with an upper bound on ϵ_{t}. Its proof using duality arguments (see the appendix for more details).

Lemma 1 For all t we have $\left\langle\boldsymbol{\theta}_{t}, \mathbf{w}_{t}\right\rangle+B\left\|\boldsymbol{\theta}_{t}\right\|_{\infty} \geq \epsilon_{t}$.

Proof From Fenchel duality, for any $\boldsymbol{\theta}$ we have

$$
-c^{\star}(\boldsymbol{\theta})-B\|\boldsymbol{\theta}\|_{\infty} \leq \min _{\mathbf{w}:\|\mathbf{w}\| \leq B} c(\mathbf{w}) \leq c\left(\mathbf{w}_{t}\right)
$$

Therefore,

$$
\epsilon_{t} \leq c\left(\mathbf{w}_{t}\right)+c^{\star}(\boldsymbol{\theta})+B\|\boldsymbol{\theta}\|_{\infty}
$$

In particular, it holds for $\boldsymbol{\theta}_{t}=\nabla c\left(\mathbf{w}_{t}\right)$. But, in this case we also know from Lemma 7 that $c\left(\mathbf{w}_{t}\right)+c^{\star}\left(\boldsymbol{\theta}_{t}\right)=\left\langle\mathbf{w}_{t}, \boldsymbol{\theta}_{t}\right\rangle$. This concludes our proof.

The next central lemma analyzes the progress of the algorithm.
Lemma 2 Assume that L has β Lipschitz continuous derivative and that for all i, $\left\|\mathbf{x}_{i}\right\|_{\infty} \leq 1$. Then,

$$
\epsilon_{t}-\epsilon_{t+1} \geq \eta_{t} \epsilon_{t}-\frac{2 \eta_{t}^{2} B^{2}}{\beta}
$$

Proof Denote $\mathbf{u}_{t}=\eta_{t}\left(B \mathbf{e}^{j_{t}}-\mathbf{w}_{t}\right)$ and thus we can rewrite the update rule as $\mathbf{w}_{t+1}=$ $\left(1-\eta_{t}\right) \mathbf{w}_{t}+\eta B \mathbf{e}^{j}=\mathbf{w}_{t}+\mathbf{u}_{t}$. Let $\Delta_{t}=\epsilon_{t}-\epsilon_{t+1}=c\left(\mathbf{w}_{t}\right)-c\left(\mathbf{w}_{t+1}\right)$. Since L has β Lipschitz continuous derivative we can use Lemma 8 to get that for any $a_{1}, a_{2} \in \mathbb{R}$ and $y \in \mathcal{Y}$ we have

$$
\begin{equation*}
L\left(a_{1}+a_{2}, y\right)-L\left(a_{1}, y\right) \leq L^{\prime}\left(a_{1}\right) a_{2}+\frac{a_{2}^{2}}{2 \beta} \tag{3}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
\Delta_{t} & =\frac{1}{m}\left(\sum_{i=1}^{m}\left(L\left(\left\langle\mathbf{w}_{t}, \mathbf{x}_{i}\right\rangle, y_{i}\right)-L\left(\left\langle\mathbf{w}_{t}+\mathbf{u}_{t}, x_{i}\right\rangle, y_{i}\right)\right)\right) \\
& \geq \frac{1}{m}\left(\sum_{i=1}^{m}\left(-L^{\prime}\left(\left\langle\mathbf{w}_{t}, \mathbf{x}_{i}\right\rangle, y_{i}\right)\left\langle\mathbf{u}_{t}, x_{i}\right\rangle-\frac{\left(\left\langle\mathbf{u}_{t}, x_{i}\right\rangle\right)^{2}}{2 \beta}\right)\right) \\
& =-\left\langle\boldsymbol{\theta}_{t}, \mathbf{u}_{t}\right\rangle-\frac{1}{m} \sum_{i=1}^{m} \frac{\left(\left\langle\mathbf{u}_{t}, x_{i}\right\rangle\right)^{2}}{2 \beta}
\end{aligned}
$$

where the first equality follows from the definition of c, the second inequality follows from Eq. (3), and the in the last equality we used the definition of $\boldsymbol{\theta}_{t}$. Next, we use Holder inequality, the assumption $\left\|\mathbf{x}_{i}\right\|_{\infty} \leq 1$, and the triangle inequality, to get that

$$
\left\langle\mathbf{u}_{t}, \mathbf{x}_{i}\right\rangle \leq\left\|\mathbf{u}_{t}\right\|_{1}\left\|\mathbf{x}_{i}\right\|_{\infty} \leq\left\|\mathbf{u}_{t}\right\|_{1} \leq \eta_{t}\left(\left\|B \mathbf{e}^{j_{t}}\right\|_{1}+\left\|\mathbf{w}_{t}\right\|_{1}\right) \leq 2 \eta_{t} B
$$

Therefore,

$$
\begin{equation*}
\Delta_{t} \geq-\left\langle\boldsymbol{\theta}_{t}, \mathbf{u}_{t}\right\rangle-\frac{2 \eta_{t}^{2} B^{2}}{\beta}=\eta_{t}\left(\left\langle\boldsymbol{\theta}_{t}, \mathbf{w}_{t}\right\rangle-B\left\langle\boldsymbol{\theta}_{t}, \mathbf{e}^{j_{t}}\right\rangle\right)-\frac{2 \eta_{t}^{2} B^{2}}{\beta} \tag{4}
\end{equation*}
$$

The definition of j_{t} implies that $\left\langle\boldsymbol{\theta}_{t}, \mathbf{e}^{j_{t}}\right\rangle=-\left\|\boldsymbol{\theta}_{t}\right\|_{\infty}$. Therefore, we can invoke Lemma 1 and this concludes our proof.

Equipped with the above lemma we are now ready to prove Thm. 1.

Input: Loss function $L: \mathbb{R} \times \mathcal{Y} \rightarrow \mathbb{R} \quad ; \quad \ell_{1}$ constraint $B ;$ accuracy ϵ ASSUMPTION: L is proper, convex, and λ-Lipschitz w.r.t. its first argument STEP 1:

Set $\beta=\frac{\epsilon}{2 \lambda^{2}}$
For each y define $\tilde{L}(\alpha, y)=\inf _{v} \frac{1}{2 \beta} v^{2}+L(\alpha-v, y)$
STEP 2:
Run the algorithm in Fig. 1 with \tilde{L} and with accuracy $\frac{\epsilon}{2}$
Figure 2: A greedy algorithm for solving Eq. (2) for L being convex and λ-Lipschitz.
Proof [of Thm. 1] The definition of η_{t} implies that (see the proof of Lemma 2)

$$
\Delta_{t}=\epsilon_{t}-\epsilon_{t+1} \geq \max _{\eta}\left(\eta \epsilon_{t}-\frac{2 \eta^{2} B^{2}}{\beta}\right)
$$

Note also that ϵ_{t} is monotonically decreasing. We consider two phases. At phase 1, we have $\epsilon_{t}>\frac{4 B^{2}}{\beta}$. In this case, $\frac{\beta \epsilon_{t}}{4 B^{2}}>1$ and thus by setting $\eta=1$ we obtain $\Delta_{t} \geq \frac{2 B^{2}}{\beta}$. Therefore, the number of iterations in phase 1 is at most $\frac{\epsilon_{1} \beta}{2 B^{2}}=O(1)$. At phase 2, we have $\epsilon_{t} \leq \frac{4 B^{2}}{\beta}$ we can set $\eta=\frac{\beta \epsilon_{t}}{4 B^{2}}$ and get that $\Delta_{t} \geq \frac{\beta \epsilon_{t}^{2}}{8 B^{2}}$. Finally, Lemma 9 tells us that the number of iterations in phase 2 is at most $1+\frac{8 B^{2}}{\beta \epsilon}$.

4 Approximating a Lipschitz-convex function by a function with a Lipschitz continuous gradient

Let $L: \mathbb{R} \rightarrow \mathbb{R}$ be a proper, convex, λ-Lipschitz function. The infimal convolution of L and the function $f(\alpha)=\frac{1}{2 \beta}\|\alpha\|^{2}$ is defined as

$$
\begin{equation*}
\tilde{L}(\alpha)=\inf _{v} \frac{1}{2 \beta} v^{2}+L(\alpha-v) \tag{5}
\end{equation*}
$$

The following lemma states that \tilde{L} approximates L and it has Lipschitz continuous gradient. Its proof is also useful for deriving a closed form of \tilde{L} using the Fenchel conjugate operator.

Lemma 3 Let L be a proper, convex, λ-Lipschitz function and let \tilde{L} be as defined in Eq. (5). Then,

- $\forall \alpha,|L(\alpha)-\tilde{L}(\alpha)| \leq \frac{\beta \lambda^{2}}{2}$
- \tilde{L} has β Lipschitz continuous gradient

Proof Throughout the proof we use some definitions from convex analysis. In particular, the Fenchel conjugate of a function g is denoted by g^{\star}. See the appendix for more details. First, using Lemma 4 and the definition of the function f we know that

$$
\tilde{L}^{\star}(\boldsymbol{\theta})=f^{\star}(\theta)+L^{\star}(\theta)=\frac{\beta}{2} \theta^{2}+L^{\star}(\theta) .
$$

Therefore, \tilde{L}^{\star} is β strongly convex (see appendix) and therefore using Lemma 8 we get that \tilde{L} has β Lipschitz continuous gradient. This establishes the second claim of the lemma. Next, using Lemma 5 and the fact that L is λ Lipschitz we get that $\operatorname{dom}\left(L^{\star}\right) \subseteq$ $[-\lambda, \lambda]$. Thus,

$$
\tilde{L}^{\star}(\theta) \geq L^{\star}(\theta)=\tilde{L}^{\star}(\theta)-\frac{\beta \theta^{2}}{2} \geq \tilde{L}^{\star}(\theta)-\frac{\beta \lambda^{2}}{2}
$$

Finally, using Lemma 6 we conclude that

$$
\tilde{L}(\alpha) \leq L(\alpha) \leq \tilde{L}(\alpha)+\frac{\beta \lambda^{2}}{2}
$$

Based on the above lemma we obtain a following sparsification procedure that is applicable for any proper, convex, and λ Lipschitz loss function L. The sparsification procedure is outlined in Fig. 2. Combining Thm. 1 with Lemma 3 we obtain the following theorem:

Theorem 2 If the sparsification procedure given in Fig. 2 is run with a proper, convex, and λ Lipschitz function L, then it finds \mathbf{w} s.t. $c(\mathbf{w}) \leq c\left(\mathbf{w}^{\star}\right)+\epsilon$ and

$$
\|\mathbf{w}\|_{0}=O\left(\frac{\lambda^{2} B^{2}}{\epsilon^{2}}\right)
$$

Proof Using Thm. 1 and the definition of β we get that the output of the sparsification procedure satisfies

$$
\|\mathbf{w}\|_{0} \leq O\left(\frac{B^{2}}{\beta \epsilon}\right)=O\left(\frac{\lambda^{2} B^{2}}{\epsilon^{2}}\right)
$$

Let $\tilde{c}(\mathbf{w})=\mathbb{E}[\tilde{L}(\langle\mathbf{w}, \mathbf{x}\rangle, y)]$. Using Lemma 3, for any \mathbf{w} we have

$$
\begin{aligned}
|\tilde{c}(\mathbf{w})-c(\mathbf{w})| & =|\mathbb{E}[\tilde{L}(\langle\mathbf{w}, \mathbf{x}\rangle, y)-L(\langle\mathbf{w}, \mathbf{x}\rangle, y)]| \\
& \leq|\mathbb{E}[|\tilde{L}(\langle\mathbf{w}, \mathbf{x}\rangle, y)-L(\langle\mathbf{w}, \mathbf{x}\rangle, y)|]| \leq \frac{\beta \lambda^{2}}{2}=\frac{\epsilon}{4}
\end{aligned}
$$

Let \mathbf{w}^{\star} be the minimizer of $c(\mathbf{w})$ and let $\tilde{\mathbf{w}}^{\star}$ be the minimizer of $\tilde{c}(\mathbf{w})$. Then,

$$
\begin{aligned}
c(\mathbf{w})-c\left(\mathbf{w}^{\star}\right) & =c(\mathbf{w})-\tilde{c}(\mathbf{w})+\tilde{c}(\mathbf{w})-\tilde{c}\left(\mathbf{w}^{\star}\right)+\tilde{c}\left(\mathbf{w}^{\star}\right)-c\left(\mathbf{w}^{\star}\right) \\
& \leq \frac{\epsilon}{4}+\frac{\epsilon}{2}+\frac{\epsilon}{4}=\epsilon
\end{aligned}
$$

This concludes our proof.

References

[BL06] J. Borwein and A. Lewis. Convex Analysis and Nonlinear Optimization. Springer, 2006.
[SS07] S. Shalev-Shwartz. Online Learning: Theory, Algorithms, and Applications. PhD thesis, The Hebrew University, 2007.
[SSS06] S. Shalev-Shwartz and Y. Singer. On the equivalence of weak learnability and linear separability: New relaxations and efficient boosting algorithms. In Proceedings of the Nineteenth Annual Conference on Computational Learning Theory, 2006.

A Convex Analysis and Technical Lemmas

We first give a few basic definitions from convex analysis. We allow functions to output $+\infty$ and denote by $\operatorname{dom}(f)$ the set $\{\mathbf{w}: f(\mathbf{w})<+\infty\}$. The Fenchel conjugate of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined as

$$
\begin{equation*}
f^{\star}(\boldsymbol{\theta})=\max _{\mathbf{w}}\langle\mathbf{w}, \boldsymbol{\theta}\rangle-f(\mathbf{w}) \tag{6}
\end{equation*}
$$

If f is closed and convex then $f^{\star \star}=f$.
The Fenchel weak duality theorem (see e.g. theorem 3.3.5 in [BL06]) states that for any two functions f, g we have

$$
\max _{\boldsymbol{\theta}}-f^{\star}(-\boldsymbol{\theta})-g^{\star}(\boldsymbol{\theta}) \leq \min _{\mathbf{w}} f(\mathbf{w})+g(\mathbf{w})
$$

The following lemma is a convolution theorem for infimal convolution.
Lemma 4 If $f(\mathbf{w})$ and $g(\mathbf{w})$ are proper and convex functions and $h(\mathbf{w})=\inf _{\mathbf{v}} f(\mathbf{v})+$ $g(\mathbf{w}-\mathbf{v})$ is their infimal convolution, then $h^{\star}=f^{\star}+g^{\star}$.

The following lemma relates the Lipschitz property of c to the domain of its conjugate function.

Lemma 5 If $c: \mathbb{R} \rightarrow \mathbb{R}$ is λ-Lipschitz then: $\operatorname{dom}\left(c^{\star}\right) \subseteq[-\lambda, \lambda]$.
Proof From Lipschitz property we have $c(v)-c(0) \leq \lambda|v-0|=\lambda|v|$ and thus $-c(v) \geq-(\lambda|v|+c(0))$. Therefore,

$$
\begin{aligned}
c^{\star}(\theta) & =\max _{v}\langle v, \theta\rangle-c(v) \\
& \geq \max _{v}\langle v, \theta\rangle-\lambda|v|-c(\mathbf{0})= \begin{cases}\infty & \text { if }|\theta|>\lambda \\
-c(\mathbf{0}) & \text { else }\end{cases}
\end{aligned}
$$

Our next lemma is a perturbation lemma for Fenchel conjugate. Its proof can be found in [SSS06].

Lemma 6 Let f, g be two functions and assume that for all $\mathbf{w} \in S$ we have $g(\mathbf{w}) \geq$ $f(\mathbf{w}) \geq g(\mathbf{w})-z$ for some constant z. Then, $g^{\star}(\boldsymbol{\theta}) \leq f^{\star}(\boldsymbol{\theta}) \leq g^{\star}(\boldsymbol{\theta})+z$.

The next lemma states a sufficient condition under which the Fenchel-Young inequality holds with equality. Its proof can be found in ([BL06], Proposition 3.3.4).

Lemma 7 Let f be a closed and convex function and let $\partial f(\mathbf{w})$ be its differential set at \mathbf{w}. Then, for all $\boldsymbol{\theta} \in \partial f(\mathbf{w})$ we have, $f(\mathbf{w})+f^{\star}(\boldsymbol{\theta})=\langle\boldsymbol{\theta}, \mathbf{w}\rangle$.

Next, we define the notion of strong convexity.
Definition 2 A continuous function f is σ-strongly convex over a convex set S if S is contained in the domain of f and for all $\mathbf{v}, \mathbf{u} \in S$ and $\alpha \in[0,1]$ we have

$$
\begin{aligned}
f(\alpha \mathbf{v}+(1-\alpha) \mathbf{u}) \leq & \alpha f(\mathbf{v})+(1-\alpha) f(\mathbf{u}) \\
& -\frac{\sigma}{2} \alpha(1-\alpha)\|\mathbf{v}-\mathbf{u}\|^{2}
\end{aligned}
$$

The next lemma underscores the importance of strongly convex functions. For a proof see for example Lemma 18 in [SS07].

Lemma 8 Let f be a proper and σ-strongly convex function over S. Let f^{\star} be the Fenchel conjugate of f. Then, f^{\star} has a σ Lipschitz continuous gradient. Furthermore, for all $\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2} \in \mathbb{R}^{n}$, we have

$$
f^{\star}\left(\boldsymbol{\theta}_{1}+\boldsymbol{\theta}_{2}\right)-f^{\star}\left(\boldsymbol{\theta}_{1}\right) \leq\left\langle\nabla f^{\star}\left(\boldsymbol{\theta}_{1}\right), \boldsymbol{\theta}_{2}\right\rangle+\frac{1}{2 \sigma}\left\|\boldsymbol{\theta}_{2}\right\|^{2}
$$

This technical lemma is used for proving the convergence of our greedy forward selection algorithm.

Lemma 9 Let $r \in(0,1 / 2)$ and let $\frac{1}{2 r} \geq \epsilon_{1} \geq \epsilon_{2} \geq$... be a sequence such that for all $t \geq 1$ we have $\epsilon_{t}-\epsilon_{t+1} \geq r \epsilon_{t}^{2}$. Then, for all t we have $\epsilon_{t} \leq \frac{1}{r(t+1)}$.

Proof We prove the lemma by induction. First, for $t=1$ we have $\frac{1}{r(t+1)}=\frac{1}{2 r}$ and the claim clearly holds. Assume that the claim holds for some t. Then,

$$
\begin{equation*}
\epsilon_{t+1} \leq \epsilon_{t}-r \epsilon_{t}^{2} \leq \frac{1}{r(t+1)}-\frac{1}{r(t+1)^{2}} \tag{7}
\end{equation*}
$$

where we used the fact that the function $x-r x^{2}$ is monotonically increasing in $[0,1 /(2 r)]$ along with the inductive assumption. We can rewrite the right-hand side of Eq. (7) as

$$
\frac{1}{r(t+2)}\left(\frac{(t+1)+1}{t+1} \cdot \frac{(t+1)-1}{t+1}\right)=\frac{1}{r(t+2)}\left(\frac{(t+1)^{2}-1}{(t+1)^{2}}\right)
$$

The term $\frac{(t+1)^{2}-1}{(t+1)^{2}}$ is smaller than 1 and thus $\epsilon_{t+1} \leq \frac{1}{r(t+2)}$, which concludes our proof.

