
Distributed Stochastic Optimization and Learning

Ohad Shamir1 and Nathan Srebro2

Abstract— We consider the problem of distributed stochastic
optimization, where each of several machines has access to
samples from the same source distribution, and the goal is
to jointly optimize the expected objective w.r.t. the source
distribution, minimizing: (1) overall runtime; (2) communi-
cation costs; (3) number of samples used. We study this
problem systematically, highlighting fundamental limitations,
and differences versus distributed consensus problems where
each machine has a different, independent, objective. We show
how the best known guarantees are obtained by an accelerated
mini-batched SGD approach, and contrast the runtime and
sample costs of the approach with those of other distributed
optimization algorithms.

I. INTRODUCTION

Stochastic optimization considers the problem of optimiz-
ing the expectation of a stochastic function, which can be
written in the form

min
w∈W

F (w) = Ez∼D [f(w, z)], (1)

given only f and a finite i.i.d. sample z1, z2, . . . , from an
unknown distribution D. In particular, this naturally models
most stochastic supervised learning problems: Given a train-
ing set (x1, y1), . . . , (xn, yn) of labeled examples sampled
i.i.d. from an unknown distribution D, and a loss function
`(w;x, y) quantifying the performance of a predictor w with
respect to an example (x, y), learning consists of finding a
predictor which minimizes the risk E(x,y)∼D [`(w;x, y)].

In this paper, we focus on convex problems where W is a
convex subset of a vector space and f is convex function over
the space. For supervised learning problems, this corresponds
to learning a linear predictor (over some possibly implicit)
feature space) in a predictor class W minimizing a convex
loss `. For example, we can perform squared-loss regression
using `(w;x, y) = (〈x, w〉−y)2, perform logistic regression
using `(w;x, y) = log(1 + exp(−y 〈x, w〉)), solve linear
support vector machines using `(w;x, y) = max{0, 1 −
y 〈x, w〉}, etc.

Over the past few years, using stochastic optimization al-
gorithms for solving learning problems has become increas-
ingly popular. Such methods are relatively easy to implement
and scale well to large datasets where sophisticated, second
order batch methods (e.g. interior point methods), are im-
practical. Furthermore, in the “data laden regime”, i.e. when
data is plentiful and the bottleneck is runtime, first-order

1Ohad Shamir is with the department of Computer Science and
Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
ohad.shamir@weizmann.ac.il

2Nathan Srebro is with the Toyota Technological Institute at Chicago,
Chicago IL, USA and with the Faculty of Computer Science, Technion,
Haifa, Israel nati@ttic.edu

stochastic methods dominate sophisticated batch methods
both theoretically and in practice [5], [21], [14]. In fact, as we
discuss later in more detail, such stochastic methods are in a
sense “optimal” for convex learning problems: Their worst-
case runtime is essentially equal to the runtime required to
just read the data using any batch method.

In this paper, we focus on stochastic learning and opti-
mization in a distributed setting, and in particular, when the
training data to be learned from is distributed across several
different machines with limited communication channels
between them. This setting has received much interest in re-
cent years, as large-scale datasets and distributed computing
platforms are becoming increasingly common. Compared to
the serial (single-machine) setting, the distributed setting can
be seen as both a challenge and an opportunity: On one hand,
computation can be parallelized, leading to potential runtime
speedups. On the other hand, since the data is distributed and
can’t simply be migrated between machines, one may require
different algorithmic approaches suited to this setting.

In the distributed context we will consider three resources:
sample complexity (number of draws from D), communica-
tion costs, and runtime. Ideally, and optimal algorithm for
this problem should satisfy three desiderata:

1) Same statistical performance as the serial setting: The
amount of training data required to solve the stochastic
optimization problem, to some given accuracy, should
be similar to the serial setting.

2) Small communication cost: Since communication is
often a dominant bottleneck in distributed computation,
we wish to minimize it as much as possible, ideally
requiring each machine to broadcast only a constant
number of vectors.

3) Linear runtime speedup: If we have m machines rather
than a single machine, then ideally we would like the
runtime to decrease by a factor of m.

Unlike the serial setting, where we already have essentially
optimal algorithms for stochastic convex optimization, the
situation in the distributed setting is still far from clear.
We would like to understand whether such an ideal optimal
algorithm exists, or obtain near-ideal algorithms and match-
ing lower bounds for distributed optimization that help us
understand how close to this ideal we might hope to get.

And so, in the rest of the paper, we rigorously study the
attainable performance for distributed stochastic optimization
and learning. We study several approaches, many based
on existing methods, with the results summarized in Table
I. We show how the best known guarantees are obtained
by a mini-batched accelerated stochastic gradient descent
(SGD) algorithm with very large mini-batches, and compare

the runtime and sample costs of the approach with those
of other distributed algorithms. However, perhaps the main
take-home message is that we are still far from having an
algorithm achieving the trifecta ideal of optimal sample size,
communication and runtime speedups.

II. SERIAL STOCHASTIC OPTIMIZATION

As background, and in order to establish a basis on top
of which we can understand the benefits of challenges of
a distributed setting, we begin by reviewing the problem
of stochastic optimization in the serial setting, deferring
treatment of the distributed setting to the next section.

As discussed in the introduction, we are interested in
problems of the form (1) given access to i.i.d. samples
z1, z2, . . . ∼ D, where W is a subset of a vector space
and f is convex in w. We assume full knowledge of f and
W, but that the distribution D is unknown, and the only
information about it is through the samples zi. Based on the
samples z1, z2, . . . , zn, we construct a predicted optimizer
ŵ(z1, z2, . . . , zn).

In studying algorithms for this problem, there are two re-
sources to keep in mind, namely sample complexity (number
of samples required) and runtime. Our goal is to use these
resources as sparingly as possibly, to find some ε-optimal
predictor ŵ for which we can guarantee:

Ez1,z2,... [F (ŵ)] ≤ inf
w∈W

F (w) + ε (2)

where the expectation is over the training sample, and
perhaps randomness in the predation process.

In order to discuss the complexity of a problem and reason
about lower bounds and optimal algorithms, we will take
the following view: we will impose specific assumptions,
or constraints, on the set W and objective f , and ask
for the best possible guarantee we can ensure with these
assumptions. That is, the best runtime and sample complexity
which ensures (2) under these assumptions. This is the
min-max rate of the problem: the best (over all possible
predictors) worst-case performance (for the worst distribution
D, under specific assumptions).

Euclidean Setting: In particular, we will focus mostly on
the unbounded-dimension Euclidean (Hilbert) setting, where
we assume W is a subset of a Euclidean or Hilbert space
contained in a ball of radius ‖W‖ = supw∈W ‖w‖2 and f
is convex and Lipschitz in w with Lipschitz constant L (i.e.
∀w,w′,z |f(w, z)− f(w′, z)| ≤ L ·‖w − w′‖2), where ‖·‖2 is
a Euclidean or `2 norm. We assume ‖W‖ and L are known
and are interested in guarantees in terms of ‖W‖ and L but
that do not depend on the dimensionality. To avoid direct
discussion of dimensionality, when measuring runtime, and
later on communication, we consider vector operations as
atomic and count the number of vector operations or number
of vectors communicated.

Classical approaches such as Vapnik’s statistical learning
[28] considers only the sample complexity, while assuming
unbounded computational resources. Vapnik thus focuses
mostly on a Empirical Risk Minimization (ERM), aka Sam-
ple Average Approximation (SAA), as a generic approach

to the stochastic optimization problem (1): First collect n
samples z1, . . . , zn and construct an empirical approximation
of the objective: F̂ (w) = 1

n

∑n
i=1 f(w, zi). Then minimize

this empirical approximation, arriving at the empirical risk
minimizer ŵ = arg minw∈W F̂ (w). This leaves us with
the computational problem of minimizing the empirical
approximation, which might scale sharply with the number
of examples n involved.

An alternative, the Stochastic Approximation approach,
is to tackle the stochastic optimization problem directly, at
each iteration using a sample zi to make a small, stochastic,
improvement to an iterate w. For examples, using stochastic
gradient descent (SGD) on the problem (1) amounts to
performing iterations of the form:

w(t+1) ← arg min
w∈W

〈
∇wf(w(t), zt), w

〉
+

1

2ηt

∥∥∥w − w(t)
∥∥∥2
2

= PW

(
w(t) − ηt∇wf(w(t), zt)

)
(3)

where PW(·) is a projection into W and ηt is a step-
size. If an independently drawn sample zi is used at each
iteration, SGD guarantees [15], [3] can be used to bound
the suboptimality after T iterations. In particular, when
optimizing an L-Lipschitz objective over a domain of radius
‖W‖, we have that, with an appropriate step size,

T = O
(
L2‖W‖22

ε2

)
(4)

iterations are required to ensure a ε-suboptimality. Since each
iteration uses one training sample (i.e. one independent draw
from the source distribution D), the sample complexity is
n = T . And, as long as the projection operation can be
performed efficiently, the total runtime (in terms of number
of vector operations) is also linear in T .

Amazingly, this sample complexity matches that of an
ERM approach, and also the lower bound on the required
sample complexity in the worst case. I.e. any method for
solving (1) under these Lipschitz and boundedness assump-
tions would require at least these many samples. That is,
SGD is not only computationally efficient, but also matches
the (worst case) sample complexity of any other possible
method. And because its runtime is linear in the time required
to just read the data set of the minimal required size, its
runtime is also optimal, up to a constant factor, and among
methods that read the data1.

In our Euclidean setting we only rely on Lipschitz continu-
ity. But SGD is also optimal, in a similar way, for smooth [1],
[26], [24], and for strongly convex objectives (see below).
In particular, in the serial setting, in terms of min-max rates
worst-case guarantees, additional smoothness assumptions,
including assuming all derivatives are bounded (as is the
case, e.g. for the logistic loss), does not change the min-
max sample complexity of the problem (unless additional
assumptions are made [24]). It is important to keep this in

1It is actually possible to slightly improve over SGD in some high
dimensional regimes if the algorithm is allowed to only look at a few
coordinates of sample points zi, instead of reading entire vectors[11]

Samples Rounds Communication Runtime
Ideal Solution n(ε) O(1) O(m) n(ε)/m

Centralize n(ε) 1 n(ε) n(ε)
Local m · n(ε) - 0 n(ε)

Average-at-the-End m · n(ε) 1 m n(ε)
Hot-Potato SGD n(ε) m m n(ε)

SAA: GD n(ε) ‖W‖
√
n(ε) m ‖W‖

√
n(ε) n(ε)

(√
‖W‖ 4

√
n(ε)

m

)
SAA: Accelerated GD n(ε)

√
‖W‖ 4

√
n(ε) m

√
‖W‖ 4

√
n(ε) n(ε)

(√
‖W‖ 4

√
n(ε)

m

)
SAA: DANE n(ε) ‖W‖2m ‖W‖2m2 > n(ε) ‖W‖2

Acc. Mini-Batches n(ε)
√
‖W‖ 4

√
n(ε) m

√
‖W‖ 4

√
n(ε) n(ε)/m

TABLE I
SUMMARY OF RESOURCES REQUIRED BY THE VARIOUS APPROACHES STUDIED IN THIS PAPER FOR Θ(1)-LIPSCHITZ, Θ(1)-SMOOTH PROBLEMS,

IGNORING LOG-FACTORS.

mind, as in the distributed setting we will occasionally need
to rely on higher order smoothness.

The optimality of SGD as discussed above is for a Eu-
clidean setting, where guarantees are based on the domain
W being contained in an `2 ball, and of the Lipschitz
constant (or other higher order derivatives) being measured
with respect to an `2 norm. What happens if the domain W is
very different from a Euclidean ball? Or equivalently, when
we measure Lipschitz continuity, smoothness and strong
convexity with respect to a different, non-Eucliean, norm? In
such cases we must replace the squared Euclidean distance
in our derivation (3) of SGD with a different divergence
function, resulting in stochastic mirror descent. E.g., for
Lasso-type problems, when W is an `1-ball, we can take
the divergence to be an entropic divergence, and for matrix
problems where W is a nuclear norm ball, we can also
define an appropriate spectral divergence. In fact, in a fairly
broad sense, depending on the geometry of the problem, we
can choose an appropriate divergence function D(·||·) such
that stochastic mirror descent has essentially optimal sample
complexity [25], [26]. For the sake of simplicity, in this paper
we consider only the Euclidean setting, but we expect the
situation to be similar, and for our results to be generalizable
also for other geometries.

In contrast to Vapnik’s view, our interest here is mostly in
the data laden regime, where data is plentiful and perhaps
virtually unlimited, and we ask for the minimal amount of
runtime required to achieve suboptimality ε for the stochastic
optimization problem (1). Our model is that we have a button
that we can press and in unit time receive an independent
draw from the source distribution D. However, as discussed
in the previous paragraphs, the stochastic approximation ap-
proaches, namely stochastic gradient descent and stochastic
mirror descent, are optimal not only in terms of runtime but
also in terms of sample complexity, and the runtime of these
approaches is linear in their sample complexity. It would
thus be convenient for us, when moving on to distributed
settings and comparing back to the serial setting, to refer
to the min-max sample complexity of a problem, which we
denote by n(ε), and remember that when using stochastic
approximation, in the serial setting, the runtime is also linear

in n(ε). In particular, in the Euclidean setting we have:

n(ε) = Θ
(
L2‖W‖22

ε2

)
(5)

Strongly Convex Objectives

If the objective F (w) is λ-strongly convex in addition to
being L-Lipschitz, the iteration complexity of SGD becomes
(with appropriate step sizes and iterate averaging, [9], [10],
[14], [17], [23]):

T = O
(
L2

λε

)
, (6)

again matching the best possible sample complexity. It is
important to understand the relationship between the two
complexities (4) and (6). For any convex Lipschitz objective
F (w), we can add a strongly-convex regularizer to obtain a
λ-strongly convex regularized objective,

fλ(w, z) = f(w, z) +
λ

2
‖w‖2

Fλ(w) = F (w) +
λ

2
‖w‖2 = E [fλ(w, z)] (7)

Taking λ = L
‖W‖

√
n

, we have that for the output w̃λ of using
SGD to optimize Fλ(w),

F (w̃λ) ≤ Fλ(w̃λ)F ∗λ +O
(
L2

λn

)
≤ F ∗ +

λ

2
‖w∗‖2 +O

(
L2

λn

)
≤ F ∗ +O

(√
L2W2

n

)
. (8)

That is, the two iteration complexities (4) and (6) are linked.
In fact, in a learning context the strongly convex case (6) is
often mostly useful when applied to a regularized objective
such as Fλ, as in (8), and so for λ that typically depends on
the sample complexity n.

III. DISTRIBUTED STOCHASTIC OPTIMIZATION

We now turn to consider the stochastic optimization prob-
lem in a distributed setting.

We consider optimizing a stochastic objective of the form
(1) using m machines, where each machine i = 1, . . . ,m
has access to ni i.i.d. samples zi,1, . . . , zi,ni

from the same
source distribution D. We generally consider situations where
each machine has the same number of samples ni = n and
so the total number of samples used is N = nm.

This can be thought of as follows: each machine has a
“button” which can be used to generate a random example
from D, where there is possibly a cost to pressing this button.
Each machine presses its button, does local computation and
communicates with other machines. The “button presses” can
of course be integrated into the computation, as with a serial
stochastic approximation approach, and if multiple rounds
of communication are allowed, we might also interleave
communication, computation and “button presses”.

If thinking about machine learning with a given training
set, this corresponds to randomly partitioning the samples
among the m machines, such that effectively each machine
has an i.i.d. sample from the source distribution. Either
way, our aim is to devise and analyze methods that find
ε-suboptimal solutions (2), while minimizing the sample
complexity, the runtime, and/or the communication.

In this paper we focus on the Euclidean setting described
in the previous section, and ask for the optimal sample
complexity, runtime and communication as a function of only
the radius ‖W‖ and Lipschitz constant L. We present our
results in terms of the serial sample complexity n(ε) given
in (5). As discussed in the introduction, ideal parallelization
would mean preserving the same sample complexity N =
n(ε), a linear speedup in runtime, reducing it to O(n(ε)/m),
and as little as possible communication, ideally independent
of ε or n(ε). Unlike in the serial approach, we will sometime
also assume higher derivatives are bounded. To allow this,
and formalize our “optimality” question, we might want
to assume all higher order derivatives are bounded. This
happens, e.g., when learning a generalized linear predictor
with an objective of the form:

f(w, (x, y)) = h(〈w, φ(x)〉, y) (9)

with φ(x) bounded and h is a loss function which with all
derivatives bounded w.r.t. its first argument.

Distributed Consensus and Other Related Problems

A Sample Average Approximation approach here would
correspond to distributed optimization of:

min
w∈W

F̂ (w) where F̂ (w) =
1

m

m∑
i=1

F̂i(w) (10)

where for each machine i ∈ [m], F̂i(w) =
1
n

∑n
j=1 f(w, zi,j) is the local empirical approximation on

the machine. That is, minimization of an average of m
functions, each known to only a single machine. Problems
of this form, where we would like to distributedly minimize
an average of m local objectives are known as distributed
consensus problems, and have received much attention
recently [6].

As with the serial case, we could combine an optimization
guarantee on (10) with a generalization guarantee relating
F̂ (w) to F (w), and obtain the desired guarantee on the
suboptimality of (1). The generalization guarantee involves
only the total number of samples N , and so this approach
has the same sample total complexity as the standard serial

setting—i.e. we do not require additional samples because
of parallelization. The flip-side is that, as with the serial
approach, high-accuracy in optimizing F̂ (w) might not be
necessary nor helpful in our stochastic optimization goal of
minimizing F (w).

And so, although distributed stochastic optimization could
be reduced to decentralized consensus, and decentralized
concensus methods could be used in an SAA approach for
distributed stochastic optimization (as discussed above, and
analyzed in Section VII), the two problems are quite distinct,
might have different optimal solutions, and should be studied
differently.

First of all, we are interested in a stochastic setting and our
goal is to minimize the expectation (1)—we measure success
in terms of the sub-optimality of this expected objective, as
in (2), and not in terms of the empirical objective. Because
of this, and as in the serial case, methods that only very
crudely optimize the empirical objective, such as SGD, might
actually be preferable, and even optimal.

Second, we do not treat F̂i as independent, unrelated
functions, since they are all determined by data sampled from
the same distribution. In particular, as the number of samples
increase, the local empirical objectives F̂i converge to one
another. This assumption works to our advantage, should be
taken into account in the analysis, and can also be utilized
by optimization methods.

This second distinction also sets our setting apart from
those of [4] and [18], which consider a stochastic setting
where each machine i has access to a different source
distribution Di, and the desired outcome is a predictor which
is good on the mixture distribution 1

m

∑m
i=1Di. When each

machine holds a different component of the source distri-
bution, the machines must communicate in order to obtain
a consensus predictor good on the mixture distribution. In
particular, [4] study lower bounds on the amount of such
communication. However, in our setting where each machine
has access to the entire source distribution, there is no
inherit limit to communications and indeed arbitrarily good
solutions can be obtained without any communication at all
(e.g. with the Local approach studied in Section IV). In a
sense, learning a mixture source with different components
on different machines makes for a harder problem than in the
standard serial setting (we must both learn and consolidate
between the different components), whereas our setting is
easier than the serial setting—machines can always choose
to ignore each other, but by cooperating they can hopefully
reduce the required runtime.

Much attention has also been devoted to the network
topology in which machines can communicate. In this paper,
we limit ourselves to studying the simple case of broad-
cast communications, aiming to first understand distribution
stochastic optimization in this setting before studying the
effect of network structure.

IV. TWO BASELINE APPROACHES

We now turn to study specific algorithmic approaches for
our distributed stochastic problem, starting with two trivial

baseline approaches which do not require any specialized
algorithms. We note that our analysis for all methods is
summarized in table I.

Perhaps the simplest approach one can take, which we
denote as Local, is the following: Each machine i inde-
pendently minimizes the empirical objective F̂i(w) to obtain
ŵi = arg min F̂i(w), or alternatively just runs a single pass
of SGD on its samples, using no communication at all (if
we desire a single output vector, we can just output ŵ1 with
minimal communication cost).

This approach is nonsensical for solving a consensus prob-
lem where the goal is to minimize an average of unrelated
functions. However, in our stochastic setting, the generaliza-
tion guarantee based on n = N/m samples applies, and can
also be used to obtain a suboptimality guarantee for F̂ (·),
is desired. E.g. for an L-Lipschitz objective over a bounded

domain, we have that F (ŵ1) ≤ F ∗ + O(

√
L2‖W‖22

n), and

less interestingly also F̂ (ŵ1) ≤ F̂ (ŵ) + O(

√
L2‖W‖22

n).
That is, the total sample complexity of this approach is
N = nm = O(L

2‖W‖2
ε2 m). This is of course still a useless

approach in terms of harnessing the power of parallelization
(we are not really parallelizing anything), but the point is
that with essentially zero communication we can still obtain
an ε-suboptimal solution (2).

At the other extreme, if communication is cheap, all the
machines can send their data to a central machine, which
will then use a standard serial approach. We denote this
approach as Centralize. Here, there is no increase in
sample complexity, N = n(ε), but there is also no reduction
in runtime.

The above extreme approaches are not useful approaches
to solving the problem (they offer no parallelization), but
are important to keep in mind as baseline trivial approach
to distributed stochastic optimization: we must measure any
non-trivial approach against them to understand its benefit.

The natural question, of course, is whether it is possible
to beat these baselines—can we get a reduction in total
elapsed runtime? Does it come at a price of increased sample
complexity, or is it possible to do so without increasing
the total number of samples required? What can be done
with limited communication? What are the tradeoffs between
communication, sample complexity and elapsed runtime?

V. AVERAGE-AT-THE-END

Another simple distributed optimization approach, with
minimal communication complexity, is to perform indepen-
dent optimization on each machine to obtain w̃i, either using
ERM, w̃i = arg minw F̂i(w), or using SGD on zi,1, . . . , zi,n,
and then return the averaged result:

w̄ =
1

m

m∑
i=1

w̃i. (11)

This approach was studied in [30] and rigorously analyzed
in [29]. When ERM is used and F (w) is λ-strongly convex,
and f(w, z) is L-Lipschitz, H-smooth and has a J-Lipschitz

Hessian, [29] obtain a guarantee on w̄ of the following form
(in expectation over the samples):

E
[
‖w̄ − w∗‖2

]
≤ L2

λ2nm +O
(
L4J2

λ6n2

)
+ lower order terms

(12)
When SGD is used instead of ERM, a similar guarantee is
also provided with slightly stronger assumptions. When λ is
taken to be fixed, and n→∞, even if m increases with n,
the first term in (12) is the dominant term. Hence we get
a sample complexity which matches (to leading order) the
serial sample complexity. However, as we discussed earlier,
in many learning applications strong convexity is a result
of regularization, and λ should decrease with N , or with
the desired accuracy, usually at a rate of roughly 1/

√
N .

With this scaling in mind, the benefit of (12) is unclear.
Furthermore, the guarantee (12) is only on the distance to
the optimum w∗ = arg minw F (w). In learning, and other
stochastic optimization problems, we are interested in the
suboptimality of the objective. What can be ensured in this
regard from (12) is:

F (w̄)− F ∗ ≤ HL2

λ2nm +O
(
HL4J2

λ6n2

)
+ lower order terms.

(13)
Comparing (13) with (6) we see an extraneous factor of H/λ
even in the first term, on top of the additional λ terms in the
second term. Optimizing over λ, the best that can be ensured
from (13) for learning problems requiring regularization
is therefor only a sample complexity that scales as 1/ε3

rather then 1/ε2. If ERM is used on each machine [29]
also suggested a bias-corrected approach that reduced the
dependence on n in the second term to 1/n3, rather then
1/n2, but the problematic dependence on λ remains.

These deficiencies are not only in the analysis. Consider
(11) with w̃i = ŵi and let ŵ be the true ERM of the
combined F̂ (w) (using N = nm examples). As shown in
[22], it is possible to construct, for any n > 9 and λ < 1

9
√
n

,
a one dimensional stochastic optimization problem, with
bounded first, second and third derivatives, such that in
expectation over the samples,

‖w̄ − w∗‖ = Ω

(
1

λ2n

)
and

F (w̄)− F ∗ = Ω

(
1

λ2n

)
,

yet it is guaranteed [19] that E [‖ŵ − w∗‖] = O(1
λN) and

F (ŵ) − F ∗ = Ω(1
λN) (recall that N = nm). That is, in

this example (in which λ is small) we do not gain at all
from averaging over multiple machines, and obtain the same
performance as the trivial baseline working on only the n =
N/m samples available to a single machine.

The bottom line is that the average-at-the-end approach
does not give us any benefit over the baseline Local
approach.

VI. HOT-POTATO SGD
Is it possible to at least match the sample complexity and

communication guarantees of the two baseline approaches?

I.e. to at least have a method with minimal communication
(in particular, that does not communicate the entire data set),
and optimal sample complexity?

To do so, we can simulate a serial stochastic optimization
algorithm over the distributed data, utilizing the fact that
they all come from the same distribution: The first ma-
chine starts at some w(1,0) and runs one pass of stochastic
approximation (e.g. stochastic gradient descent) on its n
examples z1,1, . . . , z1,m, arriving with the iterate w(1,n). It
then passes w(1,n) to the second machine, which runs a pass
of the stochastic approximation method starting from this
iterate, using its n examples, passing it along to the third
machine. Each machine i thus receives the iterate w(i−1,n)

from machine i − 1, uses it to initialize w(i,0) = w(i−1,n),
runs a pass of n stochastic approximation updates using its
n independent samples, and then passes the iterate w(i,n) on
to machine i + 1. If necessary, the average iterate can also
be passed along. The end result is that w(m,n) is exactly
an iterate after nm independent stochastic approximation
updates, and has the same expected suboptimality as when
using N examples on a single machine. We thus used a
total of O(m) communication, almost the minimum we
can expect, and maintained a total sample complexity of
N = n(ε). The total work done on all machines (total
number of operations performed) is also the best we can
expect, i.e. O(n(ε)). However, the total elapsed runtime (wall
time) is O(mn(ε)), even if we ignore communication time.
That is, we pay no cost in terms of sample complexity,
and almost no communication cost, but receive no benefit
in terms of elapsed runtime.

VII. SAA APPROACHES

As mentioned already in Section III, SAA can be imple-
mented as a distributed consensus problem. In this Section,
we study such approaches, were distributed consensus meth-
ods are applied to the empirical objective (10).

As in studying SAA in the serial case, in order to un-
derstand distributed consensus in the context of stochastic
optimization, we must think of the expected objective F (w)
and the effect of approximately optimizing the empirical
objective on F (w). In particular, we must combine the opti-
mization guarantee with a generalization guarantee relating
F̂ (w) to F (w). In particular, in the Euclidean setting, in
order to ensure ε-suboptimality of the expected objective, as
in (2), we must optimize F̂ (w) to within O(ε) suboptimality,
and use at least N = nm = O(n(ε)) samples. We will
thus study the runtime and communication costs of empirical
minimization of F̂ (w) to within ε, with n = n(ε)/m samples
per machine.

One simple such approach is simulating (standard, deter-
ministic) gradient descent over the data: In each iteration t,
all machines work on the same iterate w(t), and each ma-
chine computes its local gradient ∇F̂i(w(t)). These are then
averaged across machines, requiring O(m) communication
per iteration, to obtain the overall gradient ∇F̂ (w(t)). Each
machines can then compute the next iterate

w(t+1) ← w(t) − ηt∇F̂ (w(t)) (14)

for a suitable pre-determined step size ηt (performing dis-
tributed line search is also possible, but not necessary in
order to achieve optimal worst-case behavior).

For non-smooth objectives, we do not get any improve-
ment over the baseline, as n(ε) iterations are required. But
if the objective is H-smooth (i.e. has H-Lipschitz continu-
ous gradients), then O

(
H ‖W‖2 /ε

)
iterations of gradient

descent are sufficient to get an optimization error of ε. There-
fore, in our distributed implementation, O

(
H ‖W‖2 /ε

)
communication rounds are sufficient to get to a similar
optimization error.

Furthermore, for a smooth objective, instead of standard
gradient descent, one can use Nesterov’s accelerated gra-
dient descent [16], which makes more efficient use of the
computed gradients, at essentially the same computational
cost. In a nutshell, instead of updating as in Equation 14, one
maintains an auxiliary vector v(t), and performs the update

w(t+1) ← v(t) − η∇F̂ (v(t))

v(t+1) ← (1− γt)w(t+1) + γtw
(t),

using suitable parameters η, γt. Again, each machine can
maintain the iterates w and v, communicate so as to calculate
∇F̂ (v(t)) jointly, and then perform the update independently.
Compared to regular gradient descent, the computational and
communication cost per iteration is roughly the same. How-

ever, the number of required iterations is only
√
H ‖W‖22 /ε.

For L,H = Θ(1), expressed in terms of n(ε), we thus
need only O

(√
‖W‖2 4

√
n(ε)

)
iterations, with an associ-

ated amount of communication of O
(
m
√
‖W‖2 4

√
n(ε)

)
.

In terms of runtime, each gradient computation requires
n(ε)/m elapsed runtime (each machine requires a linear
scan over its ni = n(ε)/m local training points), yielding
O
(
n(ε)
m

√
‖W‖2 4

√
n(ε)

)
overall runtime.

With only a single machine, such an SAA approach
is, as we know, sub-optimal. The sample complexity is
the same as SGD, but the runtime is greater by a factor
of
√
‖W‖2 4

√
n(ε)—even assuming smoothness and using

acceleration, we cannot gain by performing SAA in the serial
setting. But in the distributed setting, such an SAA approach
can be beneficial in certain regimes with a large number of
machines. In particular, when m < Ω

(√
‖W‖2 4

√
n(ε)

)
,

we do get a runtime improvement over serial SGD. But the
runtime here is still not quite a factor of m improvement as
we might want, and it comes at a significant communication
cost.

We can also consider SAA with more sophisticated dis-
tributed consensus algorithms. E.g., a popular approach uses
the Alternating Direction Method of Multipliers, or ADMM
[6]. In the context of distributed optimization, it relies on
each machine i iteratively computing a solution w

(t)
i to a

local optimization problem of the form

min
w∈W

F̂i(w) +
〈
u(t−1), w

〉
+
ρ

2

∥∥∥w − w(t−1)
∥∥∥2
2
,

where ρ is a suitable constant and u(t−1) is a vector de-
pending on w

(t−1)
i and w(t−1) = 1

m

∑m
i=1 w

(t−1)
i . Thus,

the machines alternate between a local optimization phase,
and a communication phase where the solutions are shared
and their averages used for the next iteration. This approach
is potentially problematic, as it requires us to solve a full-
blown optimization problem at each iteration. Although in
many cases one can get a good solution after a small
number of iterations, the best worst-case guarantee we are
familiar with is O((1/λ) log(1/ε)) iterations for strongly
convex and smooth functions [12], [13]. This is no better
than the iteration bound for gradient descent, and therefore
the runtime cost is much worse.

Recently [22] proposed a different approach, denoted as
DANE, which resembles ADMM in its architecture but has
better performance guarantees. Like ADMM, DANE requires
each machine to iteratively compute a solution wti to a local
optimization problem, followed by a communication phase.
However, the optimization problem is slightly different, of
the form

min
w∈W

F̂i(w)−
〈
∇F̂i(w(t−1))− η∇F̂ (w(t−1)), w

〉
+
µ

2

∥∥w − wt−1∥∥2
2

for suitable constants η, µ. For λ-strongly convex quadratic
objectives, the number of required iterations to reach opti-
mization error ε is

O

(
1

λ2n
log(dm) log(1/ε)

)
, (15)

where d is the dimension and n is the number of exam-
ples per machine. Moreover, since any strongly convex and
smooth function is locally quadratic, this bound should also
characterize the convergence of the algorithm more generally.
The important point here is that DANE takes advantage of the
relatedness of the local objectives, and indeed the iterations
complexity (15) decreases as n→∞.

To convert Equation 15 to a bound on non-strongly convex
functions, we can simply use explicit regularization with λ

on the order of 1/
√
‖W‖22 nm, and get an iteration bound of

O
(
‖W‖22m log(1/ε)

)
. As a result, the amount of communi-

cation required by the algorithm is O
(
‖W‖22m2 log(1/ε)

)
.

Remarkably, this bound is independent of the data size, in
sharp contrast to the other methods discussed in this section.
Thus, at least in terms of communication, this method is
rather efficient. Its main disadvantage is runtime, since it
still requires each machine to solve an optimization problem
every round. Since this requires at least one pass over each
machine’s n(ε)/m data points, a crude lower bound on
the required runtime is O

(
‖W‖22m log(1/ε)(n(ε)/m)

)
=

Õ
(
n(ε) ‖W‖22

)
, which is already inferior to some of the

methods discussed earlier.

VIII. MINI-BATCH SGD
A compromise between standard SGD and deterministic

gradient descent on the empirical objective is mini-batched

SGD. Instead of using a single sample point in each itera-
tion t of a stochastic approximation method such as SGD,
we might consider using a “mini-batch” of b independent
samples zt,(1), . . . , zt,(b) and replacing the gradient estimate
∇wf(w, zt) with the better estimate 1

b

∑b
i=1∇wf(w, zt,(i)).

This gradient computation can then be parallalized, with
each machine computing and averaging gradients on b/m
independent sample points. For Lipschitz objectives over a
bounded domain, using mini-batches does not actually re-
duce the worst case number of iterations required compared
to standard SGD, and thus increases the sample complexity
without any possible worst-case improvement in parallel
runtime, even though such gains are clearly observed in
practice [20]. Recently, two alternative conditions that do
ensure parallelization speedups from mini-batches have been
established. Here, we focus on the case of smooth objectives.

If the objective is H-smooth, then as long as we use
mini-batches of size b ≤ bmax = O(L2/(Hε)) =
O((L/H ‖W‖)

√
n(ε)), the number of required itera-

tions decreases linearly with 1/b, and we can ensure
an ε-suboptimality of (1) without increasing the (worst
case) total sample complexity by more then a factor
of two [8], [2], [1]. By using an accelerated variant
of mini-batched gradient descent, with the same cost
per iteration, we can use even larger mini-batches of
size of up to bmax = O

(
L3/2 ‖W‖ /(H1/4ε3/2)

)
=

O
(
n(ε)3/4/H1/4 ‖W‖1/2)

)
while maintaining a linear de-

crease in the number of iteration and thus without increasing
the sample complexity [7].

How can we implement mini-batched (accelerated) gra-
dient descent in a distributed setting? One naive approach
would be to process, at each iteration, one sample point
on each machine, averaging their gradients across machines,
and thus using a mini-batch of size b = m. As long as
m = b ≤ bmax, and assuming no overhead, we would
indeed enjoy a linear speedup. But the communication costs
in this case would be prohibitive, as we would be effectively
communicating the entire data set (or rather the gradients for
the entire data set). Furthermore, the overhead of performing
the distributed averaging of the gradients would likely out-
weight any runtime gains.

What we should do is use a minibatch size larger then
the number of machines, and so average multiple gradients
on the same machine, and communicate only this average.
Using a mini-batch of size b and m < b machines, we
would process b/m examples on each machine at each
iteration, communicate the averaged gradients obtained on
each machine, and then average these average gradients, for
a total communication cost of O(m) per iteration. As long
as b < bmax the overall sample complexity N = O(n(ε)) is
maintained (up to perhaps a factor of two), the number of
iterations performs is n(ε)/b, and so the runtime (number of
examples processed on each machine) is reduced linearly
to n(ε)/m, while the communication costs are n(ε)

b · m,
corresponding to communicating m vectors at each of n(ε)/b
iterations. The runtime and sample complexity are thus

unaffected by the mini-batch size (as long as it is small
enough), while communication decreases linearly with the
size of the mini-batch. It is thus important to use the
largest possible mini-batch size that does not hurt the sample
complexity, i.e. b = bmax. In particular, we see here that
the main benefit of acceleration is not in reducing runtime,
but rather in allowing larger mini-batches and thus reducing
communication costs.

Overall, when L,H = Θ(1), using acceleration and
a mini-batch size of b = bmax = O

(
‖W‖ /ε3/2

)
=

O
(
n(ε)3/4/ ‖W‖1/2)

)
, yields overall runtime of

n(ε)/m (a linear speedup) and a communication cost
of O

(
m
√
‖W‖2 4

√
n(ε)

)
, and no deterioration in sample

complexity as long as m� bmax.
Compared to an SAA approach using deterministic accel-

erated gradient descent, we get the same iteration complexity
and communication cost, but with a significantly reduced
runtime, avoiding the factor of

√
‖W‖2 4

√
n(ε), and thus

displaying a linear speedup.
We note that even for non-smooth objectives, an alternate

condition on the spectral norm of the data can also yield
similar speedups, with a mini-batch size that depends on the
spectral norm [27].

IX. CONCLUSION

In this paper we rigorously defined and studied the
problem of distributed stochastic optimization, emphasizing
that the methods achieving optimal, or even non-trivial,
performance for the problem are different than either the
methods used in the serial setting, or those that are good
for generic distributed consensus problems. Of the methods
considered, we the best guarantee is obtained by accelerated
mini-batch SGD with a maximally possible mini-batch size.
For this method, and up to a generous limit on the number
of machines, we obtain linear speedups with no deterioration
in sample complexity, and with a communication cost that
scales as 4

√
n(ε). I.e., the amount of data to be communicated

scales as the fourth root of the total data set size. Although
such amounts of communication might often be reasonable, it
still remains to understand whether this is the minimum pos-
sible amount of communication, or whether other methods
exist which require even less communication. In particular,
the question of the existence of an “ideal” method, with
linear runtime speedup and requiring only a constant amount
of communication from each machine, is still open.

ACKNOWLEDGMENTS

This work was supported by Intel (ICRI-CI). OS was
supported in part by an Israel Science Foundation grant (No.
425/13) and a Marie-Curie Career Integration Grant, NS was
supported in part by a Google Research Award and by the
National Science Foundation.

REFERENCES

[1] An optimal method for stochastic composite optimization. Mathemat-
ical Programming, 133(1-2):365–397, 2012.

[2] A. Agarwal and J. Duchi. Distributed delayed stochastic optimization.
In NIPS, 2011.

[3] F. Bach and E. Moulines. Non-asymptotic analysis of stochastic
approximation algorithms for machine learning. In NIPS, 2011.

[4] M. Balcan, A. Blum, S. Fine, and Y. Mansour. Distributed learning,
communication complexity, and privacy. In COLT, 2012.

[5] L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In
NIPS, 2007.

[6] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed op-
timization and statistical learning via the alternating direction method
of multipliers. Foundations and Trends R© in Machine Learning,
3(1):1–122, 2011.

[7] A. Cotter, O. Shamir, N. Srebro, and K. Sridharan. Better mini-batch
algorithms via accelerated gradient methods. In NIPS, 2011.

[8] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao. Optimal
distributed online prediction using mini-batches. J. of Machine
Learning Research, 13:165–202, 2012.

[9] E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret algorithms
for online convex optimization. Machine Learning, 69(2-3):169–192,
2007.

[10] E. Hazan and S. Kale. Beyond the regret minimization barrier: an
optimal algorithm for stochastic strongly-convex optimization. In
COLT, 2011.

[11] E. Hazan, T. Koren, and N. Srebro. Beating SGD: Learning svms in
sublinear time. In NIPS, 2011.

[12] M. Hong and Z.-Q. Luo. On the linear convergence of the alternating
direction method of multipliers. arXiv:1208.3922, 2012.

[13] F. Iutzeler, P. Bianchi, P. Ciblat, and W. Hachem. Explicit conver-
gence rate of a distributed alternating direction method of multipliers.
arXiv:1312.1085, 2013.

[14] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic
approximation approach to stochastic programming. SIAM J. on
Optimization, 19(4):1574–1609, 2009.

[15] A. Nemirovski and D. Yudin. Problem complexity and method
efficiency in optimization. Nauka Publishers, Moscow, 1978.

[16] Y. Nesterov. A method of solving a convex programming problem with
convergence rate o(1/k2). In Soviet Mathematics Doklady, volume 27,
pages 372–376, 1983.

[17] A. Rakhlin, O. Shamir, and K. Sridharan. Making gradient descent
optimal for strongly convex stochastic optimization. In ICML, 2012.

[18] S. Ram, A. Nedić, and V. Veeravalli. Distributed stochastic subgradient
projection algorithms for convex optimization. Journal of optimization
theory and applications, 147(3):516–545, 2010.

[19] S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan. Stochastic
convex optimization. In COLT, 2009.

[20] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos:
Primal estimated sub-gradient solver for svm. Mathematical program-
ming, 127(1):3–30, 2011.

[21] S. Shalev-Shwartz and N. Srebro. SVM optimization: inverse depen-
dence on training set size. In ICML, 2008.

[22] O. Shamir, N. Srebro, and T. Zhang. Communication efficient
distributed optimization using an approximate newton-type method.
In ICML, 2014.

[23] O. Shamir and T. Zhang. Stochastic gradient descent for non-smooth
optimization: Convergence results and optimal averaging schemes.
ICML, 2013.

[24] N. Srebro, K. Sridharan, and A. Tewari. Smoothness, low noise and
fast rates. In NIPS, 2010.

[25] N. Srebro, K. Sridharan, and A. Tewari. On the universality of online
mirror descent. In NIPS, 2011.

[26] K. Sridharan. Learning from an optimization viewpoint. PhD Thesis,
Toyota Technological Institute at Chicago, 2012.

[27] M. Takác, A. Bijral, P. Richtárik, and N. Srebro. Mini-batch primal
and dual methods for svms. In ICML, 2013.

[28] V.N. Vapnik. The Nature of Statistical Learning Theory. Springer,
1995.

[29] Y. Zhang, J. Duchi, and M. Wainwright. Communication-efficient al-
gorithms for statistical optimization. J. of Machine Learning Research,
14(1):3321–3363, 2013.

[30] M. Zinkevich, M. Weimer, L. Li, and A. Smola. Parallelized stochastic
gradient descent. In NIPS, 2010.

