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Sparse Parzen Window Prediction

• We are concerned with predictors of the form:

x’1,…,x’n are landmarks (often used also as training data) 
and K(x,x’) encodes similarity.

• SVMs: learn α by minimizing objective related to dual large 
margin problem in implicit Hilbert space.

• Parzen/Soft Nearest-Neighbor: αi = y’i
• Learn αi by directly minimizing empirical loss

• Also want sparsity, i.e. many αi=0, and so only few 
landmarks actually used for prediction

f(x) =

n∑

i=1

αiK(x, x
′

i)



The Learning Rule

• Use |α|1 = ∑i |αi| as surrogate for sparsity
• Hinge loss: [1-y·f(x)]+ = max(0,1-y·f(x))

• Yields the popular learning rule:

where (x1,y1),…,(xm,ym) are labeled training examples, which 
might, or might not, be the same as the landmarks (recall 
landmarks need not be labeled).

minimize
m∑

i=1

[1− yif(xi)]+

s.t.

n∑

j=1

|αj | ≤M

(*)



The Learning Rule: References

• Bennett and Campbell (SIGKDD Explot. Newsl. 2000), 
Support vector machines: hype or hallelujah?

• Roth (ICANN’01), Sparse kernel regressors.
• Guigue, Rakotomamonjy & Canu (ECML’05), Kernel basis 

pursuit.

With different loss functions:
• Singer (NIPS’99), Leveraged vector machines.

Combined with |α|2 regularization:
• Osuna and Girosi (1999). Reducing the run-time 

complexity in support vector machines. Advances in 
kernel methods: Support Vector learning.

• Gunn and Kandola (2002). Structural modelling with 
sparse kernels. Machine Learning, 48, 137—163



Learning Guarantees?
• Despite popularity of learning rule (*), no established 

guarantees in terms of K!
• For SVMs, guarantees based on large margin in implied 

feature space.
• Even if SVM condition holds (large margin in implied space), 

can (*) also be used?  No previously known guarantee…
– In fact, combining |α|1 and |α|2 suggested in order to 

benefit from SVM guarantees. 

• Is there a simple and interpretable condition on K that 
guarantees learnability using rule (*)?
– Since (*) doesn’t require K�0, would hope for guarantees 

that do not rely on K�0.

– Do landmarks have to be training examples?



Our Results
• Natural condition on K that justifies 

Learning Rule (*)
– View K as similarity function
– No requirement that K�0

– Labeled sample complexity (training points) and 
unlabeled sample complexity (landmarks) yielding 
generalization error bound.

• If K�0 and is a good kernel for SVMs
⇒ also satisfies our condition
⇒ Learning Rule (*) can be used



Non-PSD Similarity
• SVM requires K�0

• Often not the case for natural similarity, e.g.:
– “Earth Movers Distance” (especially in vision)
– BLAST scores for proteins or DNA
– K(x1,x2)=Px’[d(x1,x2)≤d(x1,x’)]

• Can coerce K to be PSD and use SVM:
– Gerpel et al (NIPS’98), Classification of pairwise proximity data
– Wu et al (ICML’05), An analysis of transformations on non-positive 

semidefinite similarity matrix for kernel machines
– Luss and d’Aspremont (NIPS’07), SVM classification with indifinite kernels
– Checn and Ye (ICML’08), Training SVMs with indefinite kernels

• But perhaps more natural to use (*)
• Our guarantee justifies using (*), even when K � 0.

Percentile rank of how 
close x2 is to x1, relative 

to all other points



Definition: K is a (εεεε,γγγγ,ττττ)-good similarity function if there 
exists a probabilistic set R of “reasonable points” such that:

• There is at least τ mass of reasonable points:
Prx’,R(x’)[ R(x’) ] ≥ τ

• A parzen predictor based on the reasonable points has 
average hinge loss at most ε relative to margin γ:

Ex,y[ [1-y·g(x)/γ]+ ] ≤ ε

where g(x) = Ex’,y’,R(x’)[ y’ K(x,x’) | R(x’) ]
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exists a probabilistic set R of “reasonable points” such that:

• There is at least τ mass of reasonable points:
Prx’,R(x’)[ R(x’) ] ≥ τ

• A parzen predictor based on the reasonable points has 
average hinge loss at most ε relative to margin γ:

Ex,y[ [1-y·g(x)/γ]+ ] ≤ ε

where g(x) = Ex’,y’,R(x’)[ y’ K(x,x’) | R(x’) ]

Can think of R(x) 
as random 0/1 

indicator

Condition Justifying Learning Rule (*)



Theorem: If K is a (ε,γ,τ)-good similarity function, then, for 
any δ,ε1>0, with probability ≥ 1-δ over a sample x’1,…,x’n of

random (potentially unlabeled) landmarks, there exists a 
predictor

With low ℓ1-norm:
|α|1 = ∑ |αi| ≤ 1/γ

and low expected error:
Ex,y[ [1-y·f(x)]+ ] ≤ ε + ε1
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n =
2

τ

(
log(2/δ) + 16

log(2/δ)

ǫ21γ
2

)

f(x) =
∑n

i=1 αiK(x, x
′

i)



Corollary: If K is a (ε,γ,τ)-good similarity function, then, for 
any δ,ε1>0, with probability ≥ 1-δ over a sample x’1,…,x’n of

random (potentially unlabeled) landmarks, and a (labeled) 
sample (x1,y1),…,(xm,ym) of size

the predictor obtain by learning rule (*) with M=1/γ has 
expected hinge loss:

Ex,y[ [1-y·f(x)]+ ] ≤ ε + ε1
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n = O

(
log(1/δ)

τγ2ǫ21

)

m = Õ

(
log n log(1/δ)

γ2ǫ21

)



Definition: K�0 is a (εεεε,γγγγ)-good kernel if there exists a vector 

β, |β|≤ 1/γ, in the implied Hilbert space s.t. E[ [1-y·〈β,x〉]+ ] ≤ ε
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Theorem: If K�0 is a (ε,γ)-good kernel (for a problem with 
deterministic labels), then for any ε1>0, K is also a 

-good similarity function.

Theorem: If K�0 is a (ε,γ)-good kernel (for a problem with 
deterministic labels), then for any ε1>0, K is also a 

-good similarity function.

Actually, might be 
(ε0+ε1,cγ2/(1+ε0/ε1),(ε0+2ε1)/c)-good, 
for some c>1, which is only better 

in terms of learning guarantees.

Good for SVM ⇒ Good for (*)

(ǫ0 + ǫ1,
γ2

(1 + ǫ0/ǫ1)
, ǫ0 + 2ǫ1)



Corollary: If K�0 is a (ε,γ)-good kernel, then for any ε1,δ>0, 
with probability ≥ 1-δ, over a sample x’1,…,x’n of

random (potentially unlabeled) landmarks, and a (labeled) 
sample (x1,y1),…,(xm,ym) of size

the predictor obtain by learning rule (*) with M=1/γ has 
expected hinge loss ≤ ε + ε1

n = O

(
(1 + ǫ/ǫ1)

2 log(1/δ)

(ǫ+ ǫ1)γ4ǫ21

)

m = Õ

(
(1 + ǫ/ǫ1)

2 logn log(1/δ)

γ4ǫ21

)

Full details and proofs:
Improved Guarantees for Learning via Similarity Functions,
Balcan, Blum and Srebro, COLT 2008


