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Sparse Parzen Window Prediction

We are concerned with predictors of the form:
flz) =) a;K(z,z))
1=1
X'y,...,X’, are landmarks (often used also as training data)

and K(x,x’) encodes similarity.

SVMs: learn a by minimizing objective related to dual large
margin problem in implicit Hilbert space.

Parzen/Soft Nearest-Neighbor: a; =y,
Learn a; by directly minimizing empirical loss

Also want sparsity, i.e. many a,=0, and so only few
landmarks actually used for prediction



The Learning Rule

» Use |a|, = 2 |a;| as surrogate for sparsity
e Hinge loss: [1-y-f(X)], = max(0,1-y-f(x))
* Yields the popular learning rule:

minimize Z 1 —yif(xs)l,
)
S.t. Z |Oéj| <M

j=1

where (X,Y,),---,(X, Y, are labeled training examples, which
might, or might not, be the same as the landmarks (recall
landmarks need not be labeled).



The Learning Rule: References

« Bennett and Campbell (SIGKDD Explot. Newsl. 2000),
Support vector machines: hype or hallelujan?

 Roth (ICANN’0O1), Sparse kernel regressors.

« Guigue, Rakotomamonjy & Canu (ECML’05), Kernel basis
pursuit.

With different loss functions:
o Singer (NIPS’99), Leveraged vector machines.

Combined with |a|, regularization:

e Osuna and Girosi (1999). Reducing the run-time
complexity in support vector machines. Advances in
kernel methods: Support Vector learning.

e Gunn and Kandola (2002). Structural modelling with
sparse kernels. Machine Learning, 48, 137—163



Learning Guarantees?

Despite popularity of learning rule (*), no established
guarantees in terms of K!

For SVMs, guarantees based on large margin in implied
feature space.

Even if SVM condition holds (large margin in implied space),
can (*) also be used? No previously known guarantee...

— In fact, combining |a|, and |a], suggested in order to
benefit from SVM guarantees.

Is there a simple and interpretable condition on K that

guarantees learnability using rule (*)?

— Since (*) doesn’t require K>=0, would hope for guarantees
that do not rely on K>=0.

— Do landmarks have to be training examples?



Our Results

 Natural condition on K that justifies
Learning Rule (*)

— View K as similarity function
— No requirement that K>=0

— Labeled sample complexity (training points) and
unlabeled sample complexity (landmarks) yielding
generalization error bound.

e If K:=0 and Is a good kernel for SVMs

= also satisfies our condition
= Learning Rule (*) can be used



Non-PSD Similarity

%) SVM requires K:=0

o Often not the case for natural similarity, e.g.:
— “Earth Movers Distance” (especially in vision)

— BLAST scores for proteins or DNA 'Tefcent?le rank OfIhO_W
(0. 0)=Pld ¢, Xp) <d (X)) to all other points

e Can coerce K to be PSD and use SVM:

— Gerpel et al (NIPS’98), Classification of pairwise proximity data

— Wu et al (ICML’05), An analysis of transformations on non-positive
semidefinite similarity matrix for kernel machines

— Luss and d’Aspremont (NIPS’07), SVM classification with indifinite kernels
— Checn and Ye (ICML’08), Training SVMs with indefinite kernels
e But perhaps more natural to use (*)

%‘ Our guarantee justifies using (*), even when K % 0.



Condition Justifying Learning Rule (*)

Definition: K'is a (g,y,1)-good similarity function if there
exists a probabilistic set R of “reasonable points” such that:

* There is at least T mass of reasonable points: [ Can think of R(x)

, as random 0/1
Prx’,R(x’)[ R(X) ] > T indicator

A parzen predictor based on the reasonable points has
average hinge loss at most € relative to margin v:.

Ex,y[ [1'yg(x)/y]+ ] < €
where g(X) = E, . rpo)l Y K(X,X) | R(X') ]




ﬁeorem: If Kis a (g,y,1)-good similarity function, then, for \

any 0,£,>0, with probability > 1-0 over a sample x’y,...,X, of
2 log(2/6
n= - (log(2/5) + 16 Of%(fyé )>
random (potentially unlabeled) landmarks, there exists a

redictor n
P fl@) =0 oK (x, )

With low {;-norm:
jaly = 2 faj| < 1y

and low expected error:
\ Ex,y[ [1-y-f(X)]+ ] <€+ €1 /




ﬁorollary: If K is a (g,y,T)-good similarity function, then, f(ﬁ
any 9,£,>0, with probability > 1-0 over a sample x';,...,x’,, of

=0 (log(1/5))

Ty2el

random (potentially unlabeled) landmarks, and a (labeled)
sample (X;,¥1),---,(X,Y) Of Size

4 <lognlog(1/5))

5 _2
Y€1

the predictor obtain by learning rule (*) with M=1/y has

expected hinge loss:
K Ex,y[ [1-y~f(X)]+ ] S €+ g /




Good for SVM = Good for (*)

Definition: K>=0 Is a (g,y)-good kernel if there exists a vector
B, IBI< 1y, in the implied Hilbert space s.t. E[ [1-y-(B,x)], ] < €

/Theorem: If K==0 is a (g,y)-good kernel (for a problem with
deterministic labels), then for any £,>0, K is also a

(60 + €1,

,y2

(1+¢€o0/€1)

, €0 + 2€71 )-good similarity function.

Actually, might be
(epte,,C¥?/(1+e /), (€, H2€,)/C)-go0d,
for some c>1, which is only better

In terms of learning guarantees.




Corollary: If K=0 is a (g,y)-good kernel, then for any €,,0>0,
with probability > 1-0, over a sample x';,...,X’, of

1 2log(1/6
n=0 <( +€/e1) 05(2/ )>
(€4 €1)rte
random (potentially unlabeled) landmarks, and a (labeled)
sample (X;,Y1),---,(X,,Y,) Of size

- (14 €/e1)?lognlog(1/d
m20(< Jex)? log nlog(1/ >>
V€1
the predictor obtain by learning rule (*) with M=1/y has
expected hinge loss < € + ¢,

Full details and proofs:
Improved Guarantees for Learning via Similarity Functions,
Balcan, Blum and Srebro, COLT 2008




