
Fit low-rank (factorizable) matrix X=UV’ to observed entries.

minimize  Σ loss( Xij ; Yij )

Use matrix X to predict unobserved entries.
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Low-Rank Matrix Factorization

V’
U

×
≈ X

rank k=

observationprediction

ij∈S

[Sarwar, Karypis, Konstan, Riedl Applications of dimesionality reduction in 
recommender systems—a case study WebKDD 2000]

[Hoffman Latent semantic models for collaborative filtering ACM Trns. Inf. Syst. 2004]
[Marlin, Zemel Modeling user rating profiles for collaborative filtering NIPS 2003]
[Canney GAP: A Factor Model for Discrete Data SIGIR 2004]
many others…

Different low-rank methods differ in how they relate real-valued entries 
in X to the observations (preferences) Y, possibly through a probabilistic 
model, and in the associated contrast (loss) functions.

g(x)=1/(1+ex)

Logistic Low Rank 
Approximation

[Schein+03]

Yij|Xij~Bin(N,g(Xij))SDR
[Globerson+02]

Natural 
parameterization
unconstrained Xij

P(Yij=1) = XijYij|Xij~Bin(N,Xij)Aspect Model 
(pLSA) [Hoffman+99]

Mean 
parameterization
0 · Xij · 1
E[Yij|Xij]=Xij

Independent 
Bernoulli

Independent 
Binomials

Multinomial

≡ NMF if ∑Xij=1 ≈ NMF [Lee+01]

p(Yij|Xij) ∝ exp(YijXij+F(Yij))
Exponential PCA: [Collins+01]

Low-rank models of co-occurrence or frequency data

hinge
loss

≈

row features most 
informative about columns

For a fixed V, each row is linear classification of columns in V, and there are · 2(k+1)mk-1 such 
classifications.  Overall, for each fixed V, the number of possible sign matrices is bounded by:

#{ sign(UV) | U ∈ n×k} · (2(k+1)mk-1)n

This should be multiplied by the number of Vs, or rather the number of Vs yielding different sets 
of possible classification vectors:

M(V) = { sign( u’V ) | u ∈ Rk }

f(n,m,k) · (2(k+1)mk-1)n mk(k+1)m
· 2k(n+m)log(2m) + k2m log(2m)

set of covectors of a realizable oriented 
matriod (where sign ∈ {-,0,+})

#{ M(V) | V ∈ Rk×m } · mk(k+1)m

⇓

[Goodman Pollack 1986], [Alon 1986] bound 
on number of realizable oriented matriods

extraneous k^2 term!

A Weaker Bound Using Realizable Oriented Matriods

For MMMF (max-margin/low-norm matrix factorizations), generalization error bounds obtained by viewing 
MMMF as a “combined” classifier, a convex combination of unit-norm rank-1 matrices.
Rank-K matrices can be viewed as “combined”, or “voting” classifiers, each combining k rank-1 matrices.
Can a similar approach be taken for low-rank matrices?

• Scale-sensitive complexity (log covering numbers, Rademacher complexity) carries over to  convex hull.
(scale-invariant complexity certainly not conserved for convex hull)

• VC-dimension scales gracefully with k for combinations of k classifiers
⇒ generalization error bounds for linear combinations of signs of low-rank matrices

• Pseudo-dimension of a linear combinations of k functions from a low-pseudo-dimension class?

Counter Example: A family of functions closed under scalar multiplication, with pseudo-dimension 3, such 
that { f1+f2 | f1,f2 ∈ } has infinite pseudo-dimension:

= { α·fA , α·gA | α ∈ , A ∈  }
fA(x) = 2xA+x∈ A

gA(x) = gxA

Consider a 1:1 mapping ↔2.
‘A’ denotes both a number, and 

the corresponding subset.

Why not treat as combined classifiers?

For any threshold matrix T ∈ n×m, bound number of relative sign 
configurations:  #{ sign(X-T) | rank(X)=k }

For 0/1 loss, behavior of entries of X around zero enough.
More generally, need to bound complexity of behavior everywhere.

General Bounded Loss Functions

(X-T)ij = ∑rUirVrj-Tij

nk variables mk variables

nm polynomials of degree 2

k(n+m)
#{ sign(X-T) | rank(X)=k } · 4e·2·nm

k(n+m)
=2k(n+m)log(8em/k)

Viewing matrices as a mappings from index pairs to values: (i,j) a Xij, 
this gives us a bound of k(n+m)log(8em/k) on the pseudo-dimension of 
rank-k matrices.  We can now invoke standard results bounding the 
generalization error in terms of the pseudo-dimension.

Binary Labels, Zero-One Loss
For particular X,Y:

Union bound over all possible Xs: ∀Y PrS ( ∀X D(X,Y)<DS(X,Y)+ε ) > 1-δ

||2
logs) possible #log( 1

S
δε += X

loss(Xij;Yij) ∼ Bernoulli(D(X;Y))

Pr( DS(X;Y) < D(X;Y)-ε ) < e-2|S|ε2

random

randomrandom

F(n,m,k) = { sign(X) ∈ {-,+}n×m | X ∈ n×m, rank X · k}
f(n,m,k) = #F(n,m,k)

The bound rests on bounding the number of possible Xs.  The behavior of loss(Xij,Yij) only 
depends on sign(X), and so it is enough to bound the number of sign configurations:

Sign Configurations of Low-Rank Matrices 

Xij = ∑r Uir Vrj

nk variables mk variables

nm polynomials of degree 2

f(n,m,k) ·
4e · 2 · nm

k(n+m)

k(n+m)
=2k(n+m)log(8em/k)

columns of V
(items)

rows of U
(users)

-0.36 -0.00 -0.98 -1.36 -0.26
-0.07 -0.24 -1.14 -0.82 -0.12
0.19 -0.44 -1.27 -0.34 0.01
-0.81 0.84 1.17 -1.07 -0.35
-0.48 0.21 -0.43 -1.28 -0.28
-0.35 0.13 -0.43 -1.02 -0.22
-0.54 0.68 1.26 -0.43 -0.20
-0.22 0.40 0.98 0.10 -0.05
1.13 -1.06 -1.21 1.72 0.51
1.30 -0.73 0.55 3.12 0.72
0.53 -0.45 -0.40 0.90 0.25
-0.04 -0.00 -0.14 -0.17 -0.03
-0.80 0.70 0.67 -1.32 -0.37
-1.81 1.28 0.28 -3.73 -0.93
0.68 -0.56 -0.43 1.21 0.33

-0.46 0.65
-0.20 0.70
0.02 0.74
-0.61 -0.59
-0.50 0.33
-0.38 0.31
-0.35 -0.69
-0.09 -0.56
0.90 0.57
1.27 -0.52
0.44 0.17
-0.06 0.09
-0.66 -0.29
-1.65 0.09
0.58 0.16

1.11 -0.81 -0.27 2.24 0.57
0.22 -0.58 -1.70 -0.52 0.00V
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Following [Alon Tools from higher algebra Handbook of Combinatorics 1995], similar to
[Alon, Frankl, Rödel Geometric realization of set systems and probabilistic communication complexity FOCS 1985]

P1+ε, P2+ε, P3+ε

Warren (1968): The number of connected components of { x | ∀i Pi(x) ≠ 0 }

is at most
4e (degree) (#polys)

(# variables)

(# variables)

polynomials

Corollary: The number of sign configurations of the polynomials is at most
4e (degree) (#polys)

(# variables)

(# variables)

P1(x1,x2)=0

P2(x1,x2)=0

P3(x1,x2)=0

1
2

3
4

56
7

8

Proofs

A class of real-valued functions pseudo-shatters the points 
x1,...,xn with thresholds t1,...,tn if for every binary labeling of the 
points (s1,...,sn)∈{+,−}n there exists f∈ s.t. f(xi)·ti iff si=−.
The pseudo-dimension of a class is the supremum over n for 
which there exist n points and thresholds that can be pseudo-
shattered.

“Will user i like movie j?”
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Based on partially observed matrix
⇒ Predict unobserved entries

Collaborative Prediction

Prior work

•Assuming a low-rank structure (eigengap) in Y, predict entries:
•Asymptotic behavior
[Azar, Fiat, Karlin, McSherry Saia Spectral analysis of data STOC 2001]
•Sample complexity, query strategy
[Drineas, Kerenidis, Raghavan Competitive recommendation systems STOC 2002]

•Bounds on residual errors, no assumptions on Y:
[Shaw-Taylor, Cristianini, Kandola On the concentration of spectral properties NIPS 2002]
Subset of rows fully observed, bound is on distance of new rows to learned subspace

In this work: collaborative prediction analysis (entry prediction), no assumptions on Y.
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hypothesis

∀Y PrS ( ∀rank-k X D(X;Y)<DS(X;Y)+ε ) > 1-δ

D(X;Y) = ∑ij loss(Xij;Yij)/nm
generalization error

DS(X;Y) = ∑ij∈S loss(Xij;Yij)/|S|
empirical error
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∀Y PrS ( ∀X D(X;Y)<DS(X;Y)+ε ) > 1-δ

D(X;Y) = Eij[loss(Xij;Yij)] DS(X;Y) = ∑ij∈S loss(Xij;Yij)/|S|

same observation distribution

Major Assumption: Random Observations

Although we did not make any assumptions about the true preferences Y, we made a 
very strong assumption about the set S of observed entries: we assumed entries as 
selected uniformly at random.  Although the uniformity requirement can be relaxed:

This is not very satisfying: we are guaranteed good generalization only on items the 
user is likely to observe on its own—not on items we might recommend.

Results
Warren’s Theorem and Configuration Counting

Warren’s Theorem, and a weaker result of Milnor, have a long history in combinatorics and learning theory:

[Goodman Pollack Upper bounds for configurations and polytopes in R^d Disc Comp Geom 1986]
[Alon 1986 The number of polytopes, configurations and real matroids Mathematika 1986]
Bound on the number of non-equivalent point configurations (realizable oriented matriods). Can be used to 
obtain weak bound on number of sign configurations of low-rank matrices (green panel).

[Ben-David, Lindenbaum Localization vs. identification of semi-algebraic sets COLT 1993]
VC-dimension of set of transformations of an image, used to analyze sample complexity of determining location.

[Goldberg, Jerrum Bounding the VC dimension of concept classes parameterized by real numbers COLT 1993]
VC-dimension of any concept classes parameterized by real numbers, where each concept can be written as 
logical formula over polynomial inequalities 

· 2 (# of params describing each concept) log(8e (degree of polys used) (# of polys used) )
Can be applied to collaborative prediction with low-rank matrices, where:

X(i,j) = ∨I’,j’ (i=i’ ∧ j=j’ ∧ ∑r Ui’rVrj’>0)
yielding: VC-dim(rank-k matrices) · 2·k(n+m)·log(8e·2·3nm) · 2k(n+m)log(48enm)
By directly applying Warren’s Theorem we:

• avoided symmetrization (for 0/1 error)
• avoided Sauer’s lemma, and a log|S| term in the generalization error bound
• bounded the pseudo-dimension and obtained generalization error bounds for general loss functions

i j

Y(i,j) ∈ +1/-1
Unbounded error communication complexity C

= Randomized protocol, always · C bits, P(correct answer)> ½

[Paturi, Simon Probabilistic communication complexity FOCS 84]
log rank Xe · C · dlog rank Xe ,  sign(X)=Y

[Alon, Frankl, Rödel Geometric realization of set systems and probabilistic communication complexity FOCS 1985]
Bound # sign configurations
counting arguments  ⇒ ∃ Y with rank(X)>n/32  ⇒ ∃ Y:{0,1}r×{0,1}r→{0,1} with C>r-5

Embedability as Linear Classification

Can all concept classes be embedded as linear classifications in a low dimensional space?
={c1,…,cn} can be embedded as k-dimensional linear classification ⇔ Rank-k X, s.t. ci(j)=sign(Xij)

counting arguments ⇒ ∃ small concept class, not embeddable as low dimensional linear classification

Explicit Examples
These counting arguments provide only existence proofs, not explicit constructions of sign configurations 
with no low-rank realization (i.e. functions with high unbounded error communication complexity, or 
concept classes that cannot be embedded as low-dimensional linear classification).

[Forester A linear bound on the unbounded error communication complexity CCC 2001]
rank(X) ≥ n / |sign(X)|2 (spectral norm of sign(X))
In particular, the 2r×2r Hadamard matrix cannot be realized with rank(X)<2r/2

In this example, rank(X)≥√n.  No known explicit example with rank(X)=Ω(n).

Unbounded Error Communication Complexity

More on Sign Configurations of Low-Rank Matrices

Related Work

http://www.cs.toronto.edu/~nati/genlowrank/
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