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Binary Labels, Zero-One Loss
For particular X,Y: Ioss(XU,Y ) ~ Bernoulli(D(X;Y))

;Y) <D(X;Y)-€) < e-2ISle?

Based on partially observed matrix
= Predict unobserved entries

For 0/1 loss, behavior of entries of X around zero enough.
More generally, need to bound complexity of behavior everywhere.

A~ NNAS

‘ D(X;Y) = 2 loss(X;;Y;)/nm

generallzatlon error

Ds(X;Y) = 2jes loss(X;; Y;)/[S]

ij Warren’s Theorem, and a weaker result of Milnor, have a long history in combinatorics and learning theory:
empirical error

[Goodman Pollack Upper bounds for configurations and polytopes in R*d Disc Comp Geom 1986]

5 1 mO\ﬂeS \/_\/‘/\/\/ [Alon 1986 The number of polytopes, configurations and real matroids Mathematika 1986]
5 Bound on the number of non-equivalent point configurations (realizable oriented matriods). Can be used to
5 3 4 = Z 11 |3 VY PI’S ( vrank_k X D(X,Y)< DS(X,Y)'l‘S ) > 1 '8 Union bound over all possible Xs: VY PrS ( VX D(X,Y)<DS(X,Y)+8 ) > 1-0 For any threshold matrix T € R™™ bound number of relative sign obtain weak bound on number of sign configurations of low-rank matrices (green panel).
4 ? 5| 13| [? | . p configurations: #{ sign(X-T) | rank(X)=k } [Ben-David, Lindenbaum Localization vs. identification of semi-algebraic sets COLT 1993]
og(# possible Xs)+log Y; g : : - - -
4| [1]3 5 — o VC-dimension of set of transformations of an image, used to analyze sample complexity of determining location.
A [ T [ [+1
? =T =TT ini nk variables mk variables
1 2 5 1 5 4 4 _ _ 1_1 1+1 I ! 1/ tralnlng 2 | S | N w [Goldberg, Jerrum Bounding the VC dimension of concept classes parameterized by real numbers COLT 1993]
& ST 215 12 12 “Will user i like movie j?” ™ A : Z U V T VC-dimension of any concept classes parameterized by real numbers, where each concept can be written as
P 3l |3 ' 1 5 ANE R +1/ The bound rests on bounding the number of possible Xs. The behavior of Ioss(XU, J.) only logical formula over polynomial inequalities
® T3 ] 51 13 S Ay i random depends on sign(X), and so it is enough to bound the number of sign configurations: _ < 2 (# of params describing each concept) log(8e (degree of polys used) (# of polys used) )
7 3E 3 _— X -1 Y +1 ﬂi [__nm polynomials of degree 2] Can be applied to collaborative prediction with low-rank matrices, where:
ENENE SONENE P X(ij) = Vpo (i=F A= A S UL V>0)
+ . B - - nxm nxm ) I, r ~irV
3 3|7 S +1 ] ‘\1\9 F(n’m’k) { S|gn(X) < { ’+} | XeER ’ rank X S k} 4e-2.nm k(n+m) yielding: VC-dim(raJnk-k matrices) < 2.k(Jn+m).Iog(86.2o3nm) < 2k(n+m)log(48enm)
2ms 11 > e T ™ d-So.l:)rC.e f(n,m,k) = #F(n,m,k) #{ Sign(X_T) | rank()()zk } < | =2k(n+m)log(8em/k) By directly applying Warren’s Theorem we:
) 2| 4| |4 A istribution — Lk(n+m) « avoided symmetrization (for 0/1 error)
1 3 115 4 S 1 A B [ + avoided Sauer’s lemma, and a log|S| term in the generalization error bound
1] |2 4 5(? G [ x unknown],c Viewing matrices as a mappings from index pairs to values: (i,j) - X;, « bounded the pseudo-dimension and obtained generalization error bounds for general loss functions
assumption-free this gives us a bound of k(n+m)log(8em/k) on the pseudo-dimension of
- . . . rank-k matrices. We can now invoke standard results bounding the
S|gn COangUI’atIOI’]S Of LOW'Rank MatrICES generalization error in terms of the pseudo-dimension. Mor n Sian Confi ration £ L Rank Matri
L Q k M . I: . . 0 Sign(x) =Yy k(n +Mm ) |Og Sem + |Og % Following [Alon Tools from higher algebra Handbook of Combinatorics 1995], similar to A class ¥ of real-valued functions pseudo-shatters the points oreo Ig 0 Ig urations o ow a atrices
OW' an at r I X aCtO r I Zatl O n |OSS(X, y) = i E= [Alon, Frankl, Rodel Geometric realization of set systems and probabilistic communication complexity FOCS 1985] X4,....X, with thresholds t,,....t. if for every binary labeling of the _ _ _
1 sign(x) =y 2|S| DOINES (S,....8, )4+ -}" there exists feF s.t. f(x)<t, iff 52— Unbounded Error Communication Complexity
NN RN y k (1);; :8:?;}\_% %25‘; 8% The pseudo-dimension of a class ¥ is the supremum over n for
ONEGENCRERE X V k columns of V which there exist n points and thresholds that can be pseudo- | § .~ .
TR L o B [0 [ovoTosel L5 oz . (iems) shattered. P
TR — 8em 1 002[074| [o19|o04a]i27[04fo0r] @ N. ° /Ry By e >
T e M U rank k monotone |OSS(X y) <1 —6 k(n + m)log IOg k(n+m) + Iog/é' -0.61]|-059| [-0.81[0841.17|-1.07]-0.35 . ] _ _ Cr——
A )= €= 050[033| [048[021043] 128|028 — A Weaker Bound Using Realizable Oriented Matriods—4 } 5% oo
S ol e s | S | 0.38|031| |-0.35]/0.13|-043|-1.02]-022 Y(i,j) € +1/ 1
T 1ol [Tl TT [0 -0.35[-069| [-0.54]0.68[1.26|-0.43]-0.20

For a fixed V, each row is linear classification of columns in V, and there are < 2(k+1)m*" such
classifications. Overall, for each fixed V, the number of possible sign matrices is bounded by:

rows of U
(users)

Unbounded error communication complexity C
= Randomized protocol, always < C bits, P(correct answer)> V2

n 0|)9 jo56| [-0.22]/0.40]0.98{0.10 [-0.05
57| [113]-106[-1.21[1.72]0.51

- 052| [1.30]-0.73[055[3.12 0. - k k-1)"
Fit low-rank (factorizable) matrix X=UV’ to observed entries. Prior work 331 Bl [o2[osomoslon #{ sign(UV) | U € R™} < (2(k+1)mKT)
mlnlmlze z |OSS X Y -0.061 0.09 -0.041-0.00]/-0.14]-0.17|-0.03

This should be multiplied by the number of Vs, or rather the number of Vs yielding different sets
ics ij 2 -066[-0.29] [-0.80]{0.70]0.67[-1.32]-0.37
observed S%
- :/ prediction observation

*Assuming a low-rank structure (eigengap) in Y, predict entries: Seeto09] Coitiastoss oo of possible classification vectors:
Use matrix X to predict unobserved entries.

[Paturi, Simon Probabilistic communication complexity FOCS 84]
log rank X| < C < [log rank X| , sign(X)=Y

set of covectors of a realizable oriented [Alon, Frankl, Rédel Geometric realization of set systems and probabilistic communication complexity FOCS 1985]
Bound # sign configurations

counting arguments = 3 Y with rank(X)>n/32 = 3Y:{0,1}x{0,1}'—{0,1} with C>r-5

*Asymptotic behavior 058|0.16| [0.68|-056(|-0.43]|1.21[0.33 M(V) = i ’ k . .
81 0. ) 0op) s 20| ={sign(uV)|ueR | triod (wh -0,
[Azar, Fiat, Karlin, McSherry Saia Spectral analysis of data STOC 2001] (V) = { sign( ) [ue R} matriod (where sign € {-.0.+})

*Sample complexity, query strategy #HM(V)|V e kam} < mk(k+tm ﬂor?ﬂwa&el:gp?:zlizi%cEfi\Ieonr]t;c? 216;-]&2232(1 ]

[Drineas, Kerenidis, Raghavan Competitive recommendation systems STOC 2002] U extraneous kA2 term! )
-Bounds on residual errors, no assumptions on Y: Warren (1968): The number of connected components of { X|V.Pi(x)#0} '
f(n,m,k) < (2(k+1)mk1)

n _ k(k+1)m 2
[Shaw-Taylor, Cristianini, Kandola On the concentration of spectral properties NIPS 2002] w m,k) < “Y'm (k+1) < 2k(n+m)log(2m) + k“m log(2m)
polynomlals L =

Subset of rows fully observed, bound is on distance of new rows to learned subspace
Why not treat as combined classifiers?

Embedability as Linear Classification

[Sarwar, Karypis, Konstan, Riedl Applications of dimesionality reduction in 4e (degree) (#polys)
recommender systems—a case study WebKDD 2000]

[Hoffman Latent semantic models for collaborative filtering ACM Trns. Inf. Syst. 2004]

[Marlin, Zemel Modeling user rating profiles for collaborative filtering NIPS 2003]

[Canney GAP: A Factor Model for Discrete Data SIGIR 2004]

many others...

Can all concept classes be embedded as linear classifications in a low dimensional space?
C={c,,...,c,} can be embedded as k-dimensional linear classification < Rank-k X, s.t. ¢;(j)=sign(X;)

counting arguments = 3 small concept class, not embeddable as low dimensional linear classification

(# variables)
is at most [ J

In this work: collaborative prediction analysis (entry prediction), no assumptions on Y. (# variables)

Corollary: The number of sign configurations of the polynomials is at most

Different low-rank methods differ in how they relate real-valued entries
in X to the observations (preferences) Y, possibly through a probabilistic
model, and in the associated contrast (loss) functions.

Low-rank models of co-occurrence or frequency data

/|

/

N~

row features most
informative about columns

(Exponential PCA: [Collins+01]
P(Y;1X;) oc exp(Y;X+F(Y;))

ag(x)=1/(1 +eX6

Major Assumption: Random Observations

Although we did not make any assumptions about the true preferences Y, we made a
very strong assumption about the set S of observed entries: we assumed entries as
selected uniformly at random. Although the uniformity requirement can be relaxed:

D(X;Y) = Ejlloss(X;Y)] Ds(X;Y) = Xjes loss(X;; Yy)/[S|

[4e (degree) (#polys) J(# variables)

(# variables) P, +e, P,+e, Pyte

nk variables mk variables
X.=> UV

4e 2. nm}k(mm)

For MMMF (max-margin/low-norm matrix factorizations), generalization error bounds obtained by viewing
MMMF as a “combined” classifier, a convex combination of unit-norm rank-1 matrices.

Rank-K matrices can be viewed as “combined”, or “voting” classifiers, each combining k rank-1 matrices.
Can a similar approach be taken for low-rank matrices?

* Scale-sensitive complexity (log covering numbers, Rademacher complexity) carries over to convex hull.

(scale-invariant complexity certainly not conserved for convex hull)
» VC-dimension scales gracefully with k for combinations of k classifiers
= generalization error bounds for linear combinations of signs of low-rank matrices
* Pseudo-dimension of a linear combinations of k functions from a low-pseudo-dimension class?

Explicit Examples

These counting arguments provide only existence proofs, not explicit constructions of sign configurations
with no low-rank realization (i.e. functions with high unbounded error communication complexity, or
concept classes that cannot be embedded as low-dimensional linear classification).

[Forester A linear bound on the unbounded error communication complexity CCC 2001]
rank(X) > n/ [sign(X)|, (spectral norm of sign(X))

— same observation distribution f(n,m,k) < [ =2k(n+m)log(8em/k) In particular, the 2'x2" Hadamard matrix cannot be realized with rank(X)<2"2
Multinomial quepgndent IndepenQent . . k(n+m) Counter Example: A family # of functions closed under scalar multiplication, with pseudo-dimension 3, such
Binomials Bernoulli Yy Pre (Vy D(OX;Y)<Dg(X;Y)+e ) > 1-0
yls X ’ S\7% that { f,+f, | f;,f, € ¥} has infinite pseudo-dimension: In this example, rank(X)>vVn. No known explicit example with rank(X)=Q(n).
Mean Aspect Model Y X~BINNX) | PY,=1) = X, This is not very satisfying: we are guaranteed good generalization only on items the T POHTIOTIE O degreea F=A “‘f? ( O)L'gAzlxnge R,AEN} (™ Consider a 1:1 mapping No:2™.
o il N [ i . . o . . AlX) = xe A ‘A’ denotes both a number, and
gara;]ete:lzatlon (PLSA) [Hoffman+99] user is likely to observe on its own—not on items we might recommend. 9u(X) = g™ the coresponding subset
< X <
— ] —=
EIYIXl=X; = NMF if £X;=1 ~NMF  [Lee+01]
Natural SDR Y;1X;~Bin(N,g(X;)) | Logistic Low Rank :
parameterization | [Globerson+02] Approximation ~ hinge
unconstrained X; [Schein+03] loss

http://www.cs.toronto.edu/~nati/genlowrank/



