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Abstract. Recently, Balcan and Blum [1] suggested a theory of learning
based on general similarity functions, instead of positive semi-definite
kernels. We study the gap between the learning guarantees based on
kernel-based learning, and those that can be obtained by using the ker-
nel as a similarity function, which was left open by Balcan and Blum.
We provide a significantly improved bound on how good a kernel func-
tion is when used as a similarity function, and extend the result also to
the more practically relevant hinge-loss rather then zero-one-error-rate.
Furthermore, we show that this bound is tight, and hence establish that
there is in-fact a real gap between the traditional kernel-based notion of
margin and the newer similarity-based notion.

1 Introduction

A common contemporary approach in machine learning is to encode prior knowl-
edge about objects using a kernel, specifying the inner products between im-
plicit high-dimensional representations of objects. Such inner products can be
viewed as measuring the similarity between objects. In-fact, many generic ker-
nels (e.g. Gaussian kernels), as well as very specific kernels (e.g. Fisher kernels
[2] and kernels for specific structures such as [3]), describe different notions of
similarity between objects, which do not correspond to any intuitive or easily
interpretable high-dimensional representation. However, not every mapping of
pairs of objects to “similarity values” is a valid kernel.

Recently, Balcan and Blum [1] proposed an alternative theory of learning,
which is based on a more general notion of similarity functions between objects,
which unlike valid kernel functions, need not be positive semi-definite. Balcan
and Blum provide a definition for a separation margin of a classification problem
under a general similarity measure and present learning methods with guarantees
that parallel the familiar margin-based guarantees for kernel methods.

It is interesting to study what this alternative theory yields for similarity
functions which are in-fact valid kernel functions. Does the similarity-based the-
ory subsume the kernel-based theory without much deterioration of guarantees?
Or can the kernel-based theory provide better results for functions which are
in-fact positive semi-definite. To answer these questions, one must understand
how a kernel-based margin translates to a similarity-based margin. Balcan and



Blum showed that if an input distribution can be separated, in the kernel sense,
with margin γ and error rate ε0 (i.e. ε0 of the inputs are allowed to violate
the margin), then viewing the kernel mapping as a similarity measure, for any
ε1 > 0, the target distribution can be separated with similarity-based margin1

γε1
96/γ2−32 log ε1

= Θ̃
(
ε1γ

3
)

and error rate 8ε0/γ + ε1. Although this does establish
that good kernels can also be used as similarity measures, in the Blum and Bal-
can sense, there is a significant deterioration in the margin yielding a significant
deterioration in the learning guarantee. The tightness of this relationship, or a
possible improved bound, was left unresolved. Also, this result of Balcan and
Blum refers only to a zero-one error-rate, which does not yield efficient learning
algorithms. Guarantees referring to the hinge-loss are desirable.

Here, we resolve this question by providing an improved bound, with a sim-
pler proof, and establishing its tightness. We show that:

– If an input distribution can be separated, in the kernel sense, with margin
γ and error rate ε0, then for any ε1 > 0, it can also be separated by the
kernel mapping viewed as a similarity measure, with similarity-based margin
1
2 (1− ε0)ε1γ2 and error rate ε0 + ε1.

– We also obtain a similar bound in terms of the average hinge loss, instead of
the margin violation error rate: If for a target distribution we can achieve, in
the kernel sense, average hinge loss of ε0 for margin γ, then for any ε1 > 0,
we can also achieve average hinge loss of ε0 + ε1 for margin 2ε1γ

2, when
the kernel mapping is used as a similarity measure. A result in terms of
the hinge-loss is perhaps more practical, since for computational reasons, we
usually minimize the hinge-loss rather then error rate.

– The above bounds are tight, up to a factor of sixteen: We show, for any
γ < 1

2 and ε1, a specific kernel function and input distribution that can be
separated with margin γ and no errors in the kernel sense, but which can
only be separated with margin at most 32ε1γ

2 in the similarity sense, if we
require hinge loss less than ε1 or error-rate less than 4ε1, when using the
same kernel mapping as a similarity measure.

In the next Section we formally present the framework in which we work and
remind the reader of the definitions and results of Balcan and Blum. We then
state our results (Section 3) and prove them (Sections 4 and 5).

2 Setup

We briefly review the setting used by Balcan and Blum [1], which we also use
here.

We consider input distributions (X, Y ) over X × {±1}, where X is some
abstract object space. As in Balcan and Blum [1], we consider only consistent
input distributions in which the label Y is a deterministic function of X. We can
think of such input distributions as a distributions over X and a deterministic
mapping y(x).
1 The Θ̃ (·) and Õ(·) notations hide logarithmic factors.



A kernel function is a mapping K : X × X → R for which there exists an
(implicit) feature mapping φ : X → H of objects into an (implicit) Hilbert space
H such that K(x1, x2) = 〈φ(x1), φ(x2)〉. See, e.g., Smola and Schölkopf [4] for
a discussion on conditions for a mapping being a kernel function. Throughout
this work, and without loss of generality, we will only consider kernels such that
K(x, x) ≤ 1 for all x ∈ X . Kernalized large-margin classification relies on the
existence of a large margin linear separator for the input distribution, in the
Hilbert space implied by K. This is captured by the following definition of when
a kernel function is good for an input distribution:

Definition 1. A kernel K is (ε, γ)-kernel-good for an input distribution if
there exists a classifier β ∈ H, ‖β‖ = 1, such that Pr( Y 〈β, φ(X)〉 < γ ) ≤ ε. We
say β has margin-γ-error-rate Pr( Y 〈β, φ(X)〉 < γ ).

Given a kernel that is (ε, γ)-kernel-good (for some unknown source distribution),
a predictor with error rate at most ε + εacc (on the source distribution) can be
learned (with high probability) from a sample of Õ

(
(ε + εacc)/(γ2ε2acc)

)
examples

(drawn independently from the source distribution) by minimizing the number
of margin γ violations on the sample [5]. However, minimizing the number of
margin violations on the sample is a difficult optimization problem. Instead, it
is common to minimize the so-called hinge loss relative to a margin:

Definition 2. A kernel K is (ε, γ)-kernel-good in hinge-loss for an input
distribution if there exists a classifier β ∈ H, ‖β‖ = 1, such that

E[[1− Y 〈β, φ(X)〉/γ]+] ≤ ε,

where [1− z]+ = max(1− z, 0) is the hinge loss.

Given a kernel that is (ε, γ)-kernel-good in hinge-loss, a predictor with error rate
at most ε+εacc can be efficiently learned (with high probability) from a sample of
O

(
1/(γ2ε2acc)

)
examples by minimizing the average hinge loss relative to margin

γ on the sample [6].
A similarity function is any symmetric mapping K : X × X → [−1,+1]. In

particular, a (properly normalized) kernel function is also a similarity function.
Instead of functionals in an implicit Hilbert space, similarity-based predictors
are given in terms of a weight function w : X → [0, 1]. The classification margin
of (x, y) is then defined as [1]:

EX′,Y ′ [w(X ′)Y ′K(x,X ′)|y = Y ′]−EX′,Y ′ [w(X ′)Y ′K(x,X ′)|y 6= Y ′]
= yEX′,Y ′ [w(X ′)Y ′K(x,X ′)/p(Y ′)] (1)

where p(Y ′) is the marginal probability of the label, i.e. the prior. We choose
here to stick with this definition used by Balcan and Blum. All our results apply
(up to a factor for 1/2) also to a weaker definition, dropping the factor 1/p(Y ′)
from definition of the classification margin (1).

We are now ready to define when a similarity function is good for an input
distribution:



Definition 3. A similarity function K is (ε, γ)-similarity-good for an input
distribution if there exists a mapping w : X → [0, 1] such that:

Pr
X,Y

( Y EX′,Y ′ [w(X ′)Y ′K(X, X ′)/p(Y ′)] < γ ) ≤ ε.

Balcan and Blum showed how, given a similarity function that is (ε, γ)-
similarity-good, a predictor with error at most ε + εacc can be learned (with
high probability) from a sample of Õ

(
(ε + εacc)/(γ2ε2acc)

)
examples. This is done

by first using Õ
(
1/γ2

)
positive and Õ

(
1/γ2

)
negative examples to construct an

explicit feature map φ which is (ε + εacc/2, γ/4)-kernel-good (that is, the inner
product in this space is a good kernel) [1, Theorem 2], and then searching for
a margin γ/4 linear separator in this space minimizing the number of margin
violations. As mentioned before, this last step (minimizing margin violations) is
a difficult optimization problem. We can instead consider the hinge-loss:

Definition 4. A similarity function K is (ε, γ)-similarity-good in hinge loss
for an input distribution if there exists a mapping w : X → [0, 1] such that:

EX,Y [[1− Y EX′,Y ′ [w(X ′)Y ′K(X, X ′)/p(Y ′)]/γ]+] ≤ ε.

Using the same approach as above, given a similarity function that is (ε, γ)-
similarity-good in hinge loss, a predictor with error at most ε + εacc can be
efficiently learned (with high probability) from a sample of O

(
1/(γ2ε2acc)

)
exam-

ples, where this time in the second stage the hinge loss, rather then the number
of margin violations, is minimized.

We see, then, that very similar learning guarantees can be obtained by using
mappings that are (ε, γ)-kernel-good or (ε, γ)-similarity-good. A natural question
is then, whether a kernel that is (ε, γ)-kernel-good is also (ε,Ωγ)-similarity-good.
A positive answer would indicate that learning guarantees based on similarity-
goodness subsume the more restricted results based on kernel-goodness (up to
constant factors). However, a negative result would indicate that for a mapping
that is a valid kernel (i.e. is positive semi-definite), the theory of kernel-based
learning provides stronger guarantees than those that can be established us-
ing Balcan and Blum’s learning methods and guarantees based on similarity
goodness (it is still possible that stronger similarity-based guarantees might be
possible using a different learning approach).

3 Summary of Results

Considering the question of whether the theory of learning with similarity func-
tion subsumes the theory of learning with kernels, Balcan and Blum showed
[1, Theorem 4] that a kernel that is (ε0, γ)-kernel-good for a (consistent) input
distribution, is also (8ε0/γ + ε1,

γε1
96/γ2−32 log ε1

)-similarity-good for the input dis-
tribution, for any ε1 > 0. This result applies only to margin violation goodness,
and not to the more practically useful hinge-loss notion of goodness. The result



still leaves a large gap even for the margin violation case, as the margin is de-
creased from γ to Θ̃

(
ε1γ

3
)
, and the error is increased by both an additive factor

of ε1 and a multiplicative factor of 8/γ.
First, we improve on this result, obtaining a better guarantee on similarity-

goodness based on kernel-goodness, that applies both for margin-violations and
for hinge-loss:

Theorem 1 (Main Result, Margin Violations). If K is (ε0, γ)-kernel-good
for some (consistent) input distribution, then it is also (ε0 + ε1,

1
2 (1− ε0)ε1γ2)-

similarity-good for the distribution, for any ε1 > 0.

Note that in any useful situation ε0 < 1
2 , and so the guaranteed margin is at

least 1
4ε1γ

2.

Theorem 2 (Main Result, Hinge Loss). If K is (ε0, γ)-kernel-good in hinge
loss for some (consistent) input distribution, then it is also (ε0 + ε1, 2ε1γ

2)-
similarity-good in hinge loss for the distribution, for any ε1 > 0.

These guarantees still yield a significant deterioration of the margin, when con-
sidering similarity-goodness as opposed to kernel-goodness. However, we estab-
lish that this is the best that can be hoped for by presenting examples of kernels
for which these guarantees are tight (up to a small multiplicative factor):

Theorem 3 (Tightness, Margin Violations). For any 0 < γ <
√

1/2 and any
0 < ε1 < 1/2, there exists an input distribution and a kernel function K, which
is (0, γ)-kernel-good for the input distribution, but which is only (ε1, 8ε1γ

2)-
similarity-good. That is, it is not (ε1, γ′)-similarity-good for any γ′ > 8ε1γ

2.

Theorem 4 (Tightness, Hinge Loss). For any 0 < γ <
√

1/2 and any 0 <
ε1 < 1/2, there exists an input distribution and a kernel function K, which
is (0, γ)-kernel-good in hinge loss for the input distribution, but which is only
(ε1, 32ε1γ

2)-similarity-good in hinge loss.

4 An Improved Guarantee

We are now ready to prove Theorems 1 and 2. We will consider a kernel function
that is (ε0, γ)-kernel-good and show that it is also good as a similarity function.
We begin, in Section 4.1, with goodness in hinge-loss, and prove Theorem 2,
which can be viewed as a more general result. Then, in Section 4.2, we prove
Theorem 1 in terms of the margin violation error rate, by using the hinge-loss
as a bound on the error rate.

In either case, our proof is based on the representation of the optimal SVM
solution in terms of the dual optimal solution.

4.1 Proof of Theorem 2: Goodness in hinge-loss

We consider consistent input distributions, in which Y is a deterministic function
of X. For simplicity of presentation, we first consider finite discrete distributions,
where:

Pr( (X, Y ) = (xi, yi) ) = pi (2)



for i = 1 . . . n, with
∑n

i=1 pi = 1 and xi 6= xj for i 6= j.
Let K be any kernel function that is (ε0, γ)-kernel good in hinge loss for

our input distribution. Let φ be the implied feature mapping and denote φi =
φ(xi). Consider the following weighted-SVM quadratic optimization problem
with regularization parameter C:

minimize
1
2
‖β‖2 + C

n∑
i=1

pi[1− yi〈β, φi〉]+ (3)

The dual of this problem, with dual variables αi, is:

maximize
∑

i

αi −
1
2

∑
ij

yiyjαiαjK(xi, xj)

subject to 0 ≤ αi ≤ Cpi

(4)

There is no duality gap, and furthermore the primal optimum β∗ can be ex-
pressed in terms of the dual optimum α∗: β∗ =

∑
i α∗

i yixi.
Since K is (ε0, γ)-kernel-good in hinge-loss, there exists a predictor ‖β0‖ = 1

with average-hinge loss ε0 relative to margin γ. The primal optimum β∗ of (3),
being the optimum solution, then satisfies:

1
2
‖β∗‖2 + C

∑
i

pi[1− yi〈β∗, φi〉]+ ≤

1
2

∥∥∥∥ 1
γ

β0

∥∥∥∥2

+ C
∑

i

pi[1− yi

〈
1
γ

β0, φi

〉
]+

=
1

2γ2
+ CE

[
[1− Y

〈
1
γ

β0, φ(X)
〉

]+

]
=

1
2γ2

+ Cε0 (5)

Since both terms on the left hand side are non-negative, each of them is bounded
by the right hand side, and in particular:

C
∑

i

pi[1− yi〈β∗, φi〉]+ ≤
1

2γ2
+ Cε0 (6)

Dividing by C we get a bound on the average hinge-loss of the predictor β∗,
relative to a margin of one:

E[[1− Y 〈β∗, φ(X)〉]+] ≤ 1
2Cγ2

+ ε0 (7)

We now use the fact that β∗ can be written as β∗ =
∑

i α∗
i yiφi with 0 ≤

α∗
i ≤ Cpi. Using the weights

wi = w(xi) = α∗
i p(yi)/(Cpi) ≤ p(yi) ≤ 1 (8)



we have for every x, y:

yEX′,Y ′ [w(X ′)Y ′K(x,X ′)/p(Y ′)] = y
∑

i

piw(xi)yiK(x, xi)/p(yi) (9)

= y
∑

i

piα
∗
i p(yi)yiK(x, xi)/(Cpip(yi))

= y
∑

i

α∗
i yi〈φi, φ(x)〉/C = y〈β∗, φ(x)〉/C

Multiplying by C and using (7):

EX,Y [ [ 1− CY EX′,Y ′ [w(X ′)Y ′K(X, X ′)/p(Y ′)] ]+ ]

= EX,Y [ [ 1− Y 〈β∗, φ(X)〉 ]+ ] ≤ 1
2Cγ2

+ ε0 (10)

This holds for any C, and describes the average hinge-loss relative to margin
1/C. To get an average hinge-loss of ε0 + ε1, we set C = 1/(2ε1γ

2) and get:

EX,Y

[
[ 1− Y EX′,Y ′ [w(X ′)Y ′K(X, X ′)/p(Y ′)]/(2ε1γ

2) ]+
]
≤ ε0 + ε1 (11)

This establishes that K is (ε0 + ε1, 2ε1γ
2)-similarity-good in hinge-loss.

Non-discrete input distribution The same arguments apply also in the gen-
eral (not necessarily discrete) case, except that this time, instead of a fairly
standard (weighted) SVM problem, we must deal with a variational optimiza-
tion problem, where the optimization variable is a random variable (a function
from the sample space to the reals). We will present the dualization in detail.

We consider the primal objective

minimize
1
2
‖β‖2 + CEY,φ[[1− Y 〈β, φ〉]+] (12)

where the expectation is w.r.t. the input distribution, with φ = φ(X) here and
throughout the rest of this section. We will rewrite this objective using explicit
slack, in the form of a random variable ξ, which will be a variational optimization
variable:

minimize
1
2
‖β‖2 + CE[ξ]

subject to Pr( 1− y〈β, φ〉 − ξ ≤ 0 ) = 1
Pr( ξ ≥ 0 ) = 1

(13)

In the rest of this section all our constraints will implicitly be required to hold
with probability one. We will now introduce the dual variational optimization
variable α, also a random variable over the same sample space, and write the
problem as a saddle problem:

minβ,ξ maxα
1
2
‖β‖2 + CE[ξ] + E[α(1− Y 〈β, φ〉 − ξ)]

subject to ξ ≥ 0 α ≥ 0
(14)



Note that this choice of Lagrangian is a bit different than the more standard
Lagrangian leading to (4). Convexity and the existence of a feasible point in the
dual interior allows us to change the order of maximization and minimization
without changing the value of the problem [7]. Rearranging terms we obtaining
the equivalent problem:

maxα minβ,ξ
1
2
‖β‖2 − 〈E[αY φ], β〉+ E[ξ(C − α)] + E[α]

subject to ξ ≥ 0, α ≥ 0
(15)

Similarly to the finite case, we see that the minimum of the minimization problem
is obtained when β = E[αY φ] and that it is finite when α ≤ C almost surely,
yielding the dual:

maximize E[α]− 1
2
E[αY α′Y K(X, X ′)]

subject to 0 ≤ α ≤ C
(16)

where (X, Y, α) and (X ′, Y ′, α′) are two independent draws from the same dis-
tribution. The primal optimum can be expressed as β∗ = E[α∗Y φ], where α∗ is
the dual optimum. We can now apply the same arguments as in (5),(6) to get
(7). Using the weight mapping

w(x) = E[α∗|x] p(y(x)) / C ≤ 1 (17)

we have for every x, y:

yEX′,Y ′ [w(X ′)Y ′K(x,X ′)/p(Y ′)] = y〈EX′,Y ′,α′ [α′Y ′X ′], x〉/C

= y〈β∗, φ(x)〉/C. (18)

From here we can already get (10) and setting C = 1/(2ε1γ
2) we get (11), which

establishes Theorem 2 for any input distribution.

4.2 Proof of Theorem 1: Margin-violation goodness

We will now turn to guarantees on similarity-goodness with respect to the mar-
gin violation error-rate. We base these on the results for goodness in hinge loss,
using the hinge loss as a bound on the margin violation error-rate. In particular,
a violation of margin γ/2 implies a hinge-loss at margin γ of at least 1

2 . There-
fore, twice the average hinge-loss at margin γ is an upper bound on the margin
violation error rate at margin γ/2.

The kernel-separable case, i.e. ε0 = 0, is simpler, and we consider it first.
Having no margin violations implies zero hinge loss. And so if a kernel K is (0, γ)-
kernel-good, it is also (0, γ)-kernel-good in hinge loss, and by Theorem 2 it is
(ε1/2, 2(ε1/2)γ2)-similarity-good in hinge loss. Now, for any ε1 > 0, by bounding
the margin 1

2ε1γ
2 error-rate by the ε1γ

2 average hinge loss, K is (ε1, 1
2ε1γ

2)-
similarity-good, establishing Theorem 1 for the case ε0 = 0.



We now return to the non-separable case, and consider a kernel K that is
(ε0, γ)-kernel-good, with some non-zero error-rate ε0. Since we cannot bound the
hinge loss in terms of the margin-violations, we will instead consider a modified
input distribution where the margin-violations are removed.

Since we will be modifying the input distribution, and so potentially also the
label marginals, it will be simpler for us to use a definition of similarity-based
margin that avoids the factor 1/p(Y ′). Therefore, in this Section, we will refer
to similarity-goodness where the classification margin of (x, y) is given by:

yEX′,Y ′ [w(X ′)Y ′K(x,X ′)]. (19)

It is easy to verify, by dropping the factor p(yi) in (8) or (17), that Theorem 2,
and hence also Theorem 1 for the case ε0 = 0, hold also under this definition.
Furthermore, if a kernel is (ε, γ)-good under this definition, then multiplying the
label marginals into the weights establishes that it is also (ε, γ)-good under the
definitions in Section 2.

Let β∗ be the linear classifier achieving ε0 margin violation error-rate with
respect to margin γ, i.e. such that Pr( Y 〈β∗, X〉 ≥ γ ) > 1− ε0. We will consider
an input distribution which is conditioned on Y 〈β∗, X〉 ≥ γ. We denote this
event as ok(X) (recall that Y is a deterministic function of X). The kernel K
is obviously (0, γ)-kernel-good, and so by the arguments above also (ε1, 1

2ε1γ
2)-

similarity-good, on the conditional distribution. Let w be the weight mapping
achieving

Pr
X,Y

( Y EX′,Y ′ [w(X ′)Y ′K(X, X ′)|ok(X ′)] < γ1|ok(X) ) ≤ ε1, (20)

where γ1 = 1
2ε1γ

2, and set w(x) = 0 when ok(X) does not hold. We have:

Pr
X,Y

( Y EX′,Y ′ [w(X ′)Y ′K(X, X ′)] < (1− ε0)γ1 )

≤ Pr( not ok(X) )
+ Pr(ok(X) ) Pr

X,Y
( Y EX′,Y ′ [w(X ′)Y ′K(X, X ′)] < (1− ε0)γ1 | ok(X) )

= ε0
+ (1−ε0) Pr

X,Y
( Y (1−ε0)EX′,Y ′ [w(X ′)Y ′K(X, X ′)|ok(X)] < (1−ε0)γ1|ok(X) )

= ε0 + (1− ε0) Pr
X,Y

( Y EX′,Y ′ [w(X ′)Y ′K(X, X ′)|ok(X)] < γ1|ok(X) )

≤ ε0 + (1− ε0)ε1 ≤ ε0 + ε1 (21)

establishing that K is (ε0+ε1, γ1)-similarity-good for the original (unconditioned)
distribution, and yielding Theorem 1



5 Tightness

Consider a distribution on four labeled points in R3, which we denote x1, x2, x3, x4:

p(X = x1 = (γ, γ,
√

1− 2γ2), Y = 1) =
1
2
− ε

p(X = x2 = (γ,−γ,
√

1− 2γ2), Y = 1) = ε

p(X = x3 = (−γ, γ,
√

1− 2γ2), Y = −1) = ε

p(X = x4 = (−γ,−γ,
√

1− 2γ2), Y = −1) =
1
2
− ε

for some (small) 0 < γ <
√

1
2 and (small) probability 0 < ε < 1

2 . The four
points are all on the unit sphere, and are clearly separated by β = (1, 0, 0) with
a margin of γ. The standard inner-product kernel is therefore (0, γ)-kernel-good
on this distribution.

5.1 Margin-violation error-rate

We will show that when this kernel (the standard inner product kernel in R3) is
used as a similarity function, the best margin that can be obtained on all four
points, i.e. on at least 1− ε probability mass of examples, is 8εγ2.

Consider the classification margin on point x2 with weights w (denote wi =
w(xi), and note that p(yi) = 1

2 for all i):

E[w(X)Y K(x2, X)/p(Y )]

= 2(
1
2
− ε)w1(γ2 − γ2 + (1− 2γ2)) + 2εw2(2γ2 + (1− 2γ2))

− 2εw3(−2γ2 + (1− 2γ2))− 2(
1
2
− ε)w4(−γ2 + γ2 + (1− 2γ2))

= 2
(

(
1
2
− ε)(w1 − w4) + ε(w2 − w3)

)
(1− 2γ2) + 4ε(w2 + w3)γ2 (22)

If the first term is positive, we can consider the symmetric calculation

−E[w(X)Y K(x3, X)/p(Y )]

= −2
(

(
1
2
− ε)(w1 − w4) + ε(w2 − w3)

)
(1− 2γ2) + 4ε(w2 + w3)γ2 (23)

in which the first term is negated. One of the above margins must therefore be
at most

4ε(w2 + w3)γ2 ≤ 8εγ2 (24)

This establishes Theorem 3.



5.2 Hinge loss

In the above example, suppose we would like to get an average hinge-loss relative
to margin γ1 of at most ε1:

EX,Y [ [ 1− Y EX′,Y ′ [w(X ′)Y ′K(X, X ′)/p(Y ′)]/γ1 ]+ ] ≤ ε1 (25)

Following the arguments above, equation (24) can be used to bound the hinge-
loss on at least one of the points x2 or x3, which, multiplied by the probability
ε of the point, is a bound on the average hinge loss:

EX,Y [ [ 1− Y EX′,Y ′ [w(X ′)Y ′K(X, X ′)/p(Y ′)]/γ1 ]+ ] ≥ ε(1− 8εγ2/γ1) (26)

and so to get an an average hinge-loss of at most ε1 we must have:

γ1 ≤
8εγ2

1− ε1/ε
(27)

For any target hinge-loss ε1, consider a distribution with ε = 2ε1, in which case
we get that the maximum margin attaining average hinge-loss ε1 is γ1 = 32ε1γ

2,
even though we can get a hinge loss of zero at margin γ using a kernel. This
establishes Theorem 4.

6 Discussion

In this paper, we studied how tightly the similarity-based theory of learning,
proposed by Balcan and Blum, captures the well-studied theory of kernel-based
learning. In other words, how well does a kernel-based learning guarantee trans-
late to a similarity-based learning guarantee. We significantly improved on the
bounds presented by Balcan and Blum, providing stronger, simpler, bounds that
apply also in the more practically relevant case of hinge-loss minimization. How-
ever, these bounds still leave a gap between the kernel-based learning guarantees
and the learning guarantee obtained when using the kernel as a similarity mea-
sure. We show that the bounds are tight, and so there is a real gap between the
similarity-based theory and the kernel-based theory.

We hope that the results presented here can help us better understand
similarity-based learning, and possibly suggest revisions to the theory presented
by Balcan and Blum.

The quadratic increase in the margin can perhaps be avoided by using the dis-
tances, or perhaps the square root of the kernel, rather then the inner products,
as a similarity function. Consider the simplest case of two points, with opposite
labels and probability half, at (γ,

√
1− γ2) and (−γ,

√
1− γ2). The geometric

margin is γ. The inner product (kernel) is only (0, γ2)-similarity-good, but the
distance function, or just the square root of the inner product, is (0, γ)-similarity-
good. It would be interesting to understand what guarantees can be provided
on these measures as similarity functions.



However, even if distance functions are used, the dependence on ε in the
margin cannot be avoided. Consider the input distribution:

p(X = x1 = (γ,
√

1− 2γ2), Y = 1) =
1
2
− ε

p(X = x2 = (γ,−
√

1− 2γ2), Y = 1) = ε

p(X = x3 = (−γ,
√

1− 2γ2), Y = −1) =
1
2
− ε

p(X = x4 = (−γ,−
√

1− 2γ2), Y = −1) = ε

It can be shown that the best margin that can be achieved on all four points by
using the distance as a similarity is 2(εγ + 2γ2).

All the results in this paper (and also the results of Balcan and Blum [1])
refer to consistent input distributions. Noisy input distributions, where some x
might take either label with positive probability, are problematic when we use the
definitions of Section 2: The weight w(x) can depend only on x, but not on the
label y, and so a positive weight yields a contribution from both labels. A point x
with Pr( 1|x ) and Pr(−1|x ) both high, cannot contribute much to the similarity-
based classification margin (in the extreme case, if Pr( 1|x ) = Pr(−1|x ) = 0.5,
its contribution to the similarity-based classification margin will always be zero).

It is possible to use the results presented here also to obtain (rather messy)
results for the noisy case by first removing examples with highly ambiguous
labels, then applying Theorems 1 or 2, and finally correcting the weights to
account for the negative contribution of the “wrong” label. The amount of this
“correction”, which will reduce the margin, can be bounded by the amount
of allowed ambiguity, and the overall number of removed, highly ambiguous
examples, can be bounded in terms of the error-rate. If the error-rate is bounded
away from 1

2 , such an approach introduces only a multiplicative factor to both
the resulting margin, and the associated margin-violations error-rate (note that
in Theorem 1, for the consistent case, we only have an additive increase in the
error-rate). However, since the hinge-loss on those examples that we removed
might be extremely high, the deterioration of the hinge-loss guarantee is much
worse. For this reason, a different approach might be appropriate.

We suggest changing the definition of the similarity-based classification mar-
gin, removing the effect of the label Y ′ and instead allowing both positive and
negative weights in the range [−1,+1], with the following as an alternative to
the classification margin given in equation (1):

yEX′ [w(X ′)K(x,X ′)]. (28)

When the labels are balanced, i.e. p(Y ) is bounded away from 0, this yields
strictly more flexible definitions, up to margin deterioration of (minY p(Y )), for
similarity goodness: the effect of the label can be incorporated into w(x) by
setting w(x) ← w(x)EY [Y/p(Y )|x](minY p(Y )). Nevertheless, all the learning
results and methods of Balcan and Blum hold also using this revised definition
of classification margin.



Under the revised definitions using (28), there is no problem handling noisy
input distributions: Consider changing the weight mapping of equation (17) to

w(x) = E[Y α∗|x] / C. (29)

We now no longer have to require that the label y is a deterministic function of
x, and obtain the result of Theorems 1 and 2, with the same constants, for both
consistent and noisy distributions, where the classification margin in equation
(28) replaces that of equation (1) in Definitions 3 and 4. Note that the results do
not depend on the label imbalance, and hold also when p(y) is arbitrarily close
to zero.
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