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Abstract

We investigate under what conditions clus-
tering by learning a mixture of spherical
Gaussians is (a) computationally tractable;
and (b) statistically possible. We show that
using principal component projection greatly
aids in recovering the clustering using EM;
present empirical evidence that even using
such a projection, there is still a large gap
between the number of samples needed to re-
cover the clustering using EM, and the num-
ber of samples needed without computational
restrictions; and characterize the regime in
which such a gap exists.

1. Introduction

Consider clustering a collection of points by fitting a
mixture-of-Gaussians model to the data. Viewed as
a problem of optimizing an objective function, such
as the likelihood, this problem seems to be hard in
the traditional worst-case sense. On the other hand,
when the data is inherently clustered, and enough data
is available, local search methods typically succeed in
optimizing the objective and recovering the clustering.
This leads to the conventional wisdom that “clustering
is not hard—it is either easy, or not interesting”. How
true is this statement? Is there a regime in which
clustering is hard even though it is interesting? When
is clustering hard?

Lately, a series of theoretical results established that
if data is generated from an adequately separated
mixture of Gaussians, and enough samples are avail-
able, then clustering is in fact easy—polynomial time
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algorithms exist that can recover (almost exactly)
the correct clustering (see Section 2.1). These re-
sults provide an upper bound on the computational
limit for clustering—the minimum number of samples
and minimum separation between clusters required to
tractably recover the clustering.

At the other extreme, when too few samples are avail-
able, the correct model cannot be recovered, simply
because there is not enough information in the data.
Ignoring computational issues, one can ask: How much
information is necessary in order to recover the cluster-
ing by any procedure? Focusing on the likelihood, how
many samples are necessary for the maximum likeli-
hood model to resemble the correct clustering with
high probability, i.e. what is the informational limit
for clustering?

We would like to study the relationship between these
computational and informational requirements. For
example, is learning a Gaussian mixture always com-
putationally easy when it is statistically possible? Or
is there a gap between the computational limit and the
informational limit, i.e. a regime in which clustering is
hard, even though the optimal (maximum likelihood)
clustering is statistically meaningful? If so, can one
quantify the excess information needed for computa-
tional tractability?

In this paper, we investigate these questions through
massive simulations on randomly generated data sets.
Motivated by the theoretical results mentioned above,
we would like to understand (1) whether these results
can suggest useful practical methods or modifications
to the popular EM algorithm; (2) what is the actual
computational limit, considering the results only pro-
vide upper bounds; (3) whether there is still a gap
between this computational limit and the statistical
limit. More broadly, we would like to understand the
behavior of the likelihood function, of maximum likeli-
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hood estimation, and of the computational difficulties
of searching for it.

We focus on the simplest possible setting—a uniform
mixture of equa-variance spherical Gaussians arranged
symmetrically on the vertexes of a simplex. We show
that projecting the data onto the leading principal
components, as suggested by the theoretical results,
can greatly aid in recovering the clustering, also when
using EM. We then present evidence that there is still
a regime in which EM, even using such a projection,
fails to recover the clustering, while the maximum like-
lihood model succeeds. That is, a regime in which clus-
tering is “interesting” but “hard”. Based on our em-
pirical simulations, we also derive a quantitative char-
acterization of this regime.

2. Background

Most formulations of clustering are either known to
be,or suspected to be hard in the worst-case. That
is, the runtime of algorithms that, for any data set,
always find clusters minimizing some objective, must
grow drastically with the amount of available data.
However, our interest here is not with worst-case be-
havior on any data set, but only in recovering the clus-
tering from data that does actually have some cluster
structure—in our case, data that is generated from a
uniform mixture of k equa-variance spherical Gaus-
sians, where each data point Xt is i.i.d. with density:

f(x) ∝ 1
k

∑k
i=1 exp(−‖x−µi‖2

2σ2 ) (1)

More data is a blessing that can aid in making compu-
tation easier, not a curse as in traditional worst-case
analysis. We survey several results establishing that
the problem is, in fact, easy when data is abundant.
Although most of the results apply to more general
settings, we describe them in the context to data gen-
erated as in equation (1), where (without loss of gen-
erality) σ2 = 1, and the minimum separation between
centers is s, i.e. ‖µi − µj‖ ≥ s for any i 6= j.

2.1. Proper Learning

When data is generated from a mixture of well-
separated Gaussians, the modes of the mixture are
close to its centers. Unfortunately, in high dimen-
sions, a very large sample is required in order to iden-
tify the modes. Dasgupta (1999) suggested project-
ing the sample to a random subspace of dimension
Θ(log k), and showed that if the separation between
Gaussians is s > 1

2d1/2, then the modes of the distri-
bution in this subspace still correspond to the centers,
and can be identified, with probability 1−δ, from a
sample of size kΩ(log2 1/δ). Arora and Kannan (2001)

later improved the minimum required separation to
s = Ω(d1/4 log(d)), using either random projections, or
a method based on the fact that with this separation,
distances between points in the same cluster are lower
then distances between points in different clusters.

When the separation is less than d1/4, distances be-
tween points are no longer enough in order to sepa-
rate between the clusters. Vempala and Wang (2004)
show that projecting the data to its first k princi-
pal components (as in PCA), instead of using a ran-
dom projection, allows identification of much less sep-
arated Gaussians. They show that with a separa-
tion of s = Ω(k1/4 log1/4 dk) and a sample of size of
Ω(d3k2 log dks), a k-dimensional principal component
(PC) projection of the data preserves enough separa-
tion between centers of spherical Gaussians such that
after such a projection, the Gaussians can be iden-
tified by methods similar to those discussed above.
These techniques have recently been extended also to
non-spherical Gaussians, but the separation required
is somewhat higher (Kannan et al., 2005; Achlioptas
& McSherry, 2005).

The main thrust of the above results is providing con-
ditions under which the Gaussians are well-separated
and easily identifiable (perhaps after a projection),
such that even the simplest algorithms can recover
them. In general, the results depend on all (or most)
distances (after the projection) between points in the
same cluster being smaller then distances between
points in different clusters. In such extreme cases,
local search methods such as EM can also easily re-
cover the clustering. In fact, Dasgupta and Schulman
(2000) showed that with a separation of Ω(d1/4) and
a number of samples polynomial in k, two rounds of
EM are enough in order to get fairly close to the cor-
rect centers. This is provided that instead of searching
over models with k centers, the first round of EM uses
Θ(k log k) centers, and those are then pruned down to
k far-away, but well used, centers.

The precise distance-based or mode-based methods
suggested by the above results should therefore not
be regarded as practical alternatives to local search
heuristics such as EM, but rather as theoretically an-
alyzable methods. These methods also often involve
many parameters that need to be carefully selected,
and the theory does not provide for an optimal choice
of the parameters for finite sample sizes. In any case,
Dasgupta and Schulman’s result suggests that, per-
haps after a PC projection, we might as well use EM,
first allowing for O(k log k) centers and then pruning
to k.
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Reference Separation Sample Complexity

Kumar et al. (2004) Ω(d
1
2 k

1
2 ) (best possible using the approx. guarantee)

Dasgupta (1999) s > 1
2
d

1
2 d · poly(k) Random projection, then mode finding

Dasgupta and Schulman (2000) s > Ω
(
d

1
4

)
d · poly(k) 2 rounds of EM with pruning

Arora and Kannan (2001) Ω
(
d

1
4 log d

)
large Inter-cluster distances � intra-cluster dist

Vempala and Wang (2004) Ω
(
k

1
4 log dk

)
Ω

(
d3k2 log(dk/s)

)
After PCA: inter-clust � intra-clust dist

Kannan et al. (2005) Ω
(
k

5
2 log kd

)
Ω

(
k2d log5(d)

)
Iterative PCA and distance-based

Achlioptas and McSherry (2005) s > 4k + o(k) Ω(k2d) Iterative PCA and distance-based

Table 1. Proper learning results applied to a uniform mixtures of equa-variance spherical Gaussians

2.2. Approximation Algorithms

A separate line of research concerns polynomial time
guaranteed approximation algorithms for various clus-
tering objectives. We consider here the current state-
of-the-art approximation algorithm for the k-means
objective and study whether such an approximation
can be useful for clustering data generated from a high-
dimensional Gaussian mixture.

The k-means objective for a model consisting of k cen-
ters µ1, . . . , µk is given by:

∑n
t=1 mini=1..k ‖xt − µi‖2 (2)

This is the negative log-likelihood of the mixture (1),
as σ → 0. Kumar et al. (2004) present an algorithm
that, for any input data set of n points in Rd and target
precision ε, is guaranteed to find a model for which the
k-means objective is within a multiplicative factor of
(1 + ε) of optimal, in time O(2(k/ε)const

dn).

To understand if this approximation algorithm can be
used to recover a well-separated mixture of Gaussians
in high dimensions, consider a uniform mixture of two
unit-variance Gaussians in Rd with centers at µ1 =
(−s/2, 0, 0, 0, . . .) and µ2 = (s/2, 0, 0, 0, . . .). As more
points are generated from this mixture, the optimal
2-means solution for the sampled points approaches
the true centers µ1 and µ2, and the k-means objective
value of this solution is tightly concentrated around
E

[∑n
i=t mini=1 ‖Xt − µi‖2

]
≈ dn. Consider the alter-

native trivial solution µ̃1 = µ̃2 = 0 (i.e. both centers at
the origin). The k-means objective value of this solu-
tion is tightly concentrated around E

[∑n
t=1 ‖Xt‖2

]
=

((s/2)2 + d)n. Therefore, for ε > s2/(4d), the trivial
solution is a valid (1+ε) approximation to the optimal
solution. To preclude this possibility, we must insist
on ε < s2/(4d), resulting in a run-time guarantee of
O

(
2(kd/s2)const

dn
)
. This suggests that the approxima-

tion algorithm might be useful for recovering a mixture
in polynomial time only if s = Ω(

√
kd).

3. Fitting a Gaussian Mixture with EM

We generated data from uniform mixtures of unit-
variance spherical Gaussians (equation (1), with σ2 =
1), centered at the vertexes of a simplex. That is, the
distance between every two centers is exactly s. We
then attempted to estimate the centers using the EM
method. We fix the covariance matrices to the true
(identity) covariance matrices and the mixing propor-
tions to the true (uniform) proportions, and estimate
only the centers. The EM updates are then given by

E step: p̂it ∝ exp
(
− 1

2 ‖µ̂i − xt‖2
)

M step: µ̂i =
∑

t

p̂itxt/
∑

t

p̂it

(3)

where p̂it is the estimated posterior probability of
point t being assigned to center i. We initialize the
centers µ̂ to a random subset of points from the sam-
ple, and iterate (3) to convergence. We repeat this
procedure several times, each time initializing the cen-
ters to a different random subset of points, and select
the model with the highest (training) likelihood.

3.1. Dimensionality Reduction

Following the ideas put forth by Vempala and Wang
(2004), we also experimented with reducing the di-
mensionality of the data. We projected the data to its
first k−1 PCs and ran EM until convergence on the
resulting k−1 dimensional data. We then used the esti-
mated posteriors p̂it to estimate centers in the original
d-dimensional space, and continued running EM in the
original d-dimensional space to convergence.

In order to understand the validity of this approach,
consider the covariance matrix of a mixture of spheri-
cal Gaussians given by (1). When generating a point
X, consider the choice of center as a random vector
M , taking one of k values µ1, . . . , µk, and such that
X|M ∼ N (M,σ2I). We then have E[X] = E[M ] and
Cov[X] = Cov[M ]+σ2I, with Cov[M ] of rank at most
k−1. The k−1 principal directions of variation of X
about its mean therefore span the centers. In the large
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sample limit, the empirical (k−1)-dimensional PC sub-
space of the data converges to the true k−1 PC sub-
space of the distribution. With an infinite number of
samples, we therefore reduce the problem to clustering
in a k−1 dimensional space, without reducing the sep-
aration between the centers. With a finite number of
samples, we only approximate this subspace spanned
by the centers, and do lose some separation. The less
samples we have, the more separation we lose.

3.2. Pruning

We also experimented with running EM using more
than k centers, as suggested by Dasgupta and Schul-
man (2000). We ran EM until convergence with
k log(k) centers, estimating the mixing proportions
rather than fixing them as we did previously. We then
pruned down to only k centers using the method sug-
gested by Dasgupta and Schulman (2000), and contin-
ued EM again until convergence, this time fixing the
mixing proportions to the true, uniform, proportions.

The rational for such an approach is that if one of the
k components is not represented among the k random
initial centers, we might completely miss this compo-
nent and use multiple centers to explain a single other
component. Initializing to k log(k) random centers en-
sures us that, with high probability, all components
will be represented.

Combined with dimensionality reduction, our proce-
dure first projects the data onto its first k−1 PCs and
then runs EM with k log(k) centers in the PC sub-
space. We then prune down to k centers and continue
running EM until convergence with k centers in the
PC subspace. Finally, we return back to the original
high dimensional space and run EM until convergence.

3.3. Empirical Comparison

We experimented with a wide range of dimensionalities
d, number of clusters k, separations s and sample sizes
n. Figure 1 demonstrates the quality of the solution
found by the different EM variants for a specific setting
of k,d and s and is typical for most high-dimensional
scenarios. When data is not highly abundant, the
PC projection indeed helps in finding a higher like-
lihood solution, reducing by more than a factor of two
the sample size required for achieving a low clustering
error. In this and all other experiments conducted,
the PC projection never hurts, and often helps sig-
nificantly at finding higher likelihood and lower error
models.

The effect of pruning was less dramatic, especially in
conjunction with a PC projection. Combined with a
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Figure 1. Comparison of EM variants for k = 16, d =
1024, s = 6. Top panel: clustering error (fraction of
points whose closest estimated center does not correspond
to their closest true center, under the optimal corre-
spondence between true and estimated centers). Bottom
panel: difference of log-likelihood between each variant
and PCA+Prune. ‘Vanilla’ is regular EM; ‘Prune’ starts
with k ln k centers; ‘PCA’ uses a PC projection. For each
method, the highest likelihood of ten repetitions was used.

PC projection, pruning did increase the likelihood and
reduce the clustering error in significantly more exper-
iments than experiments in which it had a reverse ef-
fect. However, when the true centers were on a simplex
with a inter-center separation of s < 10, the differences
in likelihood and clustering error between using only a
PC projection and using a PC projection and pruning
were always extremely small. It appears that at least
under such conditions, the true centers can be learned
even if we do not initially choose one random center
per component1.

4. Behavior of Learned & ML Models

An investigation of the clustering error, as in the top
panel of Figure 1, can reveal how well EM succeeds
in recovering the true clustering. In those cases in
which the clustering is not fully recovered, we would
like to understand if this is because EM failed to find
the global ML model, or because there is not enough
information in the sample (and thus even the global

1The effects of pruning were more noticeable for very
large separations, e.g. s = 15, 20. We briefly describe the
results for these experiments: In such separations when ini-
tializing to only k random centers, components were often
left out and never discovered, while initializing to k log k
centers alleviated the problem. The effect was also strong
when the centers were arranged along a line, rather then
on a simplex, in which case even with a separation of 2 be-
tween consecutive centers, and eight centers in all, pruning
was required in order to find all centers.



Computational and Informational Limits in Clustering

ML estimate is far from the true model).

One indication for whether EM fails or succeeds in
recovering the ML model is the number of EM repeti-
tions with random initializations that lead to the same
highest-likelihood model. If using EM starting from
randomly selected centers can find the maximum like-
lihood solution with reasonable probability, we would
expect multiple repetitions of EM to lead to the same
(maximum likelihood) model. Therefore, if each of
many repetitions of EM leads to a different solution,
we can conclude that EM’s success probability is low.
However, even if using such a test enables us to con-
clude that we are not finding the ML solution, we can
not know if that ML solution is actually closer to the
true model.

4.1. The Local Maximum Likelihood Estimate

In order to attempt to answer this last question, and
also better decide if EM is finding the maximum like-
lihood solution, we can “cheat” and run EM until con-
vergence, starting from centers initialized to the true
centers used to generate the data (this would of course
be impossible when confronting real data). The idea
is that if the ML solution is in fact close to the true
model, then a local search using EM will be able to
get to it starting from the true model. This method is
by no means guaranteed to find the true ML solution,
and in fact often finds solutions with lower likelihood
then those found with EM from a random initializa-
tion. What we find is the “peak” (local maximum) of
the likelihood nearest the true model.

As we see in the top panel of Figure 2, the behavior
of this “peak” (plotted as “InitTrue”) is not mono-
tonic. For very large samples the peak is very close to
the true model, leading to very low clustering error.
As the sample size decreases, the “InitTrue” solution
first becomes worse, but then when very few samples
are available, its clustering error actually improves. A
possible explanation for this is that as the sample size
decreases, two things happen to the likelihood func-
tion. One effect is that as the empirical distribution
drifts away from the true generating distribution, so
does the shape of the likelihood surface change, and
the peak which, at the infinite sample limit is on the
true model, gradually drifts away from it. The other
effect is that as the sample size decreases, the likeli-
hood surface becomes more jagged and new peaks (lo-
cal maxima) are introduced, including peaks near the
true model. Starting a local search at the true model
can end up in a newly formed peak very close to it.

In order to try to verify the above explanation and
track the peak as it drifts away from the true model,
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Figure 2. Behavior of different reconstructions for k = 16,
d = 512, s = 4. Top panel: clustering error (see Figure 1).
Bottom panel: difference in log-likelihood between ‘Fair’
and ‘LML?’. ‘Fair’ is the highest likelihood of 10 repeti-
tions of EM, starting with k ln k centers, and using a PC
projection. In the bottom panel, each dot is one of the
10 run; ‘InitTrue’ is EM starting from the true centers;
‘LML?’ is EM starting from the ‘LML?’ model with more
samples; ‘Labeled’ is centers estimated using the true la-
bels; ‘ML?’ is highest likelihood of all of the above, as well
as EM starting with ‘ML?’ models with more samples. Ver-
tical lines delineate between the three phases.

we conducted the following experiment: starting with
a very large data set, we gradually removed sam-
ples from the data set, and after each removal, ran
EM (with no PC projection) to convergence starting
with the solution we found at the previous iteration
(i.e. with a slightly larger data set). The hope is that
we start on the true model (or a model very close to
it) and continue tracking this peak without ever jump-
ing to a different (perhaps higher) mode of the likeli-
hood. The model found using this procedure is labeled
“LML?” in Figure 2. This model is identical to “Init-
True” for large sample size. However, for lower sam-
ple sizes the models are different: the likelihood of the
“InitTrue” model is worse than that of the “LML?”,
but its clustering error is better. This probably re-
flects a lower peak of the likelihood function, closer to
the true model. We suspect that our “LML?” model is
the local maximum likelihood model discussed by Red-
ner and Walker (1984): a maximum likelihood model
in some small neighborhood of the true model, whose
deviation from the true model is given by the Fisher
information.

In the large sample limit, the LML model, which is
the true model, is also the global maximum likelihood
model. However, as the sample size decreases, the ran-
dom variations of the likelihood increase. Eventually,
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the random variations cause the likelihood at some un-
related model to be higher than the likelihood of the
LML model and the global ML model is no longer re-
lated to the true model. At this point, the clustering is
essentially un-reconstructible, at least using maximum
likelihood estimation.

4.2. Clustering can be Interesting, but Hard

We are now ready to analyze the behavior of our “fair”
reconstruction, learned without cheating, using EM
from a random starting location, with a PC projec-
tion and pruning, relative to the suspected LML and
other candidate ML models attained by “cheating”
and knowing the true generating distribution.

In the example of Figure 2, for sample sizes beyond
≈4000, the fact that EM always leads to the same
model, and comparison with the other “cheating”
models, suggests that fair EM succeeds in learning the
global ML model, and this model corresponds reason-
ably well to the true model. With less than ≈1400
samples, the model learned fairly is not the maximum
likelihood model, but it does have higher likelihood
than the LML model, and we cannot find any model
with higher likelihood and consistently lower cluster-
ing error. This suggest that in this regime the clus-
tering is essentially un-reconstructible. However, for
sample sizes between 1400 and 4000, not only does
(fair) EM fail at finding the global ML model, but a
higher likelihood model (namely, the LML model) is
much better at capturing the true clustering. It seems
that in this regime the global ML model is hard to
find and interesting—this represents a gap between
the informational and computational requirements for
clustering.

From the results presented in Figure 2, and simi-
lar results for other parameter settings, we can iden-
tify three distinct possibilities for the behavior of the
model learned by EM, with PC projection and prun-
ing, versus the maximum likelihood model:

Random Phase EM fails to find the ML model, but
the ML model does not correspond to the cor-
rect clustering any better then the model found
by EM.

Gap Phase EM fails to find the ML model, which
does correspond better to the correct clustering.

Success Phase EM succeeds in finding the ML
model.

The Gap phase represents the regime in which there is
a difference between how well the clustering can be re-
constructed with unlimited computational resources,

and how well is can be reconstructed using EM. Of
particular interest is the extent of the Gap, which we
measure through the ratio ng→s/nr→g, where nr→g

and ng→s are the sample sizes at which the phase
transitions occur (nr→g = 1388 and ng→s = 3930
in the example of Figure 2). Suppose we would like
to use ML estimation in order to find a model with
clustering error below some target level. Even though
a sample of size nr→g might be enough for the ML
model to achieve this goal, we might need many more
samples, perhaps as many as ng→s, in order to ensure
that the model found by EM (with a PC projection)
achieves the desired goal. The ratio ng→s/nr→g there-
fore bounds the factor by which we might need to in-
crease the sample size in order to obtain computational
tractability.

In the next Section, we analyze the quantitative be-
havior of the phase transitions as a function of the di-
mensionality, number of clusters and inter-cluster sep-
aration, and pay particular attention to the extent of
the Gap phase.

5. Analysis of the Phase Transitions

Using methods described in the previous Section, we
estimated the location of the “Random”, “Gap” and
“Success” phase transitions for different numbers of
clusters, dimensionality and separations. The results
for some values are presented in Figure 3. The sample
sizes nr→g and ng→s at the phase transitions display
a clear affine dependence on the dimensionality d and
on the number of clusters k.

Analyzing also the dependence on the separation, we
obtain the following monomial2 models for the phase
transitions (see Figure 4):

nr→g = 131·k ·d/s4.8 ng→s = 9.7·k ·d/s2.2 (4)

It is interesting to observe how the extent of the
“Gap” phase changes. Although the ratio ng→s/nr→g

is roughly independent of the dimensionality and num-
ber of clusters, it increases super-quadratically with s.
The Gap phase, a regime in which finding the best sta-
tistically possible clustering is hard, is much more pro-
nounced when the separation is large. The model also
predicts that for s < 2.8, the Gap phase will vanish.
This prediction is consistent with some preliminary ex-
periments, and we hope larger scale experiments will

2We do observe a small, but statistically distinct from
zero, intercept (non-homogeneous term) in the dependence
of nr→g and ng→s on d, and especially k. However, to re-
duce the number of parameters fit, we insist on a (homo-
geneous) linear fit when studying also the dependence on
the separation.
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ration s and each of the two phase transitions, the best-fit
(least-square) coefficients for the linear models n = α(s)·k·d
are plotted, with 95% confidence intervals. The lines (in
the log-log plot) are best-fit (least-square) models of the
form n = αkdsβ . Dotted line: sample size, for k = 2 and
d → ∞, where ML starts being correlated with the true
centers (Watkins & Nadal, 1994).

6. Discussion

We presented an empirical investigation of the inter-
play between computational and informational limits
in clustering, and a simple quantitative model for the

regime in which there is a gap between them. Ac-
cording to our findings, Gaussian mixture clustering is
“easy” with a sample size depending only linearly on
the number of clusters and the dimensionality, as op-
posed to the higher order dependencies required by the
theoretical guarantees (Table 1). Our results suggest
that the gap between the statistical and computational
limits narrows, and perhaps even disappears, as the
separation decreases. This contrasts with the theoret-
ical guarantees, which only hold for very large separa-
tions. It is also interesting to compare the dependence
on the separation to the dependence in other studies of
the informational limit: An analysis of Gaussian mix-
ture clustering with two clusters and in the limit of in-
finite dimensionality (Watkins & Nadal, 1994; Barkai
& Sompolinksy, 1994, and others), indicated that the
sample size required for ML estimation to start corre-
lating with the true clustering is n = 8d/s4 (plotted in
Figure 4).

Despite the strong evidence for identifying the three
phases, we must qualify our results as we cannot be
sure of finding the true maximum likelihood model. In
particular, in what we describe as the “Gap Phase”,
although the EM solutions have lower likelihood than
our suspected LML model, we cannot preclude the
possibility that the real ML model is hard-to-find and
far away from the true model. Similarly, in what we
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decide is the “Random Phase”, there may well be a
hard-to-find ML model, perhaps not as close to the
true model as “InitTrue” or even “LML”, but closer
than the unrelated models EM finds.

Furthermore, our analysis of the computational limit
is limited to a specific learning algorithm, and our
investigation of the informational limit focuses on
maximum-likelihood estimation. It is certainly possi-
ble that a better algorithm exists which does efficiently
recover the clustering whenever it is statistically recov-
erable. It is also possible that other estimates work
better than the maximum likelihood estimate. In par-
ticular, a maximum-likelihood estimate with an over-
stated variance might sometimes be better (Barkai &
Sompolinksy, 1994). Ultimately, we would like to ob-
tain sharp theoretical quantitative evaluations of the
computational and informational limits that are inde-
pendent of a particular algorithm or estimator, and
resolve the open question of whether there is indeed
a gap in which a clustering is statistically recoverable,
but no efficient algorithm can recover it.

Another possible “gap” between the computational
and statistical requirements concerns the large sam-
ple regime with a small separation. All the theoretical
results described in Section 2.1 require, beyond a large
enough sample, also a minimal separation between the
Gaussians. A mixture of Gaussians that is not well
separated might not correspond to a reasonable “clus-
tering”, but a ML estimate will still converge to the
correct model with enough samples, for any separa-
tion. Is some minimum separation indeed required in
order for the estimation problem to be tractable, even
with a large sample? If so, how does this limit compare
to the minimal separation in which the mixture corre-
sponds to a “clustering” in some sense (e.g. the modes
of the mixture still correspond to its components, or
the component from which points were generated can
be identified with reasonable accuracy).

The investigation in this paper is of a scenario in which
data is sampled from a symmetric uniform mixture of
spherical Gaussians with known, and equal, variances.
Even so, there are four parameters to consider (num-
ber of clusters, separation, dimensionality and sample
size), requiring an unwieldy number of simulations to
cover their joint space. It would of course be interest-
ing to understand the possibilities of learning in more
general settings, and of the effect of a non-symmetric
center configuration (we suspect the symmetric config-
uration is the hardest). Furthermore it is possible that
the “true” generating process does not exactly follow
this model, but the data is still separated enough into
localized clusters. In such cases it is still possible to

recover the clustering by fitting a Gaussian mixture
model, and local search methods typically suffice if
enough data is available. One can therefore hope to
extend the analysis also to such scenarios, character-
izing the properties of the true clustering that make it
recoverable with a large enough sample.

Acknowledgments We would like to thank
Joachim Buhmann and Tali Tishby for pointing us
to the relevant literature in the physics community,
and Sanjoy Dasgupta for a useful discussion and
suggestions.

References

Achlioptas, D., & McSherry, F. (2005). On spectral
learning of mixtures of distributions. 18th Annual
Conference on Learning Theory (COLT).

Arora, S., & Kannan, R. (2001). Learning mixtures of
arbitrary gaussians. Proceedings of the thirty-third
annual ACM symposium on Theory of computing.

Barkai, N., & Sompolinksy, H. (1994). Statistical me-
chanics of maximum-likelihood desnsity estimation.
Physical Review E, 50, 1766–1769.

Dasgupta, S. (1999). Learning mixtures of gaussians.
Proceedings of the 40th Annual Symposium on Foun-
dations of Computer Science.

Dasgupta, S., & Schulman, L. (2000). A two-round
variant of em for gaussian mixtures. Proceedings
of the 16th Annual Conference on Uncertainty in
Artificial Intelligence.

Kannan, R., Salmasian, H., & Vempala, S. (2005). The
spectral method for general mixture models. 18th
Annual Conference on Learning Theory (COLT).

Kumar, A., Sabharwal, Y., & Sen, S. (2004). A sim-
ple linear time (1+ε)-approximation algorithm for
k-means clustering in any dimensions. Proceedings
of the 45th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS).

Redner, R. A., & Walker, H. F. (1984). Mixture den-
sities, maximum likelihood and the EM algorithm.
SIAM Review, 26, 195–239.

Vempala, S., & Wang, G. (2004). A spectral algorithm
for learning mixture models. J. Comput. Syst. Sci.,
68, 841–860.

Watkins, T., & Nadal, J. (1994). Optimal unsuper-
vised learning. J. Phys. A, 27, 1899–1915.


