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Dependent Dimensionality Reduction
Maximum Likelihood Estimation 

with Gaussian Mixture Noise
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Noise: 0.99 N(0,1) + 0.01 N(0,100)
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Assume a known additive noise model, and consider maximum 
likelihood estimation with respect to that model:

y = +× Vu z

PZ=

�

PZ[i]x

Ψ(V;0)
is constant for all V

ML estimator is consistent
for any Pu

ML estimator is consistent
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is maximized on true V

ML estimator is consistent
for any Pu

for all x,
V maximizes Ψ(V;x)

iff V spans x

General Conditions:
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Laplace Additive Noise:

The ML estimator is not consistent!

Gaussian Additive Noise: 
Ψ(V;x) = E[L2 distance of x+z from V]

ML estimator is consistent

Maximum Likelihood Low-Rank estimation with non-Gaussian noise is not, in general, consistent
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Non-Additive Models:

These conditions can also be used to investigate the consistency of ML estimators with non-
additive known conditionals yi|x i, where: 

Of particular interest is “Exponential PCA”, where the distribution yi|x i forms an exponential family 
with x i the natural parameters [Collins Dasgupta Schapire, NIPS01].

Py[i]|x[i]

x[1] x[2] x[d]

y[1] y[2] y[d]

u
x=u V×

“Exponential-PCA” is not, in general, consistent

When the mean parameters form a low-rank subspace, the variance-ignoring estimator is 
applicable, but when the natural parameters form a low-rank subspace no generally consistent 
estimator is known.

Challenge: Find a consistent estimator for the low-rank subspace of natural parameters
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Logistic Low-Rank Approximation:

The ML estimator is not consistent!
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Consistency of Maximum Likelihood 
Estimation with a Known Noise model

Factor models are often natural in the analysis of multi-dimensional 
data.  The underlying premise of such models is that important aspects 
of the data can be captured via a low-dimensional representation.

observations small representation 

y u
image varying aspects of scene

gene expression levels description of biological process
a user’s preferences characterization of user

document topics

In many situations, including collaborative filtering and structure 
exploration, the “important” aspects are the dependencies between 
different attributes.  Accordingly, we seek to identify a low-dimensional 
space that captures the dependent aspects of the data, and separate 
them from the independent variations.  Our goal is to relax restrictions 
on the form of each these components, such as Gaussianity, additivity
and linearity.

In this work we:

• Present a general framework for the problem: Dependent 
Dimensionality Reduction

Focusing on linear dependencies, we:

• Show that the standard approach (PCA) is consistent for 
additive i.i.d. noise, even if it is not Gaussian

• Show that a variance-ignoring estimator is appropriate for 
non-additive noise models

• Present a method for maximum likelihood estimation in the 
presence of Gaussian mixture additive noise

• Study the consistency of maximum likelihood estimation in 
this context, and show that the ML estimator is not always 
consistent (for example for Exponential-PCA).

Weighted Low Rank 
Approximation
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For fixed V, find optimal U
For fixed U, find optimal V
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Conjugate gradient descent on J*

X =LRA(W⊗A+(1-W)⊗X)

[ICML03]

Given W, A, find rank-k X minimizing weighted sum-square distance:
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When weights introduced:
•Not incremental with k
•Eigenmethods do not apply
•Local minima:
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Additive Gaussian-Mixture Noise:
0.99 N(0,1) + 0.01 N(0,100)
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L2 (PCA)
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E step: calculate posteriors of C
M step:
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Weighted Low-Rank Approximation with:

and update mixture parameters.
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Model additive noise as a Gaussian mixture:

Noise modeled a bounded Gaussian Scale Mixture
(mixture of zero-mean Gaussians with variance bounded away from zero)

Captures many distributions, including heavy tailed (non log-concave)

Instead of Gaussian mixture modeling:
Newton’s method on log-Likelihood

[Gordon NIPS02] [SJ ICML 03]

Distribution must be log-concave – not applicable to heavy tailed distributions

Starting point:
Identifying linear dependencies in the presence of i.i.d. Gaussian noise

Y = Z
iid Gaussian

σ2I

+X
rank k

parameters randomobserved

dependent,
low-dimensional 

component

independent, 
Gaussian 

component

Standard parametric analysis: imposes some (parametric) distribution Pu.

×y = +V

parameters 
being estimated

u

PU

z

σσσσ2I
nuisancenuisance

non-parametric,
unconstrained

We do impose a strict form on the conditional distributions y[i]|u.
Goal: relax this, and concentrate on the structural constraint–

u captures all the dependencies in y

×y = +Vu z

PZ=

A

PZ[i]

Relaxing Gaussianity leads to Linear Additive models: 

Relaxing additivity is appropriate, e.g., when the noise has a multiplicative 
component, or when the features in y are not real numbers, yielding 
Linear Dependent Dimensionality Reduction:

Going beyond linear models, fitting a non-linear manifold by minimizing 
sum-squared distance can be seen as a ML estimator for:

Py[i]|x[i]

x[1] x[2] x[d]

y[1] y[2] y[d]

u
x=u V×

= g(           ) +uy z

g specifies 
smooth manifold

Gaussian

σ2I

~

y[1] y[2] y[d]

u

Combining these ideas leads us to discuss y[i]|u directly:

Log-likelihood(X) ���� sum-squared (Frobenius) distance to Y
ML estimator is rank-k matrix minimizing |X-Y|Fro

given by leading components of SVD of Y

This formulation valid, but displeasing:
•Entire matrix X are parameters, estimated with a single observation Y
•Number of parameters linear in data
•Even with more data, cannot estimate beyond a fixed precision

What we can estimate with more data rows is the rank-k subspace of X:

We do not make any assumptions about the distribution of u:
•Model class is non-parametric
•Can estimate a parametric aspect of the model – the subspace V.

Dependent Dimensionality Reduction:
Low-dimensional representation u such that
coordinates of y are independent given u

Second Moment Methods

When the additive noise is independent, but not identically distributed, the L2 
estimator is biased towards the high-variance coordinates.  Instead, the Variance 
Ignoring Estimator seeks a rank-k matrix approximating (minimizing the sum-
squared distance to) the non-diagonal entries of the empirical covariance.  This is 
a Weighted Frobenius Low Rank Approximation (WLRA) problem.

rank k diagonal
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Independent, non-identical additive noise:

For any i.i.d. additive noise:

L2 estimation of the low-rank subspace (PCA) 
is consistent in the presence of 

any i.i.d. additive noise with finite variance 

s1, s2, …, sk, 0, 0, …, 0

s1+

B2, s2+

B 2, …, sk+

B2, 

B2, 

B2, …, 

B2
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y = +× Vu z

PZ=

�

PZ[i]x
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Rank 2 subspace in ����10,  Additive Gaussian 
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(between 0.17 and 1.7 signal variances)
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Exponentially distributed observations with 
means in rank-2 subspace of ����10

Subspace spanned by the leading k eigenvectors of empirical covariance of y. 

L2 approach to low-rank approximation: minimize sum-squared distance |X-Y|Fro. 

Unbiased Non-additive Noise:

x[1] x[2] x[d]

y[1] y[2] y[d]

u
x=u V×
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Variance Ignoring Estimator is appropriate for 
any unbiased independent conditional model

rank k diagonal
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http://www.ai.mit.edu/~nati/LowRank


