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Density Estimation with
Tractable Models

Given T observations of n variables X1..Xn, we would like to estimate 
the distribution from which they were sampled, using a 
computationally tractable model. The model can then be used for 
inference and other calculations on the distribution.

Note: the goal is to approximate the source distribution, and success is 
measured by divergence from this distribution (not by how well the 
structure of the model captures the structure of the distribution).

We focus on maximum likelihood density estimation: the maximum 
likelihood distribution from among some limited class of distributions 
is sought. Restricting to a limited class of distributions serves both to 
ensure tractability, and as a statistical regularization.

Chow and Liu (1968) studied the problem of finding the maximum 
likelihood Markov tree and presented an efficient, and exact, solution, 
by casting the problem as the combinatorial problem of finding a
maximum weight tree. We extend this approach to more complex 
classes of (undirected) Markov networks. 

Bounding the Complexity
•Small clique size: effectively bounds the number of 
parameters in the model.

•Since explicit calculation are only possible on 
triangulated graphs, a non-triangulated Markov 
network is usually triangulated.

•Tree-width of a graph: minimum over all 
triangulations, of the maximum clique size of the 
triangulation, minus one.

Bounding the tree-width is a good constraint for 
ensuring tractability, but is not the best constraint for 
statistical regularization

Problem Statement:
Maximum Likelihood

Narrow Markov Networks
• For a specified k, maximum likelihood Markov 
network of tree-width at most k.

• Equivalently, maximum likelihood Markov network 
over a triangulated graph with cliques of size at most 
k+1.

Special case of k=1 is maximum likelihood trees (Chow and Liu).

Heuristic local-search suggested by Malvestuto, 1991.

Decomposing the Maximum Likelihood
We would like to decompose the maximum likelihood of a triangulated 
Markov network to a sum of contributions from “local components”. 
For trees (k=1) the ML can be decomposed to the sum of edge 
contributions. For higher tree-width edge-contributions are not enough, 
and larger cliques need to be considered.

In order to decompose the maximum likelihood, we must first study the 
following explicit factorization of a Markov network over a triangulated 
graph: 
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Note that the product is taken over all complete subgraphs, not only 
maximal cliques (we refer to any complete subgraph as a clique). Why 
not subsume smaller cliques in maximal cliques?

Under this factorization, a clique’s factor depends 
only on the marginal distribution inside the clique.
It does not depend on the graph structure.
Applying this factorization to the maximum likelihood distribution 
(which agrees with the empirical distribution on the clique marginals), 
we can decompose the maximum likelihood of a triangulated graph:

Where the weights w(h) are given by:
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The Maximum-Weight k-Hypertree 
Problem

Given:
–a width k,

–and a weight on each candidate clique of size at most 
k+1

Find a triangulated graph with clique size at most 
k+1 that maximizes the sum of weights of its cliques.

What are Hypertrees ?
The clique-set of a triangulated graph forms an acyclic hypergraph (or 
hyperforest). A hypertree is a maximal acyclic hypergraph of bounded 
width (hyperedge-size). This is a 2-hypertree:

An acyclic hypergraph can also be defined in terms of its tree 
decomposition, which corresponds to a junction tree of a triangulated 
graph. Other equivalent definitions can be found in the literature.

Bounded tree width graphs (or equivalently narrow acyclic 
hypergraphs) are important in many applications. There is much work 
on finding narrow triangulations (super-graph problems) and on using 
the low tree-width. But there is not much work on finding narrow sub-
graphs, which is the problem we are interested in.

Unlike the maximum weight tree problem, which can be solved in 
essentially linear time (O(|E|+|V|log|V|)), the maximum hyper-tree 
problem is hard. It is hard even for k=2, and when weights are given 
only for 2-edges (and not 3-edges) and all weights are zero/one.

Monotone Weights

The total summed weight of a triangulated graph is no less than the 
total summed weight of a contained triangulated subgraph:

If the weights are monotone on cliques, they are also monotone on 
arbitrary triangulated graph. Accordingly, it is enough to require that 
adding a single vertex to a clique does not decrease the total summed 
weight:
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Max-k-Hypertree
(monotone weights)

3-SAT

Max-k-Hypertree
(0/1 weights on 2-edges)

Max-k-Hypertree
(0/1 weights on k+1-edges)

Max-k-Hypertree
(small, ≥0, weights on k+1-edges)

Max-k-Hypertree
(arbitrary weights)

ML k-width Markov Net

MDL triangulated
k-width Markov Net

Max-k-Windmill

Set Cover

(k+1)! approximation

Integer
Program

Linear
Program

8kk! rounding gap

Approximation-preserving
reduction

Other reduction

An Approximation Algorithm
[with David Karger, SODA 2001]

For any k, and an input monotone weight function on cliques, we find a 
k-hypertree (triangulated graph with clique size at most k+1) G, such 
that the weight w(G) of the graph, is within a (very large) constant 
factor away from the optimal graph G*:

Outline of the Algorithm
•A k-hypertree always contains a k-windmill-farm 
which captures at least 1/(k+1)! of its weight. Instead 
of searching for the maximal k-hypertree, we’ll 
search for the maximal k-windmill-farm.

•Windmills are easier to work with than hypertrees, 
since they can be defined in terms of local rather then 
global structure.

•We can write down an integer program for the the 
maximum k-windmill-farm problem.

•We solve a the linear-programming relaxation of the 
integer program. (Actually, we first have to 
strengthen it a bit)

•We then iteratively round the linear program to get a 
integer solution, but at each of k iterations of 
rounding we might retain as little as 1/8k of the 
weight.
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The Maximum Windmill Farm Problem
as an Integer Program

A rounding scheme
For i=1..k

–For each node v, consider all paths p of length i ending at v, 
choose path p with probability xp. And around it to one. The LP 
assures that the sum of these probabilities is at most one (it might 
be less, and so we might not choose any path).

–Re-optimize the LP for paths longer than i, using the rounded 
values for paths of length up to i.

In each iteration the value of the rounded LP is at least 
8(k+1-i)! of the value before rounding.
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Windmill Farms

Windmill farm induced by:

A star graph
Covering a tree with two star-farms

A 2-windmill

Covering a 2-hypertree with 6 windmill-farms

A Sample Yielding Desired Weights
•We cannot get exact rational weights: we are limited to rational biases, 
and the bit-capacity function is an irrational function. Instead, we will 
get weights close enough so that the error (between the ML weights 
and the desired weights) will be less then the granularity of the weights.

•We approximate the weights using the first term in the Taylor 
expansion of the bit-capacity function, and bound the error using the 
second term:

•By scaling down the weights, the granularity scales down linearly 
while the error scales down quadratically. By scaling down far enough, 
we can bring the total summed error to be lower than the granularity.

•To build a mixture component Ph with desired bias b=p/q, we use q
blocks of (k+1)-wise uniformly independent sample vectors. But for p
of these blocks, we invert the variables of h appropriately so as to set 
their parity to be odd for all samples in the block.

•Unlike the “pure” distribution, biases of more than k+1 variables will 
be highly biased. However, this does not disrupt the weights. The only 
important thing is that all k-marginals are uniform, and that for each 
mixture component, only a single k+1-marginal is biased.

•Block of (k+1)-wise uniformly independent binary samples can be 
created of size 2nk+1 [Alon, Spencer, Erdos 1991], yielding a total 
sample size of O(Qn2k+2), where Q is the common denominator of the 
rational biases. 
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Hardness
Finding a maximum hypertree is NP-hard. But showing how the 
maximum likelihood narrow Markov network can be found by finding
a maximum hypertree is not enough in order to demonstrate the 
hardness of the maximum likelihood problem. What is needed is to
show how to find the maximum hypertree by solving the maximum 
likelihood problem.

We will show how a restricted form of the maximum hypertree 
problem, where weights are specified only for cliques of size exactly 
(k+1), can be reduced to the maximum likelihood narrow Markov 
network problem. We will do this by constructing, for any non-
negative weight function on (k+1) cliques, an appropriate empirical 
distribution which yields weights proportional to the desired weights.

Creating a Distribution that Yields 
Desired Weights

•Input: Non-negative weights on (k+1) cliques. 

•We construct a distribution P over n binary 
variables. P will have uniform marginals on all 
subsets of at most k variables, and specifically chosen 
biases of on the parity of sets of k+1 variables. 

•P will be a uniform mixture of       distributions Ph, 
one for each candidate clique h of size k+1.

•Each Ph will be almost uniform, except for a bias of
bh on the parity of the variables in h:

•Since the mixture P is uniform on all marginals of at 
most k variables, it will have zero weight on the 
corresponding candidate cliques.

•On k+1 candidate cliques, there is a bias of        
resulting in a weight equal to the capacity of a binary 
bit with such bias:

•By setting the biases bh accordingly, we can get 
weights proportional to our desired weights (they will 
be very small…).
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Uniqueness of factorization
Consider mappings Ph→ϕh from marginal distributions over subsets of 
variables, to factors over the subset. The mapping  giving the factors 
we suggest is the only such mapping, such that

holds for every triangulated graph G and every Markov network P over 
G.
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