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Density Estimation

• T observations of n variables X1..Xn.

• Estimate distribution from which they 
were sampled.

• Use for inference and other 
calculations.

Density Estimation, not model selection.



Chow & Liu (1968):
Maximum likelihood tree
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Maximum likelihood Markov network:

Empirical distribution
(Markov-net over complete graph)



Bounding the Complexity

• Small clique size.

• Even with small clicks: non-tractable.

• Tree-width of a graph:
minimum over all triangulations, 
of the maximum clique size of 
the triangulation, minus one.



Problem Statement:
ML Narrow Markov Networks

• For a specified k, maximum likelihood 
Markov network of tree-width at most k.

• Equivalently, over a triangulated graph 
with cliques of size at most k+1.



ML Narrow Markov Networks

• k=1: Trees (Chow and Liu)
• k≥2: Local search heuristics (eg Malvestuto, 1991)

Cast as combinatorial optimization 
problem:

–Hardness
–Provable “global” optimization algorithms
–Understand structure



• k=1 (trees): ML decomposes to sum of 
edge weights.

• k>1: Would  like similar decomposition
– identify the contribution of “local structures”

• Edges are not enough:
need to consider larger cliques.



Factorization Over a 
Triangulated Graph G
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Product over all complete subgraphs,
not only over maximal cliques
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• Why not subsume smaller cliques in 
maximal cliques ?
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(unique factorization having this property)

• Very strong locality:
A clique’s factor depends only on the 
marginal distribution inside the clique.
It does not depend on the graph 
structure.
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ML distribution over a 
Triangulated Graph G
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Decomposition of ML(G)

Depends only on the empirical distribution 
inside clique, independent of the graph.
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Decomposition of ML(G)

Depends only on the empirical distribution 
inside clique, independent of the graph.
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A property of the variables in the clique.
Can be precalculated once, and then summed 

up in all graphs containing the clique



Decomposition of ML(G)
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Decomposition of ML(G)
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Combinatorial optimization problem: 
triangulated graph G, maximizing its 
clique-weights.
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Weight of a doubleton
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Weight of a triplelton
with no pairwise interactions

I(X1;X2)= I(X1;X2)= I(X1;X2)=0
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Weights in a Markov chain

X1

X2

X3

0)3;1(
)3,2,1()2()3,2()2,1(

)3()1()3,1()3,2,1(

<−=
−−++

−−=

I
HHHH

HHHw



Monotone Weights

Adding to a graph
cannot decrease its total weight.



The combinatorial optimization 
problem

• Given:
– a width k,
– a monotone weight function on candidate 

cliques of size at most k+1
• Find a triangulated graph with clique 

size at most k+1 that maximizes the 
sum of weights of its cliques.

The Maximum Weight k-Hypertree Problem



2-Hypertree

Junction trees are (roughly) hypertrees



Maximum Hypertrees

• For k=1: essentially linear time [Prim, Kruskal]

• For k>1: NP-hard, even for k=2.
(and even with 0/1 weights, and weights only on 2-cliques)

We’re not there yet: does not 
immediately imply hardness of ML 
narrow Markov nets…



Hardness

ML Narrow 
Markov-net

Maximum 
Hypertree

empirical 
distribution w()w()>0

on k+1-subsets



Creating a distribution for w()

• Uniform, except biases on parity of 
(k+1)-subsets.

• Mixture of        components, one for 
each (k+1)-subset.
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Now construct sample with this distribution… 



Hardness of Max-Hypertree
translates to hardness of
ML Narrow Markov-net:

• NP-hard.

• NP-hard to approximate 
within an additive offset.



c

Hard to approximate 
gain to within 
additive offset.

What are we approximating ?
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What are we approximating ?
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factor of gain ? 



Approximation Algorithm
[with David Karger, SODA 2001]

• For any constant k:
Find a triangulated graph G with max 
clique k+1, such that:
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Running time: polynomial in number of weight, i.e. )(kOn

Greedily adding one clique at a time can be 
arbitrarily bad on certain inputs.



What are we approximating ?

*)(Gw

)(Gw

*)(log GML

)(log GML

)(log φML

∑
>∈

+=
1||),(Cliques
)()(log)(log

hGh
hwMLGML φ

0

fGw /*)(

Approximate to within 
small multiplicative 
factor ?

-Independent of k ?

-Arbitrarily small ?



What are we approximating ?
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(the distribution projection view)

Can we get approximation 
on the relative entropy ? 

Be very good when the 
target (true) distribution is 
almost a Markov network?



• Is there a distribution yielding 
any monotone weight function ?

• What is the “right” condition on 
the weight function ? 



Summary
• ML Narrow Markov Network problem as a 

combinatorial optimization problem:
– Hardness results
– Analyzable algorithms of “global” nature

– “linked” to Max-Hypertree problem

• Weights: an interesting information 
decomposition.

http://theory.lcs.mit.edu/~natis/HyperTrees/
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