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Abstract

It is well-known that inference in graphi-
cal models is hard in the worst case, but
tractable for models with bounded treewidth.
We ask whether treewidth is the only struc-
tural criterion of the underlying graph that
enables tractable inference. In other words,
is there some class of structures with un-
bounded treewidth in which inference is
tractable? Subject to a combinatorial hy-
pothesis due to Robertson et al. (1994),
we show that low treewidth is indeed the
only structural restriction that can ensure
tractability. Thus, even for the “best case”
graph structure, there is no inference al-
gorithm with complexity polynomial in the
treewidth.

1 INTRODUCTION

Graphical models offer a convenient representation for
joint probability distributions over a large number of
variables. Such models are defined as stochastic pro-
cesses with respect to a graph: each vertex of the
graph is associated with a random variable, and the
edge structure specifies the conditional independence
(Markov) properties among the variables. Due to their
powerful modeling capabilities, graphical models have
found applications in a variety of fields including com-
puter vision (Szeliski, 1990), coding theory (McEliece
et al., 1998), and statistical physics (Parisi, 1988). In
many of these applications a commonly encountered
problem is that of estimation or inference, which refers
to computing the posterior marginal distribution of
a variable at some vertex. We study the computa-
tional complexity of the inference problem in a graph-
ical model consisting of discrete-valued variables as
a function of structural properties of the underlying
graph such as treewidth and planarity.

It is well-known that inference is NP-hard if no as-
sumptions are made about the structure of the un-
derlying graphical model (Cooper, 1990), and remains
NP-hard even to approximate (Roth, 1996) — as-
suming P 6= NP, for any algorithm there are some
structures in which (approximate) inference takes time
super-polynomial in the size of the structure. However,
inference in specific structures can still be tractable.
For models in which the underlying graph has low
treewidth, the junction-tree method provides an ef-
fective inference procedure that has complexity poly-
nomial in the size of the graph, though exponential in
the treewidth.

The notion of treewidth (Robertson and Seymour
1983; 1986) has led to several results in graph the-
ory (Robertson et al., 1994) and to practical algo-
rithms for a large class of NP-hard problems (Freuder,
1990). Among these problems is inference in graphi-
cal models, which, as mentioned earlier, can be solved
in polynomial-time if the treewidth of the underly-
ing graphs is bounded. For a triangulated graph the
treewidth is one less than the size of the largest clique,
while the treewidth of a general graph is the smallest
treewidth over all triangulations of the graph.

A variety of results focus on special conditions on the
potential functions (Fisher, 1966) that result in infer-
ence being tractable. Recently, some authors have at-
tempted to provide structural conditions, aside from
low treewidth, that allow efficient inference. For ex-
ample, Chertkov and Chernyak (2006) describe an in-
ference method based on enumeration over “general-
ized loops”, suggesting that inference is tractable in
graphs with a relatively small number of such loops.

In this paper we consider whether there might be an al-
ternate structural property of graphs, which does not
imply low treewidth, but guarantees tractable infer-
ence. Put differently we investigate the “best case”,
rather than worst case, hardness of inference with re-
spect to the treewidth: does inference remain hard
even in the “easiest” high-treewidth graph structures?



We focus only on structural properties, and consider
algorithms that work (and are tractable) for any choice
of the potentials.

Recently, Marx (2007) showed that constraint sat-
isfaction problems (CSP) defined on any class of
graphs with unbounded treewidth cannot be solved
in polynomial-time. However, Marx’s result refers
only to algorithms for CSPs involving variables of
unbounded cardinality (i.e. an unbounded number of
states). Allowing such high-cardinality variables plays
a critical role in the proof, which employs construc-
tions using models in which the cardinality of the vari-
ables grows in an unbounded manner with the size of
the graphs. Thus, translating these results to prob-
lems of inference in graphical models is of limited in-
terest for typical inference problems. Marx’s result can
only imply hardness of inference when the number of
states for each variable is unbounded, while most in-
ference problems of interest involve variables with low
cardinality or even binary states. Indeed, we usually
think of the complexity of inference, or even of rep-
resentation of a discrete graphical model, as growing
exponentially with the number of states.

We focus on the complexity of inference in models
consisting of binary variables defined on any class of
graphs with unbounded treewidth. In such models a
hardness result can be obtained if we assume a well-
known hypothesis from graph minor theory. A minor
of a graph G is a graph H that can be obtained from
G by a sequence of vertex/edge deletions and/or edge
contractions (see Section 2.4 for a precise definition).
In a series of over twenty papers, Robertson and Sey-
mour shed light on various aspects of graph minors
and proved important results in graph theory. The
theorem of greatest relevance to this paper is one that
relates graph minors and treewidth: for each g×g grid-
structured graph G, there exists a finite κGM(g) such
that G is a minor of all graphs with treewidth greater
than κGM(g). The best known lower-bound and upper-
bound for κGM(g) are Ω(g2 log g) and 2O(g5) respec-
tively. The grid-minor hypothesis holds that κGM(g)
is polynomial bounded with respect to g. The hy-
pothesis is based on the belief that κGM(g) is closer to
Ω(g2 log g) than 2O(g5) (Robertson et al., 1994); fur-
ther evidence in support of this hypothesis is provided
in Demaine et al. (2006).

Main result There is no class of graphical mod-
els consisting of binary variables with unbounded
treewidth in which inference can be performed in time
polynomial in the treewidth. The assumptions behind
this result are that NP 6⊆ P/poly1 and the grid-

1The assumption NP 6⊆ P/poly is the non-uniform
version of the more popular NP 6= P assumption. For

minor hypothesis. Consequently, for every sequence
of graphs {Gk}∞k=1 indexed by treewidth, inference
is super-polynomial with respect to the treewidth k.
More precisely, for every sequence of graphs {Gk}∞k=1

indexed by treewidth, there exists a choice of potential
functions such that inference is super-polynomial with
respect to treewidth k.

We also show the above result for planar graphs with-
out requiring recourse to the grid-minor hypothesis —
assuming only that NP 6⊆ P/poly, there is no class of
graphical models with binary variables defined on pla-
nar graphs with unbounded treewidth in which infer-
ence has complexity polynomial in the treewidth. We
obtain sharper versions of these results that are based
on the so-called exponential-time hypothesis (Impagli-
azzo et al., 2001) rather than the assumption that
NP 6⊆ P/poly. We further extend the hardness result
above to hardness of approximation of the partition
function to within an additive constant by a random-
ized polynomial-time algorithm.

Proof overview The standard “worst-case” hard-
ness for the inference problem shows that there is
some family of graphs {Hk}∞k=1 for which the inference
problem is hard. In fact, it is known that the fam-
ily of graphs can be assumed to be planar. To prove
“best-case” hardness, we need to show that inference
is hard in every family of graphs {Gk}∞k=1 of increasing
treewidth. We prove this by showing that given any
family of graphs {Gk} of increasing treewidth, we can
reduce the general inference problem on planar graphs
to the inference problem on {Gk}. Our main tools are
the Robertson-Seymour graph-minor theorems, which
show that any planar graph is a minor of a not too
large grid and a grid is a minor of any graph with not
too large treewidth. We use these results to reduce
the inference problem on any planar graph to one on
a grid of not too large size and then to any graph
(in particular Gk) of not too large treewidth (k). Un-
fortunately, the known theoretical guarantees on the
“not too large treewidth” is too weak (in fact, super-
exponential) for our purposes. We get around this
problem by either relying on the grid-minor hypothesis
which conjectures that the “not too large treewidth”
is in fact at most polynomial in the size of the grid,
or by assuming that {Gk} is a family of planar graphs.
This completes our proof but for one caveat: it is not
sufficient if we know that any planar graph is a minor
of the grid and the grid is a minor of Gk; we actually
need the sequence of minor operations between these
graphs. In general, finding the sequence of minor oper-
ations that transform one arbitrary graph to another
is an NP-complete problem. However, it is known

more details on uniform vs. non-uniform algorithms, see
Section 2.2.



that a planar graph can be embedded in a grid in lin-
ear time (Tamassia & Tollis, 1989). This solves one
of our two problems. For the other (embedding a grid
into Gk), we exploit the fact that both these graphs
are fixed and depend only on the size of the input in-
stance and not on the actual instance itself. Hence,
we could non-uniformly hardwire this sequence of mi-
nor operations into our algorithm and thus obtain a
non-uniform hardness reduction.

Organization The rest of this paper is organized
as follows. Section 2 provides a brief background on
inference in graphical models, treewidth, and graph
minors. Section 3 presents the formal statement of the
problem addressed in this paper. Section 4 describes
constraint satisfaction problems; we prove a reduction
from such problems to inference in graphical models
that plays a key role in our analysis. Section 5 provides
the main results of this paper. We conclude with a
brief discussion and open questions in Section 6.

2 BACKGROUND

2.1 GRAPHICAL MODELS AND
INFERENCE

A graph G = (V, E) consists of a set of vertices V
and associated edges E ⊂

(
V
2

)
, where

(
V
2

)
is the set

of all unordered pairs of vertices. A graphical model
(Lauritzen, 1996) is a collection of random variables
indexed by the vertices of a graph; each vertex v ∈ V
corresponds to a random variable xv, and where for
any A ⊂ V , xA = {xv|v ∈ A}. We assume that each
of the variables xv is discrete-valued with cardinality q.
Of interest in this paper are distributions that factor
according to a graph G = (V, E) as follows:

p(xV ) =
1

Z(ψ)

∏
v∈V

ψv(xv)
∏
E∈E

ψE(xE). (1)

Here, each ψE (or ψv) is only a function of the vari-
ables xE (or variable xv). The functions ψv and ψE
are non-negative and are also known as potential or
compatibility functions. We denote the collection of
these potentials by ψ = {ψv, v ∈ V } ∪ {ψE , E ∈ E}.
The function Z(ψ) is called the partition function and
serves to normalize the distribution:

Z(ψ) =
∑

xV ∈{0,··· ,q−1}|V |

∏
v∈V

ψv(xv)
∏
E∈E

ψE(xE). (2)

Given a posterior distribution that factors according to
a graph as described above, a common task in appli-
cations such as image processing and computer vision
(Szeliski, 1990) is to compute the marginal distribution
of a variable at some vertex. It is well-known that the

complexity of computing the marginal distribution at
some vertex is comparable to that of computing the
partition function. A polynomial-time procedure to
solve one of these problems can be used to construct
a polynomial-time algorithm for the other. Thus, we
consider in this paper the complexity of computing
the partition Z(ψ), and with an abuse of terminology,
it is this problem that we refer to as inference. The
intractability of inference arises due to the fact that
there are exponentially many terms in the sum in (2).
We study the complexity of inference as a function of
structural properties of the underlying graph.

2.2 UNIFORM VS. NON-UNIFORM
ALGORITHMS

The classical notion of algorithms refers to “uniform
algorithms” in which one has a single algorithm that
works for all input lengths. A “non-uniform algo-
rithm” on the other hand refers to a family of algo-
rithms, one for each input length. Another way of
thinking about such non-uniform algorithms is that
the algorithm is allowed to receive some arbitrary ora-
cle advice that depends only on the input length (but
not on the actual input). In the theory of compu-
tation literature, such “non-uniform algorithms” are
usually referred to as fixed-input-size “circuits”, where
for each input length a different circuit is used. The
class P is the class of problems that have polyno-
mial time uniform algorithms while P/poly is its non-
uniform counterpart, i.e., the class of problems that
have polynomial time non-uniform algorithms (cir-
cuits). Clearly, P ⊂ P/poly. The non-uniform ver-
sion of the assumption NP 6= P is NP 6⊆ P/poly, and
(though slightly weaker) is equally believed to be true.
We need to work with the latter assumption since our
proof proceeds by reducing the “best-case” inference
problem to a non-uniform algorithm for NP.

2.3 GRAPH TREEWIDTH

A graph is said to be triangulated if every cycle of
length greater than three contains an edge between
two non-adjacent vertices. The treewidth tw(G) of a
triangulated graph G is one less than the size of the
largest clique. The treewidth of a general graph is
defined

tw(G) = min
H⊇G,H triangulated

tw(H).

Here, H ⊇ G denotes that H is a supergraph of G. In
words, the treewidth of a graph G is the minimum over
the treewidths of all triangulated supergraphs of G.

Figure 1 shows an example of a non-triangulated graph
G, which has a 4-cycle with no edge connecting non-



Figure 1: A non-triangulated graph G, and a triangu-
lated supergraph H of G.

adjacent vertices. The graph H is a triangulated su-
pergraph of G, and has treewidth 3 as the largest clique
is {2, 5, 6, 8}. Thus, the treewidth of G is also 3.

The complexity of a graphical model is often mea-
sured by the treewidth of the underlying graph. Dis-
tributions defined on trees, which are treewidth-1, per-
mit very efficient linear-time inference algorithms. For
loopy graphs that have low treewidth the junction-tree
method (Cowell et al., 1999) provides an efficient in-
ference algorithm. However, for general loopy graphs
the junction-tree method might be intractable because
it scales exponentially with the treewidth. As a result
considerable effort is being devoted to the development
of approximate inference algorithms. Our focus here
is on the computational complexity of exact (or near-
exact) inference.

2.4 GRAPH MINORS

The theory of graph minors plays a key role in our
analysis. Specifically, we show in Section 2.4.1 that the
complexity of inference in a minor of G is bounded by
the complexity of inference in G. A minor of a graph is
obtained by any sequence of the following operations:

• Vertex deletion: Given a graph (V, E), a vertex
v ∈ V is deleted, as are all the edges Ev = {E ∈
E : v ∈ E} incident on v, to obtain the graph
(V \v, E\Ev).

• Edge deletion: Given a graph (V, E), an edge
E ∈ E is deleted to obtain the graph (V, E\E).

• Edge contraction: Given a graph (V, E), an
edge {u, v} ∈ E is contracted to form a single ver-
tex u′ with edges to every vertex in V \{u, v} that
previously had an edge to either u or v. Thus,
the resulting graph has one less vertex than the
original graph.

Figure 2 gives an example of each of these operations.
The graph H1 is a minor of G, and is obtained from G
by deleting the edge {5, 6}. Next, H2 is obtained from

Figure 2: A graph G, and three of its minors H1, H2,
H3 obtained by edge deletion, followed by vertex dele-
tion, and finally edge contraction.

H1 by deleting the vertex 7, and the corresponding
edges {4, 7}, {7, 8} that are incident on 7. Thus, H2

is a minor of both H1 and G. Finally, H3 is obtained
from H2 by contracting the edge {5, 8} to form the
new vertex 8′, which now has an edge to vertices 2, 4,
and 9. The graph H3 is a minor of each of the graphs
G, H1, and H2.

In a series of over twenty papers, Robertson and Sey-
mour investigated various aspects of graph minors
and proved several important results in graph theory.
The following theorem played a key role in proving
many of these results; it provides a connection between
treewidth and graph minors, and forms a critical com-
ponent of our analysis.

Theorem 2.1. (Robertson et al., 1994) Let G be a
g × g grid. There exists a finite κGM(g) such that G
is a minor of all graphs with treewidth greater than
κGM(g). Further, the best known bounds on κGM(g)
are that c1g2 log g ≤ κGM(g) ≤ 2c2g

5
, where c1 and c2

are universal constants (i.e. they are independent of
g).

Thus, each grid-structured graph is a minor of all
graphs with sufficiently large treewidth. Robertson
et al. (1994) expressed the belief that κGM(g) is closer
to c1g

2 log g than 2c2g
5
, and may even be on the or-

der of g2 log g. In addition, Demaine et al. (2006)
build further support for this belief and conjecture that
κGM(g) ∼ g3. Consequently, we have the following
grid-minor hypothesis.



Grid-minor hypothesis: κGM(g), as defined in The-
orem 2.1, is polynomial in g.

This hypothesis is a key assumption in the proof of our
‘Main Result’ as stated in the introduction. Next, we
state a restricted result that relates graph minors and
treewidth for planar graphs. A planar graph (Bollobás,
1998) is one that can be drawn on a plane with no two
edges intersecting each other.
Theorem 2.2. (Robertson et al., 1994) There exist
universal constants c3 and c4 such that the following
holds. Let G be a g×g grid. Then, (a) G is a minor of
all planar graphs with treewidth greater than c3g. Fur-
ther, (b) all planar graphs of size (number of vertices)
less than c4g are minors of G.

Hence, Theorem 2.2 states that κGM(g) is actually lin-
ear in g for planar graphs.

2.4.1 Inference and graph minors

Let M(G, q) refer to the set of all possible choices for
potential functions on the vertices and edges of G =
(V, E), with the variables having maximum cardinality
q. That is, each ψ ∈ M(G, q) is specified as ψ =
{ψv, v ∈ V } ∪ {ψE , E ∈ E}. In the following lemma,
we relate the complexity of inference in a minor of a
graph G to inference in G.
Lemma 2.3. Let H be a minor of G, and let ψH ∈
M(H, q). There exists a ψG ∈ M(G, q) such that
Z(ψH) = Z(ψG). Moreover, ψG can be computed in
linear time given ψH and the sequence of minor oper-
ations that transform G to H.

Proof. All we need to show is that if a graph H =
(VH, EH) is obtained from another graph G = (VG , EG)
by just a single application of one of the standard mi-
nor operations, then we can transform a given ψH ∈
M(H, q) into a ψG ∈M(G, q) with Z(ψG) = Z(ψH).

Vertex deletion: Suppose that v ∈ VG as well
as edges Ev ⊆ EG that are incident on v in G are
deleted. Let ψv = 1

q and let ψE = 1,∀E ∈ Ev. Let-
ting ψG = ∪E∈EvψE ∪ ψv ∪ ψH, one can check that
Z(ψG) = Z(ψH).

Edge deletion: Suppose that E ∈ EG is deleted. Set-
ting ψE = 1, and ψG = ψH ∪ ψE , one can check that
Z(ψG) = Z(ψH).

Edge contraction: Suppose that {u, v} ∈ EG is con-
tracted to form the new vertex u′ ∈ VH. We define
ψ{u,v}(xu, xv) = δ(xu − xv), where δ(·) is the Kro-
necker delta function that evaluates to 1 if the argu-
ment is 0, and 0 otherwise. For the edge potentials, if
a vertex w ∈ VG\{u, v} is originally connected in G by
an edge to only one of u or v, then we set the corre-
sponding ψ{u,w} or ψ{v,w} to be equal to ψ{u′,w}. If

both u and v are originally connected by edges to w
in G, then we define ψ{u,w} = ψ{u′,w} and ψ{v,w} = 1.
Finally, we define the vertex potentials as ψu = ψu′

and ψv = 1. Letting all the other vertex and edge
potentials in G be the same as those in H, it is easily
seen that Z(ψG) = Z(ψH).

Thus, an inference problem in a minor of G can be
transformed to an inference problem in G. Conse-
quently, this result allows us to establish hardness of
inference in a graph G, by establishing hardness of in-
ference in a minor of G.

3 PROBLEM STATEMENT

Let Tf (I) denote the runtime of an algorithm f on in-
put I. We consider inference algorithms that take as
input a graph G = (V, E) and an element of M(G, q)
(i.e., potentials defined with respect to the vertices
and edges of G), and compute the partition function
Z(ψ). We would like to investigate the impact of the
treewidth tw(G) of the graph G on the required run-
time of any inference algorithm.

Typical complexity analysis studies the worst case, or
maximum, runtime of an algorithm over all inputs.
Since inference in a graphical model is NP-hard, and
assuming NP 6= P, we know that the worst case
runtime of any inference algorithm must scale super-
polynomially with the size of the graph. That is, the
maximum runtime over all graphs is super-polynomial.

Our focus in this paper is on studying the following
“best case” complexity of inference:

βf (k, q) = min
G:tw(G)=k

max
ψ∈M(G,q)

Tf (G, ψ). (3)

In words, βf (k, q) captures the complexity of infer-
ence as a function of treewidth by finding the “best”,
or “easiest” graph of treewidth k for each k. Since we
are primarily concerned with bounds that are indepen-
dent of the cardinality q, we will specifically consider
the case q = 2 and define M(G) = M(G, 2), βf (k) =
βf (k, 2).

Main Question: How does βf (k), as defined in (3),
grow as a function of the treewidth k for any inference
algorithm f? Does there exist an inference algorithm
f for which βf (k) grows only polynomially with k?

If there exists an f such that βf (k) is polynomial in k,
then there exists a class of structures with unbounded
treewidth in which inference would be tractable. Al-
ternatively, if βf (k) is not polynomial in k for any
procedure f , then bounding the treewidth is the only
structural restriction on graphical models that leads
to tractable inference.



The quantity βf (k) in the ‘Main Question’ refers to a
uniform algorithm, i.e. a single algorithm that should
work for graphs of all treewidths. However, to an-
swer this question we will actually study a slightly
harder question, where we allow non-uniform algo-
rithms specialized to a sequence of graphs of increasing
treewidths. Given a sequence of graphs {Gk}∞k=1 with
tw(Gk) = k, we will analyze the runtime of any (non-
uniform) sequence f = {fk}∞k=1 of algorithms (i.e. a
“non-uniform algorithm”), where fk solves the infer-
ence problem on Gk. For any such sequence, we study
how the runtime increases (taking worst case over po-
tential functions) with k, i.e. maxψ∈M(Gk) Tfk

(Gk, ψ)
as a function of k. Taking the infimum over the choice
of the sequence of graphs {Gk}∞k=1 (i.e. choosing the
“easiest” sequence of graphs of increasing treewidth)
gives a lower bound on βf (k).

Our ‘Main Question’ pertains to exact inference. We
also investigate the tractability of obtaining an ap-
proximation to the partition function. Specifically, we
consider the problem of computing Z(ψ) up to an ad-
ditive constant ε, perhaps using a randomized proce-
dure. Focusing on (randomized) algorithms f(G, ψ, ε)
that provide a Ẑ such that Z(ψ)− ε ≤ Ẑ ≤ Z(ψ) + ε
(with high probability — see Section 4), we consider:

βεf (k) = min
G:tw(G)=k

max
ψ∈M(G)

Tf (G, ψ, ε). (4)

Note that M(G) =M(G, 2). We can now ask a ques-
tion analogous to our ‘Main Question’, for βεf (k) rather
than βf (k).

4 CONSTRAINT SATISFACTION
AND INFERENCE

A constraint satisfaction problem (CSP) is defined as
a set of constraints specified on subsets of a collection
of discrete-valued variables. Each constraint is said to
be satisfied for some stipulated configurations of the
variables in the constraint. The problem is to identify
a configuration of the variables that satisfies all the
constraints (i.e., find a satisfying assignment). We will
consider CSP as a decision problem — the problem of
deciding if such a satisfying assignment exists. We
will mostly be concerned with 2-CSPs: CSPs in which
each constraint involves only two variables. Note that
one can associate a graph with an instance of a 2-
CSP, with the vertices representing the variables and
edges present only between those vertices that appear
in the same constraint. A related problem is the MAX
CSP in which one is interested in configurations of
the variables that maximize the number of satisfied
constraints. Again, we will refer to MAX CSP as the
problem of deciding, for some integer d, if there are any

configurations that simultaneously satisfy more that d
constraints.

An important special case of a CSP is the SAT prob-
lem, in which disjunctive constraints are specified on
binary variables. Although polynomial time algo-
rithms exist for 2-SAT, the MAX 2-SAT problem is
NP-complete. In fact we have that planar MAX 2-
SAT, in which instances are restricted to those defined
on planar graphs, is also NP-complete (Guibas et al.,
1991).

To obtain sharper results, we will use the so-called
“Exponential-Time Hypothesis” (Impagliazzo et al.,
2001):

Exponential-time hypothesis (ETH): There ex-
ists no non-uniform algorithm2 that can solve arbitrary
instances of n-variable 3-SAT in time 2o(n).

Note that NP 6⊆ P/poly would merely state that
there exists no polynomial-time (non-uniform) algo-
rithm for arbitrary n-variable instances of 3-SAT
(since 3-SAT is NP-complete). Thus, the ETH is a
stronger assumption than NP 6⊆ P/poly, and conse-
quently, allows one to obtain sharper bounds on the
growth of βf (k) and βεf (k) (see Section 5 for more de-
tails).

In order to translate hardness results for CSPs and
MAX CSPs to the problem of inference in graphical
models, we prove the following lemma that transforms
instances of 2-CSPs to inference problems in graphical
models. Specifically, we show that each instance of a
MAX 2-CSP can be mapped to a particular decision-
version of an inference problem.

Lemma 4.1. Let I = (x1, · · · , xn;R) be an in-
stance of a MAX 2-CSP problem, where x1, · · · , xn
are discrete-valued variables (of cardinality q) and R
is a set of constraints. Let G = (V, E) denote the
graph which represents the instance I. There ex-
ist a set of potentials ψ ∈ M(G, q) and a function
h : {0, · · · , |R|} → R+ with the following property3:
at least d disjunctions in R can be satisfied simulta-
neously if and only if Z(ψ) ≥ h(d). Moreover, the
construction of the potentials ψ and the evaluation of
the function h are polynomial-time operations, given
I.

Proof. Let G = (V, E) denote the graph which repre-
sents the instance I. Hence, |V | = n with each variable
being assigned to a vertex and E contains only those
pairs of vertices for which the corresponding variables

2Impagliazzo et al. (2001) refer to the uniform version
of ETH, but their results equally apply to the above-stated
non-uniform version of the hypothesis, which is also widely
believed to be true.

3|R| denotes the number of constraints in R.



appear in the same relation, so that |E| = |R|. For
each E ∈ R, define

ψE(xE) =
{

1, xE satisfies E
ε, otherwise.

Define vertex potentials similarly for each vertex con-
straint, and set ψv = 1 for other vertices. Choose
ε ∈ (0, 1

qn ). Let h(d) = ε|E|−d. If I is such that at
least d constraints can be simultaneously satisfied, it
is clear that Z(ψ) ≥ ε|E|−d. Alternatively, if I is such
that d or more constraints can never be satisfied si-
multaneously, then we have that

Z(ψ) ≤
∑

xV ∈{0,··· ,q−1}n

ε|E|−d+1 = qnεh(d) < h(d).

By setting d = |R| in the above lemma, one can
transform instances of a 2-CSP problem to a decision-
version of an inference problem. Next, we translate
the recent result in (Marx, 2007) for 2-CSPs to a com-
plexity result for inference.

Theorem 4.2. (Marx, 2007)4 Let {Gk}∞k=1 be any
sequence of graphs indexed by treewidth. Suppose
that there exists an algorithm g for instances of 2-
CSPs, with variables of arbitrary cardinality, defined
on the graphs Gk. Let q(ψ) be the maximum cardinal-
ity of a variable referred to by the constraints ψ. If
Tg(Gk, ψ) = q(ψ)o(

k
log k ), then the ETH fails.

Corollary 4.3. Let f be any algorithm that can per-
form inference on graphical models with variables of
arbitrary cardinality. Under the ETH, for any r(k) =
o(k/ log k) there exist q, k such that βf (k, q) > qr(k).

A consequence of this corollary is that the junction-
tree algorithm (Cowell et al., 1999), which scales as qk,
is in a sense near-optimal (assuming the ETH). How-
ever, as we noted in the introduction, this result has a
significant weakness in that it provides an asymptotic
lower bound only for sufficiently large cardinalities. It
does not provide a lower bound for any fixed cardinal-
ity q. This restriction plays an important role in the
reductions in (Marx, 2007), in which large sets of vari-
ables in an intermediate model are represented using
a single high-cardinality variable. In the following sec-
tion, we describe our main results for the complexity
of inference in graphical models with binary variables,
which are typically of most interest to the machine
learning community.

Another important class of problems arising from con-
straint satisfaction is that of counting the number of

4The statement here is actually of a non-uniform variant
of the result of Marx (2007).

satisfying assignments in a CSP. Such counting prob-
lems are titled #CSPs, and planar #2-SAT falls under
the class of #P-complete problems (Vadhan, 2001).
Instances of these problems can also be transformed
to inference in graphical models.

Lemma 4.4. Let I = (x1, . . . , xn;R) be an instance
of a #2-CSP problem, where x1, . . . , xn are discrete-
valued variables of cardinality q and R is a set of con-
straints. Let G be the graph which represents the in-
stance I. There exists a set of potentials ψ ∈M(G, q)
such that the number of satisfying assignments is
bZ(ψ)c. Moreover, the construction of the potentials
ψ is a polynomial-time operation, given I.

Proof. The construction of the potentials is similar to
that in the proof of Lemma 4.1. One can check that
the resulting partition function has the property that
the integer part is equal to the number of satisfying
solutions.

In the following section, we use the #P-completeness
of planar #2-SAT to demonstrate the hardness of ap-
proximation of Z(ψ) up to an additive constant.

5 MAIN RESULTS

We present our main results for graphical models with
binary-valued variables in this section.

5.1 EXACT INFERENCE

Theorem 5.1. Let {Gk}∞k=1 be an infinite sequence
of graphs indexed by treewidth. Let f = {fk}∞k=1

be any (possibly non-uniform) sequence of algorithms
that solves the inference problem on {Gk} with bi-
nary variables. Furthermore, let T (k) denote the
worst-case running time of f on Gk (i.e, T (k) =
maxψ∈M(Gk) Tfk

(Gk, ψ)).

(a) Assuming that NP 6⊆ P/poly and that the grid-
minor hypothesis holds, T (k) is super-polynomial in
k. Hence, βf (k) as defined in (3) is super-polynomial
with respect to k.

(b) Assuming that κGM(g) = O(gr) in the grid-
minor hypothesis and the ETH, we have that T (k) =
2Ω(k1/2r). Hence, βf (k) = 2Ω(k1/2r).

Proof. (a) Suppose (for contradiction) that there ex-
ists a (possibly non-uniform) polynomial time algo-
rithm f that solves the inference problem on {Gk}∞k=1.
More precisely, let f = {fk}∞k=1 be a sequence of al-
gorithms such that fk solves the inference problem
on Gk in polynomial time. Assuming the grid-minor
hypothesis, we will demonstrate that this implies a



non-uniform polynomial time algorithm for the infer-
ence problem on any planar graph. Recall that pla-
nar MAX 2-SAT is NP-complete (Guibas et al., 1991)
and polynomial-time reducible to the inference prob-
lem on planar graphs (Lemma 4.1). This provides a
(non-uniform) polynomial time algorithm for an NP-
complete problem, contradicting the NP 6⊆ P/poly
assumption.

Given an instance (G, ψ) of the inference problem on
planar graphs, we proceed as follows: Let |G| = s. By
Theorem 2.2, G is a minor of the s/c4 × s/c4 grid.
Furthermore, the sequence of minor operations that
transform a s/c4 × s/c4 grid to G can be obtained in
polynomial time (Tamassia & Tollis, 1989). Thus, us-
ing Lemma 2.3, the inference problem (G, ψ) can be
reduced to an inference problem on the s/c4×s/c4 grid
in time linear in s. By Theorem 2.1, the s/c4 × s/c4
grid is a minor of GκGM(s/c4). We will now use as “non-
uniform advice” the sequence of minor operations that
transform GκGM(s/c4) to the s/c4×s/c4 grid. Note that
this depends only on the input size s and not on the
actual instance (G, ψ). Using Lemma 2.3 again, we can
reduce the inference problem on the s/c4 × s/c4 grid
to an inference problem on GκGM(s/c4) in linear time.
We now use fκGM(s/c4) to solve the inference problem
on GκGM(s/c4), thus solving the original inference prob-
lem (G, ψ). The fact that T (k), and thus also the size
of the graph Gk, is at most polynomial in k and the
grid-minor hypothesis (i.e, κGM(g) = poly(g)) imply
that the above algorithm is a polynomial time (non-
uniform) algorithm for the inference problem on planar
graphs.

(b) We obtain the tighter hardness result by care-
fully analyzing the running time of the inference al-
gorithm on planar graphs suggested in (a). It can be
easily checked that the above algorithm runs in time
T (κGM(s/c4)), which is T (O(sr)) if κGM(g) = O(gr).
Combining this with the reduction from 3-SAT to pla-
nar MAX 2-SAT (Litchenstein, 1982; Guibas et al.,
1991), which blows up the instance size by a quadratic
factor, we obtain a T (O(n2r)) time non-uniform algo-
rithm for n-variable instances of 3-SAT. Recall that
the ETH states there exists no (non-uniform) algo-
rithm for arbitrary n-variable instances of 3-SAT that
has running time 2o(n). Hence, assuming the grid-
minor hypothesis and the ETH, we must have that
T (O(n2r)) is at least 2O(n) or equivalently that T (n)
is at least 2Ω(n1/2r).

Theorem 5.1 provides an answer to the ‘Main Ques-
tion’ in Section 3, and comprises the ‘Main Result’
described in the introduction. Notice that the ETH
assumption enables a sharper performance bound
instead of the simpler result that βf (k) is super-

polynomial in k (of part (a)). Next, we have the fol-
lowing theorem for planar graphs that does not require
assumption of the grid-minor hypothesis. Define

βplanar
f (k) = min

G:tw(G)=k, G planar
max

ψ∈M(G)
Tf (G, ψ). (5)

Theorem 5.2. Let f be any inference algorithm that
operates on graphical models with binary variables de-
fined on planar graphs.

(a) Assuming that NP 6⊆ P/poly, βplanar
f (k) as defined

in (5) is super-polynomial with respect to k.

(b) Under the ETH, βplanar
f (k) = 2Ω(k1/2).

Proof. The proof is similar to that of Theorem 5.1,
but the grid-minor hypothesis is not required due to
Theorem 2.2.

Based on the results in (Demaine et al., 2005) Theo-
rem 5.2 holds more generally for the inference problem
in graphical models defined on bounded-genus graphs,
of which planar graphs are a special case.

5.2 APPROXIMATE INFERENCE

The above results show that exact inference is in-
tractable in any class of graphs with unbounded
treewidth. Here, we prove that even obtaining an
approximation within some additive constant to the
partition function is intractable. Our result uses
Lemma 4.4 along with the fact that planar #2-SAT
is #P-complete (Vadhan, 2001).
Theorem 5.3. Suppose that the grid-minor hypothesis
holds. Let f be any (randomized) approximate infer-
ence algorithm that operates on graphical models with
binary variables. Let ε > 0 and 0 < δ < 1 be specified,
and suppose that f(G, ψ, ε) provides an approximation
Ẑ such that

Pr[Z(ψ)− ε ≤ Ẑ ≤ Z(ψ) + ε] ≥ 1− δ.

If βεf (k), as defined in (4), is polynomial in k, 1
ε , and

log( 1
δ ), then NP ⊆ P/poly.

Proof. Unless NP ⊆ P/poly, there is no randomized
non-uniform procedure that can approximate the so-
lution to a #P-complete problem to within a constant
c with probability greater than 1− δ, which is polyno-
mial in the size of the problem, c, and log( 1

δ ) (Vazirani,
2004). Based on Lemma 4.4, we have that instances of
planar #2-SAT can be reduced to performing inference
in a model defined on a planar graph so that the num-
ber of solutions is equal to bZ(ψ)c. Using the fact that
planar #2-SAT is #P-complete, one can prove this re-
sult by following the same line of analysis adopted in
the proof of Theorem 5.1.



6 CONCLUSION

With increasing interest in understanding various in-
ference procedures and providing conditions under
which they are correct and tractable, it is important to
understand whether there might indeed be some struc-
tural property, other than treewidth, which can guar-
antee tractable inference. In this paper we studied this
issue, presenting and discussing the relevant literature
from the CSP community as well as relevant graph
theory concepts, and can conclude that it is not likely
such an alternate property exists—finding a property
that ensures tractability of inference without bounding
treewidth would imply providing a counterexample to
Robertson and Seymour’s grid-minor hypothesis.

We believe that relating the “best case” complexity of
inference to the grid-minor hypothesis provides sub-
stantial evidence that inference remains hard even in
the “easiest” high-treewidth graph structures. Never-
theless, it would be of great interest to prove the re-
sults in this paper without resorting to the grid minor
hypothesis. It would also be useful to obtain hardness
results that are valid even for reasonably restricted
classes of potential functions, e.g. potential functions
with bounded dynamic range.
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