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Abstract
We lay the ground for extending Dirichlet
Processes based clustering and factor models
to explicitly include variability as a function
of time (or other known covariates) by inte-
grating a Dependent Dirichlet Processes into
existing hierarchical topic models.

1 INTRODUCTION

A standard approach for modeling a corpus of docu-
ments is to identify a pool of “topics” (word distribu-
tions) such that the distribution of vocabulary words
used in each document follows one of the topics (in a
clustering model [AMT04]) or a mixture of the topics
(in a factor model such as models derived from the
Aspect model [Hof01]).

We would like to model systematic changes in topic us-
age over time, assuming we have a corpus in which each
document is associated with a time-stamp. To do so,
we start with models where the topic pool is modeled
as a Dirichlet Process over all word distributions. We
replace this Dirichlet Process with a time-varying De-
pendent Dirichlet Process. That is, we have a different
pool of topics at every time, such that the topic pools
at all times are marginally identically distributed, yet
are correlated with topic pools at nearby times.

Two basic mechanisms exist for modeling topic drift:
(1) adding topics, removing topics, and changing the
proportions of topics in the pool over time; (2) contin-
uously drifting the word distributions of the topics in
the pool.

In this paper we focus on the first mechanism, which
leads us to dependent Dirichlet processes with vary-
ing “weights” rather then varying “locations” as we
describe below. However, the ideas we develop are ap-
plicable to both, as well as to modeling topic changes
within a single document and to modeling variabil-
ity with respect to more complex (e.g. higher dimen-
sional) covariates.

This paper reports our initial investigations into the
problem of introducing time dependence into topic
models. We present the setup for our problem, discuss
in detail various modeling considerations, and analyze
the appropriateness of various models. In Section 2, we
review the infinite topic clustering and factor models
which we use as a basis for our further constructions.
In Section 3 we introduce the idea of time dependence
(or dependence on some other covariate) and discuss
how it can be integrated into these topic models and
what properties we would like such an extension to
have. We also introduce the Dependent Dirichlet Pro-
cess [Mac00] as a key modeling element. In Section 4
we present several different Dependent Dirichlet Pro-
cess models, both reviewing models recently suggested
in the statistics literature and introducing our own
novel model. Finally, we have implemented two of the
models for introducing time variability into clustering
models, and we thre results of initial exploratory ex-
periments in Section 5.

2 CLUSTERING AND FACTOR
MODELS

We begin by describing non-time-varying topic mod-
els, which we use as a starting point for introducing
time variability. We consider generative models for a
corpus of n “documents”, each document being a col-
lection of “words”. We view documents as “bags of
words”, disregarding their order inside a document.
That is, the distribution of words in a document is ex-
changeable, and a document is fully characterized by
its (usually very sparse) word-count vector Y; € N,
where d is the vocabulary size and Y; , is the number
of times word “a” appears in document 3.

2.1 CLUSTERING MODELS

We first describe models in which each document is
associated with a single topic. Here, a “topic” is a
distribution over words, determining the word counts



for all documents associated with the topic. The topic
of each document is chosen according to some corpus-
wide distribution H over topics. That is, H is a dis-
tribution over word distributions and represents the
“pool” of available topics by defining a prior probabil-
ity for any given topic.

One approach to clustering is to constrain the capac-
ity of the model by limiting the number of available
topics (clusters) to some predetermined limit K. In
such models, the distribution H is a discrete distribu-
tion placing nonzero mass on only k word distributions
and can be written as:

K
H=> 8y, (1)
r=1

where V. are word distributions, S, are non-negative
weights, and Jg represents a point-mass at ©. It can
be generated by, e.g. choosing the k topics V,. indepen-
dently according to some prior distribution over word
distributions, and then choosing the weights S, e.g.
from a Dirichlet distribution.

Finite topics models as described above are limited
in their modeling flexibility and require some way of
selecting the number of topics K. Instead, in what fol-
lows, we focus on infinite models in which the capacity
is controlled via a prior distribution over H that does
not explicitly limit the number of possible topics, but
still encourages “concentrated” topic pools (i.e. distri-
butions H with more of the mass on fewer topics gen-
erally have a higher prior then those where the mass
is spread over more topics). Specifically, we let H be
a Dirichlet Process [Ant74] over word distributions.

Just as a Dirichlet distributed random vector
(S1,...,SK) can be seen as a random distribution over
a finite number (K) of elements (i.e. a random point
in a finite-dimensional probability simplex), a Dirich-
let Process (DP) distributed measure H can be seen as
random distribution over a non-finite domain. In our
case, H will be a random distribution over the domain
of word distributions.

A Dirichlet Process (denoted H ~ DP(«, 11)) is param-
eterized by a base probability measure p and a con-
centration parameter o > 0, such that for any event
A in the domain, H(A) ~ Beta(au(A),au(A)) (H is
a random distribution, and so H(A), the probability
H assigns to A, is a random variable). An important
property of the Dirichlet Process is that even though
the domain of H might be continuous (as in our case),
H is (almost surely) a discrete distribution, concen-
trated on a countable number of point masses. That
is, H assigns positive probability only to a discrete
selection of topics.

In fact, the Dirichlet processes can also be derived as

the limit, as K — oo, of (1) where (S1,...,Sk) are
Dirichlet distributed with uniform shape parameters
(%,..., %) and Vi ~ p. Another very useful discrete
characterization of the DP is the stick breaking con-
struction [Set94]:

H= i S, dv,
r=1

V. ~u 3 B,~Beta(l,a) iid (2)

r—1
S, =B, [[1-B,)
s=1

The topics V, are chosen independently according to
the measure u, as before, and the weights are con-
structed from i.i.d. Beta distributed random variables,
which are also independent of the chosen topics. Writ-
ten in this form, the weights S, are not identically dis-
tributed, but rather have decaying expectations with

E[S,] = 135 (1%5) " This form highlights the fact
that most mass is likely concentrated on only a few
topics (the first few V,.), and that the parameter «
controls the expected number of topics with significant
mass. We will denote the distribution of the random

infinite vector S, as in (2), by S ~ Stick(a).

We are now ready to describe the basic “clustering”
topic-model. As a base measure for the Dirichlet pro-
cesses H describing the topic pool, we must supply
a prior distribution over word distributions V,.. To
ensure conjugacy, we will use a Dirichlet distribution
over words. The model is thus parametrized by two
concentration parameters: the concentration of topics
as and the concentration of the prior over word dis-
tributions in each topic ay. The generative model for
the words w in the documents can thus be written as:
H ~DP(as, Dir(2X, ..., YY)
d d

X;|H ~ H independently for each document i (3)

independently for each

X H ~ X .. ;
wi | X, *  word j in document i

Note that H is a (random) distribution over word dis-
tributions, and so X; ~ H is a (random) word dis-
tribution. The word counts Y; are multinomially dis-
tributed given X;, and we can use (3) as a generative
model for word counts Y; directly:

Y;|X, H ~ Multinomial(N;, X;) ind. for eachi (4)

where N; is the length of document 7, which we assume
to be known.

2.2 FACTOR MODELS

In a factor model, each document is composed from a
mixture of topics with varying proportions. Document



i is characterized by a distribution U; of topics, gener-
ated from the overall topic “pool” H. Each word in a
document is then generated by a different topic, chosen
according to the document’s private topic proportions
U;.

A factor model allowing an unbounded number of top-
ics can be constructed using a Hierarchical Dirichlet
Process [TJBB04]. The document pool H is a Dirich-
let Process as before. For each document, U; is itself
a Dirichlet Process, with base measure H and concen-
tration parameter agy. That is, all topics share the
same set of countably infinite topics Vi from the dis-
crete topic pool, but the proportions in which topics
appear vary between documents (although topics with
smaller weights S, also tend to have lower proportions
in each documents U;). The model can be written as:

H ~ DP(as, Dir(%f, ..., %))

U;|H ~ DP(ay, H) ind. for each doc i
¢i;lU,H~U; ind. for each
w; jle, U, H ~ ¢; word j in doc i

where ¢;; is the (latent) topic of word j in document i.

Using the stick breaking representation (2) of H, we
can also write the distributions U; as (re-weighted)
sums of a common set of point-masses V.:

Ui = i Ui v, (6)

We can think of U as an n X oo infinite matrix and V
as a 0o x d infinite matrix, with V,., the probability
of word “a” under topic r and U; , the weight of topic
r in document i. A row X; of the (finite size) matrix
product X = UV specifies the generative word distri-
bution of document i (given H and U), and we can
again write a generative model for Y directly:

Y;|U, H ~ Multinomial(N;, X;) (7)

The Hierarchical Dirichlet Process factor model can be
thought of as two-stage generative process: a distri-
bution over infinite dimensional matrix factorizations
X = UV, and a distribution over observations Y given
the matrix X, as specified by (7). Furthermore, the
distribution over matrix factorizations X = UV fac-

torizes into independent distributions over U and V,
P(UV) = P(U)P(V), specified by':

Ve,

1We slightly overload the notation U: In the discussion
above, U is a random distribution over word distributions,
and is dependent on V', which are the locations of its mass.
Here we refer to U as only the weights of the word distri-
butions, and not the actual word distributions, which are
still specified by V. These weights are independent of V.

,V}’d) ~ Dil"(a—v, e

7 , %F) ind. for each r

and:

S ~ Stick(ag)

(Ui1,Uig,...)|S ~DP(ay, ) ind. for each 4

When apy — 0, the entire mass of each U; will be
concentrated on a single topic, and the factor model
(5) approaches a clustering model (3). In terms of
the matrix factorization, each row of U is pushed to a
sparsity extreme and is only allowed one positive entry.

3 COVARIATE TOPIC MODELS

In the topic models described above, the pool of avail-
able topics (the topic distribution H) is the same for
all documents. Suppose each document in our corpus
is associated with some covariate t;, which for the pur-
pose of this discussion we will refer to as “time”. We
would like our model to reflect the fact that the pool
of available topics may exhibit correlation over time.
To do so, we refer to H(t): the distribution of avail-
able topics at time t. We would like to replace the
dependence X; ~ H with

XilH ~ H(t:) (8)

in the clustering model (4) and replace the dependence
U, ~ DP(aU, H) with

UilH ~ DP(au, H(t;)) (9)

in the factor model (5). For each time ¢, H(t) would
still be a random distribution over word distributions
(topics). For different times t; # to, the (random)
topic distributions H(t1) and H(t2) would be depen-
dent on each other, but not necessarily identical.

It should be stressed that H(t;) and U; (in the factor
model) are different and serve different purposes. U; is
the topic composition of a specific document, and al-
though centered around H(t;), might deviate from it
significantly. H(t;) is the topic distribution present in
the corpus at the time relevant for document ¢, but is
much less specific then U;. As an extreme case, several
documents with identical time stamps ¢ might each be
on very different topics, and H(t) will represent all
those topics, and probably other topics as well. The
relationship between H(¢;) and U; is akin to the rela-
tionship between the hidden state and the observation
in Hidden Markov Models (HMMs). In particular, the
posterior over H (¢;) takes into account documents be-
fore and after time t; (note though, that H(t) is not
necessarily Markov—see below).

3.1 DEPENDENT DIRICHLET
PROCESSES

Processes H(t), such that for any ¢, H(t) is marginally
a Dirichlet Processes, are known as “Dependent



Dirichlet Processes” (DDPs) [Mac00]. Although there
is not necessarily a strong requirement that H(t) be
marginally a Dirichlet Process (it might be distributed
according to some other distribution over distributions
of topics), this choice does seem attractive to us. Our
understanding of Dirichlet Process make understand-
ing properties of Dependent Dirichlet Processes eas-
ier; furthermore, when used in mixture models such as
those described in Section 2, Dirichlet Processes can
also lead to computational advantages due to conju-

gacy.

Writing the Dependent Dirichlet Process H(t) us-
ing the stick breaking construction (2), H(t) =
oo Sr(t)dy, (1), two types of variations can be iden-
tified: the weights (S,) can be varied with ¢ and the
point masses (word distributions) (V) can be varied.
From a modeling perspective, varying the weights (S;.)
captures topic appearances, disappearances and rise
and fall in popularity. Varying (V,.) captures “topic
drift”, where a topic might persist over time, but its
word composition changes in a continuous fashion.

Much of the literature on DDPs is concerned with
models where the weights S, are fixed and only the
points (V;.) vary; often each point V. (t) is modeled
as a process independent of the other points (e.g.
[MQRO4, IMRMO04]). For example, in a DDP over
R? (i.e. where each H(t) is a distribution over R
and so each V, is a point in RY), each V,.(t) can be
modeled as an independent multivariate Gaussian pro-
cesses [MQRO4]. The DDP can thus be viewed as a
Dirichlet process over Gaussian processes. The vari-
ations are modeled exclusively by the (typically well
established) model for each V().

Taking such an approach in our case would require us
to model V,.(t) and since V;.(t) ~ Dir(%-,..., %) is a
random distribution (over a finite but large domain—
the word vocabulary), this would leave us with the
same problem of describing a time-varying distribu-
tion (i.e. a process over the probability simplex). We
therefore choose to begin our study of time-varying
topic models with models in which the weights (.5,)
are varied while the topic word distributions (V}.) re-
mained fixed. Another advantage of this line-of-attack
is that a direct representation of the weights S,.(t) at
each relevant time point is much smaller and easier to
handle then a representation of the word distributions
V,.(t) for each topic and each relevant time, had the
word distributions also varied with time. We expect
our understanding of how the weights (S5,) (a distribu-
tion over an infinite domain) can be varied, to assist us
later when attempting to create models with varying
topic word-distributions (V;.).

3.2 DESIRED PROPERTIES

Below, we outline several properties we would like our
depedent process H (t) to possess and discuss how they
might be achieved.

3.2.1 Stationarity

We would like the process H(t) to be stationary: H (t)
should be be marginally identically distributed, and
furthermore, the process H'(t) = H(t + A) should be
distributed identically to H(t). That is, we do not
want to impose an a-priori bias on how the topic pool
should evolve over time.

This requirement rules-out, for example, a chain topol-
ogy hierarchy of Dirichlet processes, where (in discrete
time), H(1) — H(2) — --- is a Markov chain with
H(t+ 1)|H(t) ~ DP(a, H(t)). In such a chain, H(t)
is likely to be concentrated on less support as t grows.
This corresponds to an effective bias of having fewer
topics as time goes on.

It might be argued that contraction or expansion
of topic breadth are reasonable a-priori assumptions.
However, when these assumptions are indeed appro-
priate, we would like to include them explicitly, and
not as an artifact of a time variability mechanism.

3.2.2 Correlation Decay

We would like the correlation between H (t1) and H (t2)
to decay monotonically as |t; —t2| grows, and for H (¢;)
and H (t2) to approach independence as |t; —t2| — oc.
Since H(t) is a random distribution, and not a ran-
dom scalar variable, the notion of “correlation” re-
quires further clarification. We can require that for
any event A (any subset of topics), the correlation
between H(t1)(A) (the probability of event A under
H(t1) and H (t2)(A) monotonically decreases from one
to zero as |t; — t2| goes from zero to infinity.

The Hierarchical Dirichlet Process U; as in model (5)
is a dependent collection of random distributions that
does not poses this property: all U;s are (a-priori) de-
pendent in the same way. Although this type of rela-
tionship is suitable for modeling “a bag of documents”
with no a-prior known structure, it is not suitable for
covariates with a known order or metric, such as time.

3.2.3 Other properties

We will consider models which are both Markov in
time, and not necessarily Markov. By “Markov” we
mean that {H(¢')}y~¢ is independent of {H (#')}4 <
conditioned on H(t). If H(t) is Markov, then, when
sorted by time, X; in the clustering model (4) and
U; in the factor model, form a hidden Markov chain,



where H (t;) is the “hidden” state. Of course, since we
only observe the counts Y;, the “outputs” X; or U; of
the HMM are also “hidden” to us.

We are generally interested in models with a continu-
ous covariate, and that can be naturally extended also
to higher dimensional covariates. All models consid-
ered below are also time reversible: H'(t) = H(—t) is
distributed identically to H(t); this may or may not
be desirable from a modeling perspective.

4 SPECIFIC MODELS

4.1 TRANSFORMED GAUSSIAN
PROCESS CONSTRUCTION

We describe here a process, approaching a Dependent
Dirichlet Process at the limit, which uses underlying
Gaussian processes.

Recall that a Dirichlet processes can be obtained at
the limit, as K — oo of (1), where (S1,...,5k) ~
Dir(%2,...,9%). Furthermore, such a Dirichlet
distribution can be described as a normalization
Sy = G/ >, G of ii.d. Gamma random variables
G1,...,Gx with shape parameter 2. In order to in-
troduce time-variability, it is tempting to use Gamma
increment processes Gr(t) (i.e. a process in which
G.(t + A) — G(t) ~ Gamma(a/,1) independent
of G,(t)) and let S.(t) = G,(t)/>, G (t). Al
though this would indeed lead to a Dependent Dirich-
let Process at the limit, such a process is not sta-
tionary. The shape of each Gamma random variable
G, (t) increases with ¢, and so although each result-
ing H(t) = >, Sr(t)dy, would indeed be marginally
Dirichlet, it would be marginally Dirichlet with a con-
centration parameter which increases with time.

To obtain a stationary distribution, we can instead use
independent stationary autoregressive Gaussian pro-
cesses Z,(t), and deterministically transforming them
to obtain Gamma distributed random variables. This
leads to a model summarized by:

For each r, Z,(t) is an independent G.P. with:
Cov [Zyt1, Zuty] = e A1 —t2

G, (t) = GammaCDF 4L (®(Z,(1)))
_ Gr(t)
Sr(t) - 5:1 G (1) (10)
V. ~Dir(%f, ..., %) iid., ind. of Z

where GammaCDF,' is the inverse CDF of the
Gamma distribution with shape « and scale 1, and
® is the normal Gaussian CDF.

At any time ¢, (S1,...,8x) ~ Dir(%,..., %), and
so as K — oo, H(t) approaches a Dirichlet processes,
and H is a Dependent Dirichlet Process. H(t) inher-
its desirable properties from the underlying Gaussian
processes. In particular, it is stationary, Markov, and

its decorrelation is controlled by .

It is more common to transform Gaussian random vari-
ables to points on the simplex by other transforma-
tions, such a logit or probit transformations [Bor02].
Another approach which is somewhat similar to the
one suggested here, but simpler computationally (as
it does not involve the hard-to-compute inverse of the
Gamma CDF), is to exponentiate the Gaussian, thus
creating log-normal distributed variables, then then
normalizing these. However, such transformations do
not yield distributions S in the simplex which are
Dirichlet distributed. A practical problem with this
deficiency is that the behavior of the resulting distri-
bution as K — oo is not understood. It is not clear
(to the best of our knowledge) how to change the pa-
rameters of the transformation so as to get a behavior
which approaches a sensible limit, e.g. where the dis-
tribution of the number of topics with significant mass
is controlled, or if this is at all possible. On the other
hand, the Gamma transformation described above en-
sures a sensible, well understood, limit as K — oo,
and when K is reasonably larger then the number of
topics with significant mass, the distribution of the top
topics is mostly independent of K.

The choice of the limit representation (1) is somewhat
problematic computationally, compared to the stick-
breaking representation, since K should be chosen to
be significantly higher then the number of topics with
significant mass. However, using a stick breaking rep-
resentations and varying the beta random variables
B, would not achieve the desired effect, as the first
few topics would tend to be strong for all times, and
the process will not completely decorate and introduce
new topics. A possible solution, discussed in the next
section, is to vary the order in which the variables B,
are combined, rather then their value.

4.2 ORDER BASED DEPENDENT
DIRICHLET PROCESSES

We describe here the Order-Based Dependent Dirich-
let Process, recently suggested by Griffin and Steel
[GS04], as applied to topic distributions. (Below we
summarize their idea; see the references for further de-
tails. Griffin and Steel also describe a Markov Chain
Monte Carlo procedure for the model, which we have
implemented in the context of the clustering topic
model (4) and discuss in Section 5.)

Recall the stick breaking description (2) of Dirich-



let Processes. In an Order-Based DDP, each topic
is associated with a word distribution V, and beta-
distributed random variable B,. Both V,. and B, are
fixed over time. What changes over time is the order
in which the B, variables are combined:

H(t) = Z Sq (t)(squ(f,)
(1 - Bwq/(t)) (11)

1

q

Sq (t) = Bﬂ'q(t)
q/
V, ~ Dir(2¥, ...
B, ~ Beta(l,ag) ii.d.

av ..
’Td o i.id.

where 7(t) is a time-dependent infinite permutation.

First note that for any time ¢, (11) describes a
stick-breaking construction, and hence marginally
H(t) is a Dirichlet processes with H(t) ~
DP(ag, Dir(%f, ..., %%)). All times share the same
topics V., hence the DPs are clearly dependent. How-
ever, a topic r that appears “late” in the permutation
m(t) (i.e. for which ¢ such that m,(t) = r, is high)
would have many (1 — Bﬁq,(t)) terms multiplied into
its weight Sy_(;). Topics therefore change their weight
according to their place in the permutation 7 (t).

To determine the permutation 7(¢) for every time ¢,
each topic r is associated with a time 7,.. The permu-
tation 7 lists the topics in increasing order of absolute
distance of 7, from ¢: 71 (t) is the topic closest in time
to t, and so on (formally, |t — 7(q)| < |t — 7= (¢’)]| for
q<4).

Rouhgly speaking, the most relevant topics at time ¢
are the topics close in time to t. As we move through
time, a topic becomes “stronger” as we approach it,
then gradually weakens as we get further away from
it. Although the actual magnitudes of B, might mean
that the closest topic in time is not the strongest, it
would be extremely difficult for a document far away
in time to have any meaningful contribution.

4.2.1 Distribution of Topics Through Time

To complete the description of the Order-Based DDP,
we must specify how topics are distributed through
time. The times at which topics appear follow a Pois-
son process with intensity A, which is a parameter of
the model. That is, the time between any two “con-
secutive” topics is exponentially distributed with mean
1/A. An infinite number of topics appear throughout
the infinite time line, though only topics reasonably
close to the observed document times would have any
significant effect (truncation of the time line for practi-
cal computation is analogous to truncation of the stick-
breaking representation).

The intensity parameter A controls how quickly top-
ics change. A higher value of A\ yields more densely
packed topics, and so the permutation 7(t) changes
more quickly in time, and H(t) deccorolates faster.
The parameter A does not effect the effective num-
ber of topics at any time: regardless of A we have
H(t) ~ DP(as,Dir(%f,..., %)) and only ag con-
trols the marginal concentration of H(t). In fact, ag
and A together control the decorrelation of H(t): a
higher values of avg makes more leading terms of the
stick-breaking relevant, and so implies more topics
need to change place in the permutation before the
resulting distributions decorrelate. Griffin and Steel
[GS04] provide an explicit expression of the correla-
tion p(H (t1), H(t2)) in terms of A and ag.

4.2.2 Topic Persistence & Assymmetry

One problem of the Order-Based DDP as suggested
by Griffin and Steel is that topics must change when
time passes. A topic cannot persist while other topics
change positions. A possible extension to the model
allowing persistence is to associate with each topic r
also a wvolatility v,., which are i.i.d. and independent of
the Vs, Bs and 7s. The permutation 7 () is then deter-
mined according to the weighted distances v, [t —7,.|. A
topic with a volatility close to zero would persist in the
top positions of the permutation, while more volatile
topics change. It is also possible to make the proce-
dure assymmetric (non-reversible) in time; Griffin and
Steel describe some examples of this.

The Order-Based DDP fulfills our requirements of be-
ing stationary and having decorrelating with time. It
is also time-reversible (but is not Markov) and it can
be readily extended to covariates of higher dimensions.

4.3 DISCRETE-TIME DDP VIA LATENT
MULTINOMIALS

Pitt et al [PCWO02] suggest an approach which can be
used to construct a discrete time stationary Markov
chain which is marginally a Dirichlet Processes (i.e. a
Dependent Dirichlet Processes over an ordered discrete
covariate). In order to describe a stationary Markov
chain H(1) — H(2) — ---, it is enough to describe
the transition probability H (¢ + 1)|H (t). We specify a
transition generatively as follws: first sample L sam-
ples according to H(t), and then sample H(t + 1) ac-
cording to the posterior distribution of the parameters
of the sampling processes.

More formally, we will describe the Markov chain
H(l) - M(1) > H(2) - M(2) - H(3) — ---

where each M (t) is a (random) sample of topics (with
repetitions). We will describe the Markov chain by



describing the joint distribution of (H(t), M (t)) and
(M(t), H(t+1)), making sure the marginals over H(t)
and M(t) agree. In fact, (H(t),M(t)) and (H(t +
1), M (t)) will follow the same law (H, M ): Marginally,
H ~ DP(a, p), as desired (u is the base measure, i.e.
Dir(<f, ..., %%)). Conditioned on H, each of the L
samples in M is i.i.d. ~ H. This completes descrip-
tion of the Markov chain.

Representing M as a discrete integer valued mea-
sure over topics, describing the number of times
a topic appears in the sample, we have H|M ~
DP(a+ L, M + ays). We can now calculate:

E[H(t+1)[H(t)] = E[E[H (¢ + 1)|M(t)][H(t)]

- E{W‘ H(t)] = Lo H(t) + t25n (12)

The Markov chain is autoregressive in expectation,

and the ratio LLM controls the decorrelation of the
chain. In order for the chain to decorrelate slower,

a larger number of samples must be sampled at each
iteration, increasing the strength of the link between
H(t) and H(t +1). As this description cannot read-
ily be extended to a continuous covariate, it is in-
teresting to study how the model should be changed
when more densely sampled times are considered, i.e.
if the same technique is used to construct transitions
H(t+A)|H (t) for small increments A. If we would like
to maintain E[H (¢t + 1)|H (t)] = pH(t) + (1 — p)u, the
PN

. /
sample size for each M (t) must be set to L = gﬁa.

4.4 WEIGHTED POLYA URN SAMPLING

Let H ~ DP(a, p) and X4,...,X,|H ~iid. H. The
posterior distribution of X; conditioned on all other
X (marginalized over H) is given by:

P(Xi = al{Xizi}) cap(@)+ Y 1 (13)

i\ X, =x

This conditional distribution can be used to make
Gibbs updates to X;, marginalized over H. One might
consider introducing time dependence by scaling the
contribution of each i’ in the update by the distance
of t; from t;, e.g. considering marginals of the form:

P(X; = al[{Xiz}) ocap(z) + Y e Nemtrl (14)

i\ X, =

Unfortunately, this set of marginals is not compatible
with any joint distribution over Xi,...,X,. In fact,
even for three points, no set of non-uniform weights
leads to a compatible joint distribution.

Nevertheless, one might attempt constructing a
Markov chain over variable settings by performing

Gibbs-like updates as suggested by (14), although this
would lead to a Markov chain whose equilibrium dis-
tribution, if any, has an unclear interpretation. The
corresponding updates are also much more computa-
tionally intensive, as all data items X;» need to be
considered separately for each X; update, leading to
a run-time dependence of O(n?) for one update of all
variables. This approach has actually been taken in
the past in order to obtain a covariate-dependent gat-
ing network for a covariate-dependent infinite mixture

of Gaussians [RG02].

5 EXPLORATORY EXPERIMENTS

We have implemented an MCMC posterior sampler for
a clustering topic model with the Order Based DDP
model we described. We compared this Dependent
DP to a static (non-time-varying) DP model in which
documents are considered to be unordered and iden-
tically distributed. Figure 1 shows a simple synthetic
example. We generated 100 “documents” over a 20
word vocabulary; 80 of those documents have word
counts drawn according to a different random distri-
bution different for each document and 20 of them have
word counts drawn from a distribution closely concen-
trated on a single “topic”. The left panel of the figure
shows the word counts as gray levels, where documents
are arranged vertically (ordered in time) and words
are arranged horizontally. The similar documents are
nearby in time and occur near the top of the dataset
(early in time). The middle panel shows (a typical
posterior sample of) the clustering discovered by the
fixed (static) model; it captures many but not all of
the documents associated with the topic in one cluster
but also clusters the remaining “noise” documents into
three further clusters. The right panel shows (a typi-
cal posterior sample of) the clustering from our order
based DDP which correctly identified exactly all the
topic documents and put the rest into a single class.

We have also applied our model to a document collec-
tion in which each “document” is the title of a paper
appearing the Proceedings of the National Academy of
Sciences (USA). The full dataset contains 79801 paper
titles from 1391 issues of the journal from 1915 to 2005.
We used a vocabulary of 4752 words, which was ob-
tained after suppressing common function words (stop-
words) and words appearing in less than 10 titles.
Each document has associated with it a time stamp
corresponding to the publication date of the issue in
which is appeared. We ran our order based DDP on a
subset of 8567 cases formed by taking a constant frac-
tion of papers from each issue (to avoid over-sampling
from later years in which the volume of papers is much
higher).



After generating several posterior samples of assign-
ments of documents to classes, we can compute the
marginal (summing over classes and posterior samples)
probabilty of any vocabulary item occuring as a func-
tion of time. Figure 1 shows such probability curves for
several terms over the period covered by the dataset.
We can also take a previously unseen document and
evaluate its marginal likelihood as a function of time;
Figure 1 shows this for two articles. On a larger set of
10,000 previously unseen documents, the Order Based
DDP gives comparable average log-likelihood to the
static clustering model (-62.1 nats under the Order
Based model versus -62.4 nats for the static model).
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Figure 1: Left: A synthetic data experiment-rows
are “documents”, columns are “words” and intensi-
ties represent word counts. From left to right—the
input data sorted by time, the clustering found by
a fixed mode and the clustering found by the Order
Based DDP based model. Right: For two held-out
documents from the PNAS corpus, the log-likelihood
of the documents under a non-time varying clustering
model (horizontal line), the log-likelihood of the docu-
ments at different times under the Order Based DDP
clustering model, and the real time of the documents.
Bottom: Posterior word distributions as a function
of time, for selected words, in the PNAS corpus.

6 SUMMARY

In this paper we present various probabilistic mod-
els for approaching the problem of introducing depen-

dence on a covariate to clustering and factor mod-
els. We plan on continuing our explorations in this
area, and implementing further models including time-
dependent factor models, other DDP constructions,
and models in which the topic distribution V, vary
with time. We hope that this paper will lay the ground
for extending the powerful Dirichlet processes frame-
work for topic models to model time (and other) vari-
ability effects.
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