Sparse Matrix Factorization for Gene Expression Analysis (Work in Progress)

Nati Srebro and Tommi Jaakkola MIT EECS Genes within cluster follow same expression pattern – deviation from cluster consensus is noise

Genes within cluster follow same expression pattern – deviation from cluster consensus is noise

α

- Transcriptional factors
- Regulatory cascades
- •Responses / stimuli
- Processes
 - Protein complexes
 - Pathways
 - Cell activites

Modeling Data as Combinations of Factors

- Instead of being assigned to a cluster, each data vector is a linear combination of 'factors'. 0.5α+ 1.5γ
- 'Factors' represent basic structural components that are combined to get the the data vectors

Modeling Data as Linear Combinations of Factors

Limitations of hierarchical clustering

SVD Analysis of Gene Expression Patterns

- Alter, Brown, Botstein: PNAS 2000
 - Yeast cell-cycle
- Raychaudhuri, Stuart, Altman: PSB 2000
 - Yeast cell-cycle and sporulation; serum-treated human fibroblast
- Holter et al: PNAS 2000
 - Yeast cell-cycle

Expression of cell-cycle genes projected to leading two eigenfactors:

True (Planted) Factors

-0.6431	-0.9408	-0.9932	-0.0034	0.6628
-0.4274	0.2364	-0.0917	0.9128	-0.0681
0.6019	-0.0967	-0.0332	0.3965	0.5372
-0.2036	0.2226	0.0622	-0.0977	0.5172
0.0067	0.0144	-0.0130	-0.0069	0.0017
-0.0012	-0.0025	0.0003	0.0006	-0.0037
-0.0033	0.0019	0.0003	-0.0001	0.0048

SVD recovers subspaces

eigenfactors describe them

Are eigenfactors interpretable ?

- Degrees of freedom in choosing factors
- Is orthogonality desired?
- Can only reconstruct a few factors (<<dimension)
- Additional eigenfactors used to refine non-linear interactions, instead of corresponding to new factors

Does each data vector really depend on all factors? Sparse Matrix
Factorization:
combinations of *m*factors, from a pool of *k*

At most *m* nonzero entries in row

True (Planted) Factors

-0.6431	-0.9408	-0.9932	-0.0034	0.6628
-0.4274	0.2364	-0.0917	0.9128	-0.0681
0.6019	-0.0967	-0.0332	0.3965	0.5372
-0.2036	0.2226	0.0622	-0.0977	0.5172
0.0067	0.0144	-0.0130	-0.0069	0.0017
-0.0012	-0.0025	0.0003	0.0006	-0.0037
-0.0033	0.0019	0.0003	-0.0001	0.0048

	0.4006	1.0000	0.9303	0.1553	-0.5772
	0.9999	0.3976	0.6425	-0.1286	-0.1773
	0.1814	0.5768	0.6388	-0.0995	-0.9999
-	0.1335	0.1487	-0.1094	0.9999	0.1056
-	0.6435	-0.9306	-1.0000	0.0973	0.6378

Sparse Matrix Factorization

If *m*=1, and coefficients are 0/1, matrix decomposition is equivalent to k-means clustering.

For general coefficients with *m*=1, matrix decomposition is equivalent to clustering with a correlation distance measure.

Sparse Matrix Factorization

Sparse Matrix Factorization (m>1, but small)

- Model limited interactions
- Recovery even with large number of factors (beyond dimensionality of data / width of data matrix).
- No* degrees of freedom in recovery.
 *except scaling and permutation

More interpretable factors ?

An Encoding of the Data

Constraints reduce description length

Constrained Matrix Factorization

Lee & Seung, NIPS 97, Nature 99, NIPS 00

- Conic (non-negative coefficients)
- Convex (stochastic coefficients)
- Non-negative coefficients AND factors

Non-negativity appropriate for gene expression?

Viewed as PRMs

Reconstructing a SMF from (noisy) Data: An Optimization Problem

Finding SMFs

Given A, find C,F that minimize

$$\begin{bmatrix} a \\ n \\ A \end{bmatrix} - \begin{bmatrix} k \\ n \\ C \end{bmatrix} \times \begin{bmatrix} d \\ k \\ F \end{bmatrix}$$

Subject to: at most *m* non-zero entries in each row of *C*

Iterative Alternate Optimization

Optimize F given C, and C given F

$$\begin{bmatrix} d \\ n \\ A \end{bmatrix} - \begin{bmatrix} k \\ n \\ C \end{bmatrix} \times \begin{bmatrix} d \\ k \\ F \end{bmatrix}$$

Generalization of k-means clustering

Iterative optimization

For fixed C, finding optimal F is easy:

$$A \approx CF \Rightarrow F = pinv(C)A$$

 For fixed F: each row of A should be projected to a subspace spanned by m of the rows of F

Optimizing C for fixed F (decoding)

Optimizing C for fixed F (decoding)

- For each row, find best projection to subspace spanned by *m* of the rows of *F*.
 - need $\binom{k}{m}n$ projections
 - Perhaps with geometric data structure $\binom{k}{m} + n$
- Heuristic approach: change one coefficient at a time
 - With other coefficients fixed (simple projection)
 - With only coefficient mask fixed

Optimizing *C,F* for fixed mask

Initializing the Factors F

- Where do we start our alternatemaximization search?
- In k-means: start with random rows of A
 - Problematic for SMF: to close to local minima with factors resembling cluster centers.

Jumping out of local minima

- Instead of restarting from scratch, keep the useful factors, replace the less-used factors.
- Can measure the effect of each factor on reducing the error.
- Back to a familiar problem: how do we pick new factors to replace those removed?

 Regularization penalty promoting sparseness (instead of hard constraint)

- EM instead of MM:
 - Search for distribution over C
 - Optimize F for C=E[C|F]

Maximum Entropy Setting

$$\min D(Q||P_0) \quad \text{s.t.} \quad ||A - \mathbf{E}_Q[(C.M)]F||_2 < R$$

$$P_0(M_{i,j}) \sim Bernoulli(q)$$
 $P_0(C_{i,j}) \sim N(0,\sigma^2)$

$$P_0(C, M) = P_0(C)P_0(M)$$

SMF with partially known *C,F*

- Some factors are known:
 - How well can they combine to explain data?
 - Find additional factors beyond known ones

 Combined with factor localization data: partial knowledge about coeficients

Reconstructing a SMF from (noisy) Data: A Statistical Problem

For A=C×F+E, up to what level of noise is C×F the optimal factorization?

Measure: correlation of reconstructed F to true F, as a function of Var(E)/Var(C×F)

Reconstruction in the Presence of Noise

Reconstruction in the Presence of Noise – low dimension

Current directions

- Better optimization methods
- Investigating the SMF of expression data (cell cycle, stress response)
- Model selection: choosing k,m