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•Transcriptional factors
•Regulatory cascades
•Responses / stimuli
•Processes

•Protein complexes
•Pathways
•Cell activites
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Modeling Data as 
Combinations of Factors
• Instead of being assigned to 

a cluster, each data vector is 
a
combination of ‘factors’.

• ‘Factors’ represent basic 
structural components that 
are combined to get the the 
data vectors

Linear

linear



Modeling Data as 
Combinations of Factors

Linear
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Limitations of hierarchical 
clustering
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SVD Analysis of Gene 
Expression Patterns

• Alter, Brown, Botstein: PNAS 2000
– Yeast cell-cycle

• Raychaudhuri, Stuart, Altman: PSB 2000
– Yeast cell-cycle and sporulation;  serum-treated 

human fibroblast
• Holter et al: PNAS 2000

– Yeast cell-cycle



Holter, et al, 
PNAS 2000

Expression of cell-cycle genes projected 
to leading two eigenfactors:
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SVD recovers subspaces
– eigenfactors describe them

Are eigenfactors interpretable ?
• Degrees of freedom in choosing factors
• Is orthogonality desired ?
• Can only reconstruct a few factors 

(<<dimension)
• Additional eigenfactors used to refine non-linear 

interactions, instead of corresponding to new factors

Does each data vector really depend on 
all factors ?



Sparse Matrix 
Factorization:

combinations of m
factors, from a pool of k

At most m non-
zero entries in 

row
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0.4006 1.0000 0.9303 0.1553 -0.5772
0.9999 0.3976 0.6425 -0.1286 -0.1773
0.1814 0.5768 0.6388 -0.0995 -0.9999

-0.1335 0.1487 -0.1094 0.9999 0.1056
-0.6435 -0.9306 -1.0000 0.0973 0.6378
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Sparse Matrix Factorization

Sparsity (m)←sparse dense →

m=k:
low rank 

approximation



If m=1, and coefficients 
are 0/1, matrix 
decomposition is 
equivalent to k-means 
clustering.

For general coefficients 
with m=1, matrix 
decomposition is 
equivalent to clustering 
with a correlation 
distance measure.



Sparse Matrix Factorization

Sparsity (m)←sparse dense →

m=k:
low rank 

approximation

m=2,3,4

m=1:
clustering



Sparse Matrix Factorization
(m>1, but small)

• Model limited interactions
• Recovery even with large number of 

factors (beyond dimensionality of data / 
width of data matrix).

• No* degrees of freedom in recovery.
*except scaling and permutation

• More interpretable factors ?



An Encoding of the Data

A C
(encoding)

≈

F
(the code)

×

Constraints reduce description length



Constrained Matrix 
Factorization

Lee & Seung, NIPS 97, Nature 99, NIPS 00

• Conic (non-negative coefficients)
• Convex (stochastic coefficients)
• Non-negative coefficients AND factors

Non-negativity appropriate for gene 
expression?



Viewed as PRMs
Experiment

Gene

Expression

…

G

FF1 F2 Fk

Expression = 
G(F) + error

Sparse Linear 
Function



Reconstructing a SMF 
from (noisy) Data:

An Optimization Problem



Finding SMFs

Given A, find C,F that minimize
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F
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Subject to: at most m non-zero 
entries in each row of C



Iterative Alternate Optimization

Optimize F given C, and C given F

Generalization of k-means clustering
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Iterative optimization

• For fixed C, finding optimal F is easy:

• For fixed F: each row of A should be 
projected to a subspace spanned by m
of the rows of F

ACpinvFCFA )(=⇒≈



Optimizing C for fixed F
(decoding)

A C≈

F×



Optimizing C for fixed F
(decoding)

• For each row, find best projection to 
subspace spanned by m of the rows of F.
– need              projections
– Perhaps with geometric data structure

• Heuristic approach: change one coefficient 
at a time
– With other coefficients fixed (simple projection)
– With only coefficient mask fixed
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Optimizing C,F for fixed mask

A C≈
F×



Initializing the Factors F
• Where do we start our alternate-

maximization search ?
• In k-means: start with random rows of A

– Problematic for SMF: to close to local 
minima with factors resembling cluster 
centers.



Jumping out of local minima

• Instead of restarting from scratch, keep the 
useful factors, replace the less-used factors.

• Can measure the effect of each factor on 
reducing the error.

• Back to a familiar problem: how do we pick 
new factors to replace those removed?



• Regularization penalty 
promoting sparseness (instead 
of hard constraint)

• EM instead of MM:
–Search for distribution over C
–Optimize F for C=E[C|F]



Maximum Entropy Setting
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SMF with partially known C,F
• Some factors are known:

– How well can they combine to explain data?
– Find additional factors beyond known ones

• Combined with factor localization data:
partial knowledge about coeficients



Reconstructing a SMF 
from (noisy) Data:

A Statistical Problem

For A=C×F+E, up to what level of noise 
is C×F the optimal factorization ?

Measure: correlation of reconstructed F to 
true F, as a function of Var(E)/Var(C×F)



Reconstruction in the Presence 
of Noise
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Reconstruction in the Presence 
of Noise – low dimension

noise/signal
logarithmic

%
 F

ac
to

rs
 w

ith
in

 >
0.

95

0

0.2

0.4

0.6

0.8

1

1.2

10-5 10-4 0.001 0.01 0.1 1 10

k=10, m=2
n=800

d=3
d=5
d=8
d=10
d=12



Current directions

• Better optimization methods
• Investigating the SMF of 

expression data (cell cycle, stress 
response)

• Model selection: choosing k,m
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