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Genes within cluster follow same
expression pattern — deviation from
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K‘I’ranscriptional factors
*Regulatory cascades
*Responses / stimuli

*Processes
*Protein complexes
Pathways
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Modeling Data aS\Lmean
Combinations of Factors vg-

€

 Instead of being assigned to
a cluster, each data vector is

a linear
combination of ‘factors’. o0.5a+ 1.5y

* ‘Factors’ represent basic
structural components that
are combined to get the the
data vectors
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Limitations of hierarchical
clustering
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SVD Analysis of Gene
Expression Patterns

o Alter, Brown, Botstein: PNAS 2000
— Yeast cell-cycle

 Raychaudhuri, Stuart, Altman: PSB 2000

— Yeast cell-cycle and sporulation; serum-treated
human fibroblast

 Holter et al: PNAS 2000

— Yeast cell-cycle



Expression of cell-cycle genes projected
to leading two eigenfactors:
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Eigenfactors

True (Planted) Factors

-0.6431 | -0.9408 | -0.9932 | -0.0034 | 0.6628
-0.4274 | 0.2364 | -0.0917 | 0.9128 | -0.0681

0.6019 | -0.0967 | -0.0332 | 0.3965| 0.5372
-0.2036 | 0.2226 | 0.0622 | -0.0977 | 0.5172

0.0067 | 0.0144 | -0.0130 | -0.0069 | 0.0017
-0.0012 | -0.0025 | 0.0003 | 0.0006 | -0.0037
-0.0033 | 0.0019| 0.0003 | -0.0001 | 0.0048







SVD recovers subspaces
— eigenfactors describe them

Are eigenfiactors interpretable ?
e Degrees of freedom in choosing factors
* |Is orthogonality desired “?

« Can only reconstruct a few factors
(<<dimension)

« Additional eigenfactors used to refine non-linear
interactions, instead of corresponding to new factors

Does each data vector really depend on
all factors ?



Sparse Matrix

Factorization:
combinations of m
factors, from a pool of &

At most m non
Zero entries |n
_ row




Eigenfactors

SMF
Factors

True (Planted) Factors

-0.6431 | -0.9408 | -0.9932 | -0.0034 | 0.6628
-0.4274 | 0.2364 | -0.0917 | 0.9128| -0.0681
0.6019 | -0.0967 | -0.0332 | 0.3965| 0.5372
-0.2036 | 0.2226 | 0.0622 | -0.0977 | 0.5172
0.0067 | 0.0144 | -0.0130 | -0.0069 | 0.0017
-0.0012 | -0.0025 | 0.0003 | 0.0006 | -0.0037
-0.0033 | 0.0019| 0.0003 | -0.0001| 0.0048
0.4006 | 1.0000 | 0.9303| 0.1553| -0.5772
0.9999 | 0.3976 | 0.6425| -0.1286| -0.1773
0.1814 | 0.5768 | 0.6388 | -0.0995 | -0.9999
-0.1335 | 0.1487 | -0.1094 | 0.9999 | 0.1056
-0.6435 | -0.9306 | -1.0000 | 0.09/3 | 0.6378




Sparse Matrix Factorization

«—sparse S pars |ty ( m) dense —




If =1, and coefficients
are 0/1, matrix
decomposition is
equivalent to k-means
clustering.

For general coefficients
with 7=1, matrix
decomposition is
equivalent to clustering
with a correlation
distance measure.



Sparse Matrix Factorization

«—sparse S pars |ty ( m) dense —




Sparse Matrix Factorization
(m>1, but small)

e Model limited interactions

* Recovery even with large number of
factors (beyond dimensionality of data /
width of data matrix).

* No" degrees of freedom in recovery:.
*except scaling and permutation

o More interpretable factors ?



An Encoding of the Data
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Constraints reduce description length



Constrained Matrix
Factorization

Lee & Seung, NIPS 97, Nature 99, NIPS 00

« Conic (non-negative coefficients)
« Convex (stochastic coefficients)
 Non-negative coefficients AND factors

Non-negatlivity appropriate for gene
expression?



Viewed as PRMs

Experiment
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Reconstructing a SMF
from (noisy) Data:
An Optimization Problem



Finding SMFs
Given A, find C, Fthat minimize

D -
FIA _nC

Subject to: at most m non-zero
entries in each row of C



Iterative Alternate Optimization

Optimize Fgiven C, and Cgiven F

"Wl
A |- C

Generalization of k-means clustering



Iterative optimization

e For fixed C, finding optimal Fis easy:
A~CF = F = pinv(C)A

e For fixed F. each row of A should be
projected to a subspace spanned by m
of the rows of F



Optimizing Cfor fixed F

(decoding)




Optimizing Cfor fixed F
(decoding)

* For each row, find best projection to
subspace spanned by m of the rows of F.

— need (r‘;)n projections
— Perhaps with geometric data structure (m+ N

* Heuristic approach: change one coefficient
at a time
— With other coefficients fixed (simple projection)
— With only coefficient mask fixed



Optimizing C,F for fixed mask
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Initializing the Factors £~

e \Where do we start our alternate-
maximization search ?

e |n k-means: start with random rows of A

— Problematic for SMF: to close to local
minima with factors resembling cluster
centers.



Jumping out of local minima

 Instead of restarting from scratch, keep the
useful factors, replace the less-used factors.

e Can measure the effect of each factor on
reducing the error.

e Back to a familiar problem: how do we pick
new factors to replace those removed?



* Regularization penalty
promoting sparseness (instead
of hard constraint)

e EM instead of MM:
—Search for distribution over C
—Optimize Ffor C=E[C]FA]



Maximum Entropy Setting

minD(Q|R,) st [A-E[(C.M)]F| <R

Py (M; ;) ~ Bernoulli(q) R(C; )~ N(0,0°)

R(C,M)=FR(C)R(M)

l II><



SMF with partially known C,F

e Some factors are known:
— How well can they combine to explain data”
— Find additional factors beyond known ones

 Combined with factor localization data:
partial knowledge about coeficients



Reconstructing a SMF
from (noisy) Data:
A Statistical Problem

For A=CxF+E, up to what level of noise
iIs CxF the optimal factorization ?

Measure: correlation of reconstructed F to
true F, as a function of Var(E)/Var(CxF)



Reconstruction in the Presence
of Noise
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Reconstruction in the Presence
of Noise — low dimension
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Current directions

e Better optimization methods

 Investigating the SMF of
expression data (cell cycle, stress
response)

 Model selection: choosing A,m
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