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Introduction

Why care about convex optimization (and sparsity)?
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Why do we care about optimization — sparse
estimation

@ High dimensional problems (dimension > #
samples)
» Bioinformatics (microarrayd SNP analysisC
etc)
» Text-mining (POS taggingd )
» Magnetic resonance imaging —
compressed sensing

@ Structure inference

» Collaborative filtering — low-rank structure
» Graphical model inference— sparse graph
structure

Users

Movies
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Ex. 1: SNP (single nucleotide polymorphism) analysis
Xx;: input (SNP)O y; = 1: has the illnessO y; = —1: healthy

Goal: Infer the association from genetic variability x; to the iliness y;.
Logistic regression

m
minimize > log(1 +exp(—yi (xi,w))) + X|wl|
weR” i=1

data-fit Regularization
@ E.g., # SNPs n =500, 000, # f(x)=log(1+exp(-x))
subjects m = 5,000
@ MAP etimation with the logistic
loss f. YW
log(1+ &%) = —log P(Y = y|2)

o (2)

0.5

where P(Y = +1|2) = 1&.
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L1-regularization and sparsity

@ Best convex approximation of ||w/|o.
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L1-regularization and sparsity

@ Best convex approximation of ||w/|o.
@ Threshold occurs for finite A.
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L1-regularization and sparsity

@ Best convex approximation of ||w||o.
@ Threshold occurs for finite .

@ Non-convex cases (p < 1) can be solved by
re-weighted L1 minimization

2r

15F

1F

0.5
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Ex. 2: Compressed sensing [Candes, Romberg, & Tao 06]
Signal (MRI image) recovery from (noisy) low-dimensional
measurements.

’
minimi —lly — Qw2 + )\||ow
inimize 2||.V 2 + Al|®wl

@ y: Noisy signal
@ w: Original signal
e Q: R"” — R™: Observation matrix (random, fourier transform)
@ &: Trnasformation s.t. the original signal is sparse
NB: If @~ exists, we can solve instead

_ 1 . ~
minimize = ||y — AW||3 + \||W||1,
WcR" 2

where A = Qo 1,
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Ex. 3: Estimation of a low-rank matrix [Fazel+ 01; Srebro+ 05]

Goal: Recover a low-rank matrix X from partial (noisy) measurement Y

N 1
minimize 5 [[(X — Y)|* + A X]ls,

,
where || X||s, := ) _oj(X) (Schatten 1-norm)
j=1

Users

Aka trace norm, nuclear norm Movies
= Linear sum of singular values

= Sparsity in the SV spectrum

= Low-rank
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Ex. 4: Low-rank tensor completion [Tomioka+11]

Xe =33 Cani P U@ U Tucker decomposition
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Simple vs. structured sparse estimation problems

@ Simple sparse estimation problem
minimize L(w) + \||w||4
w
» SNP analysis

» Compressed sensing with @~ (e.g., wavelet)
» Collaborative filtering (matrix completion)

@ Structured sparse estimation problem

mini';,nize L(w) + \||[®ow||

» Compressed sensing without @~ (e.g., total variation)
» Low-rank tensor completion
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Common criticisms

@ Convex optimization is another developed field (and it is boring).
We can just use it as a black box.

» Yes, but we can do much better by knowing the structure of our
problems.
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Common criticisms

@ Convex optimization is another developed field (and it is boring).
We can just use it as a black box.

» Yes, but we can do much better by knowing the structure of our
problems.

@ Convexity is too restrictive.

» Convexity depends on parametrization. A seemingly non-convex
problem could be reformulated into a convex problem.

@ | am only interested in making things work.

» Yes, convex optimization works. But it can also be used for
analyzing how algorithms perform at the end.
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Bayesian inference as a convex optimization

minimize  Eq[f(w)] +Eg[log q(w)]
q ——— N—_—— —
average energy entropy
st q(w) >0, /q(w)dw =1
where
f(w) = —log P(D|w) —log P(w)

neg. log likelihood neg. log prior
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= q(w)= %e (Bayesian posterior)
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Bayesian inference as a convex optimization

minimize  Eq[f(w)] +Eg[log q(w)]
q ——— N—_—— —
average energy entropy
st q(w) >0, /q(w)dw =1
where
f(w) = —log P(D|w) —log P(w)

neg. log likelihood neg. log prior
—f(w)

= q(w)= %e (Bayesian posterior)

Inner approximations

@ Variational Bayes
@ Empirical Bayes
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Bayesian inference as a convex optimization

minimize  Eq[f(w)] +Eg[log q(w)]
q ——— ~——_— ——

average energy entropy

st. g(w) >0, /q(w)dw: 1

where
f(w) = Iog P(D|w) log P(w)
’ neg. Iog likelihood neg. Iog prior
= q(w)= 264 (W) (Bayesian postetior)
Inner approximations Outer approximations

v B @ Belief propagation
® Variational Bayes See Wainwright & Jordan
@ Empirical Bayes
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Overview

References:

Boyd &
Vandenberghe. (2004)
Convex optimization.

@ Convex optimization basics
» Convex sets
» Convex function
» Conditions that guarantee convexity
» Convex optimization problem

@ Looking into more structures Bertsekas (1999)

» Proximity operators " Nonlinear
» Conjugate duality and dual ascent j Programming.
» Augmented Lagrangian and ADMM !

n
o

Rockafellar (1970)
el Convex Analysis.

Moreau (1965) Proximité et
dualité dans un espace
Hilbertien.
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Convexity

Learning objectives
@ Convex sets
@ Convex function
@ Conditions that guarantee convexity
@ Convex optimization problem
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Convex set
A subset V C R" is a convex set

& line segment between two arbitrary points x, y € V is included in V;
that is,

vx,y e V,vae[0,1], Ax+(1-X\NyeV.
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Convex function
A function f : R” — R U {+o0} is a convex function

< the function f is below any line segment between two points on f;
that is,

Vx,y e R". VA e [0,1], f(1-Xx+Xy) <1 —=Nf(x)+ \(y)

(Jensen’s inequality)
Non-convex | poasrn

Convex

fly)

Johan Jensen
Ars 1859 — 1925

NB: when the strict inequality < holds, f is

Ryota Tomioka (Univ Tokyo)

called strictly convex.
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Convex function

A function f : R” — R U {+00} is a convex function

< the epigraph of f is a convex set; that is

Vr = {(t,x) : (t,x) € R™ t > f(x)} is convex.

Epigraph

v.f(y)
(x,f(x))

Ryota Tomioka (Univ Tokyo) Optimization 2012-08-15
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Jointly convex

@ A function f(x, y) can be convex wrt x (y) for any fixed y (x),
respectively, zbut can fail to be convex for x and y simultaneously.
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Jointly convex

@ A function f(x, y) can be convex wrt x (y) for any fixed y (x),
respectively, zbut can fail to be convex for x and y simultaneously.

f(x,y)isconvex = (<) f(x,y)is convex for x and y individually

@ To be more explicit, we sometimes say jointly convex.
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Why do we allow infinity?

@ f(x) =1/xis convex for x > 0.

F(x) = {1/x if x>0,

+oo otherwise.

and we can forget about the domain.
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Why do we allow infinity?

@ f(x) =1/xis convex for x > 0.

F(x) = {1/x if x>0,

+oo otherwise.

and we can forget about the domain.
@ The indicator function é¢(x) of a set C:

So(x) = 0 if x e C,
¢ | +oco otherwise.

Is this a convex function? (consider the epigraph)
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Condition #1: Hessian

Hessian V2f(x) is positive semidefinite (if f is differentiable)

Examples
@ (Negative) entropy is a convex function.

n
f(p) = > _ pilog pi,
i=1
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Condition #1: Hessian

Hessian V2f(x) is positive semidefinite (if f is differentiable)

Examples

@ (Negative) entropy is a convex function.

n
f(p) = > _ pilog pi,
i=1

Vf(p) = diag(1/p1, ..., 1/pn) = O.
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Condition #1: Hessian
Hessian V2f(x) is positive semidefinite (if f is differentiable) J

Examples
@ (Negative) entropy is a convex function.

n
f(p) = > _ pilog pi, |
i=1
V2f(p) = diag(1/ps,....1/pn) = 0.

@ log determinant is a concave (—f is convex) function

f(X) =log|X| (X =0),
V(X)=-X"ToX 1<0

s
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Condition #2: Maximum over convex functions
Maximum over convex functions {f;(x)}72,

f(x) := max f;(x) (fi(x) is convex for all )

is convex.

The same as saying “intersection of convex sets.is a.convex set”
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Condition #2: Maximum over convex functions
Maximum over convex functions {f(x; a) : o € R™}

f(x) := sup f(x; )
aeRM

iS convex.

Example
@ Quadratic over linear is a convex function

2
f(x,y) =sup <—a—x + ay) (x >0)
a€cR 2
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Condition #2: Maximum over convex functions
Maximum over convex functions {f(x; a) : o € R™}

f(x) := sup f(x; )
aeRM

iS convex.

Example
@ Quadratic over linear is a convex function

2

f(x,y) =sup <—a—x + ay) (x >0)
a€cR 2

2

_r
2x
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Condition #2: Maximum over convex functions
Maximum over convex functions {f(x; a) : o € R™}

f(x) := sup f(x; )
aeRM

iS convex.

Example
@ Quadratic over linear is a convex function

2

f(x,y) =sup <—a—x + ay) (x >0)
a€cR 2

2

_r
2x

@ Similarly

1
f(Z,y) = EyT}:‘1y (X ~0) isaconvex function (show it!)
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Condition #3: Partial minimum
Partial minimum of a convex function f(x, y)

f(x) := min f(x, y) is convex.
yeRrn

Examples
@ Hierarchical prior minimization

2 dp
fx) = di,.. ,dn>022<x ) (p=1)
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Condition #3: Partial minimum
Partial minimum of a convex function f(x, y)

f(x) := min f(x, y) is convex.
yeRrn

Examples
@ Hierarchical prior minimization

x? dp
>
f(x) = o 7dn>022< ) (p=1)

2p
_ 2 19 _
- q§_:j|x,| @=175)
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Condition #3: Partial minimum
Partial minimum of a convex function f(x, y)

f(x) := min f(x, y) is convex.
yeRrn

Examples
@ Hierarchical prior minimization

x? dp
>
f(x) = o 7dn>022< ) (p=1)
2p
- _ x:|9 e ol
: §| 19 (@=1,5)
@ Schatten 1- norm (sum of singularvalues)
— i ] —1yT
f(X) = min 5 (7 (x=7'x7) +Tr (D))
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Condition #3: Partial minimum
Partial minimum of a convex function f(x, y)

f(x) := min f(x, y) is convex.
YER"
Examples
@ Hierarchical prior minimization =
1 (% df e
f(x) = in - A > 1
= mn 33 (g ) e
1 2p -
- _ xi|9 — P
q;| G17 (g 1+p)

@ Schatten 1- norm (sum of singularvalues)

f(X) = 2‘;{}; (Tr (xz—1xT) + Tr():)) = Tr ((XTX)V?) - ga,-(xy
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Convex optimization problem
f: convex function, g: concave function (—g is convex), C: convex set.
mini;nize f(x), maxiymize a(y),

st. xeC. st. yeC.

Why?
@ local optimum = global optimum
@ duality (later) can be used to check convergence

= We can be sure that we are doing the right thing!
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Coming up next:

@ Gradient descent:
wit! = wt — ntvf(wt)

@ What do we do if we have

» Constraints
» Non-differentiable terms, like ||w/|1

= projection/proximity operator
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Proximity operators and iterative
shrinkage/thresholding methods

Learning objectives
@ (Projected) gradient method
@ lterative shrinkage/thresholding (IST) method
@ Acceleration

Ryota Tomioka (Univ Tokyo) Optimization 2012-08-15
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Proximity view on gradient descent
“Linearize and Prox”
w!™! = argmin (Vf(wt)(w —wh) + 1—Hw — wt||2)
w 2nt

= w' - Viw)

@ Step-size should satisfy
ne < 1/L(f).
@ L(f): the Lipschitz constant

IVH(y) = Vx|l < L(Oly — x]|.

@ L(f)=upper bound on the o V\}jlv\}
maximum eigenvalue of the W
Hessian ’
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Constraint minimization problem

@ What do we do, if we have a constraint?
minimize f(w),
weR”?
st. welC.
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Constraint minimization problem

@ What do we do, if we have a constraint?
minimize f(w),
weR”?
st. welC.

@ can be equivalently written as

minimize f(w) + oc(w),
weR”

where j¢(w) is the indicator function of the set C.
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Projected gradient method (Bertsekas 99; Nesterov 03)
Linearize the objective f, ¢ is the indicator of the constraint C

w!™! = argmin <Vf(wt)(w —wh) +5c(w) + 2L||w - Wt”%)
w Ui

. 1
— argmin (5o(w) + 5 [w — (w! — i H(w))13)
w nt

= projo(w! — nVH(w?)).

@ Requires n; < 1/L(f).

@ Convergence rate

LHIwo— w3 i

f(wk) — f(w*) <

@ Need the projection proj. to

be easy to compute

Ryota Tomioka (Univ Tokyo)
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Ideas for regularized minimization
Constrained minimization problem

minimize f(w) + dc(w).
weR”?

= need to compute the projection

! —argmin (so(w) + 5 |w - y13)
w 2n;

Ryota Tomioka (Univ Tokyo) Optimization
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Ideas for regularized minimization
Constrained minimization problem

minimize f(w) +dc(w).

= need to compute the projection
. 1
! —argmin (so(w) + 5 |w - y13)
w nt

Regularized minimization problem

minimize f(w) + A\||w||4

weR?

= need to compute the proximity operator
. 1
wi! = argmin (N|wl + 5 |w - y13)
w nt
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Proximal Operator: generalization of projection
: 1
prox,(y) — argmin (g(w) + 3 |w - y13)

@ g = d¢: Projection onto a convex set projs(y).

@ g(w) = \||w||1: Soft-Threshold ST(y) )
_ 1
prox, (y) = argmin (X|wls+ 5 |w - yI£
Vit A (1< -N), /_A Ny
=40 (=A< y <),
Yi—=X (Yi>M). ‘

@ Prox can be computed easily for a separable f.
@ Non-differentiability is OK.
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Exercise

Derive prox operator prox, for
@ Ridge regularization

n
gw) =21 w?
j=1
@ Group lasso regularization [Yuan & Lin 2006]

n
g(wy, ..., wn) =X w2
=

Ryota Tomioka (Univ Tokyo) Optimization 2012-08-15
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lterative Shrinkage Thresholding (IST)

w!*! = argmin (Vf(w’)(w —wh + \|w| + LHw - wt||§>
w 2n¢

. 1
—argmin (\|wl: + W~ (w! VAW )
w nt

= prox,,, (w' — n,Vf(w")).

@ The same condition for 7, the
same O(1/k) convergence (Beck

& Teboulle 09)

lwo — w|?

2k

@ If the Prox operator prox, is easy,
it is simple to implement.

@ AKA Forward-Backward Splitting

(Lions & Mercier 76)

Ryota Tomioka (Univ Tokyo)
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IST summary

Solve minimization problem
minimize f(w) + \||w||4
weR?
by iteratively computing

wit! = prox,, (w' — n,Vi(w?)),
where

. 1
prox(y) = argmin (Alwij + 5w -yl )
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FISTA: accelerated version of IST (Beck & Teboulle 09;

Nesterov 07)
@ Initialize wP appropriately, z' = w0 sy = 1.
© Update w':

w' = prox,, (2" — n/Vf(2")).

© Update z!:

st —1 _
Zt+1 :Wt—i-( t >(Wt—Wt 1)7
St+1

where s;1 = (1+ (/1 +4s?)/2.

@ The same per iteration complexity. Converges as O(1/k?).

@ Roughly speaking, z! predicts where the IST step should be
computed.

Ryota Tomioka (Univ Tokyo) Optimization 2012-08-15 35/73



Effect of acceleration

- = =ISTA
----- MTWIST

Without acceleration

Ieration

0 ZObO 4060 6600 8050 10000
Number of iterations

From Beck & Teboulle 2009 SIAM J. IMAGING SCIENCES
Vol. 2, No. 1, pp. 183-202
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MATLAB Exercise 1: implement an L1 regularized
logistic regression via IST

m n
minimize S log(1 +exp(—yi (xi,w))) + XX |w
i=1 =1

weR” j
~- - \ /
data-fit Regularization
Hint: define
m
fi(z) = _log(1 + exp(-z)).
i=1
Then the problem is
yixi "
L n YaXa T
minimize f,(Aw)+ XY |wj| where A=
=1 :
! YmeT

Ryota Tomioka (Univ Tokyo) Optimization 2012-08-15
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Some more hints

@ Compute the gradient of the loss term

_ exp(—z) \" _
Vi (Aw) = —AT <1+ex—p(—z,-)>,-:1 (z= Aw)

© The gradient step becomes

m
WH—% —wl AT ( exp(—z;) >
M\ exp(-2) )

© Then compute the proximity operator

wit! — proxm(wt*%)

t+3 t+3
Wj+2 + A (Wj+2 < =Ant),
t+1
=40 (=M < w2 < ),
H_1 H_1

W, = (W2 > ).
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Matrix completion via IST (Mazumder et al. 10)
Loss function: Regularization:

1i r
F(X) = 51X = V)| g(X) =23 " oi(X) (Si-norm).
=
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Matrix completion via IST (Mazumder et al. 10)

Loss function:
1 2
f(X) = sl - V).
gradient:

VHX) = QT (X — Y))

Ryota Tomioka (Univ Tokyo)

Regularization:

g(X) =X oj(X) (Si-norm).
=1
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Matrix completion via IST (Mazumder et al. 10)
Loss function: Regularization:

1i r
F(X) = 51X = V)| g(X) =23 " oi(X) (Si-norm).
=

gradient:

- Prox operator (Singular Value
VIX)=Q (X -Y)) Thresholding):

prox,(Z) = Umax(S — M, 0)V'.
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Matrix completion via IST (Mazumder et al. 10)
Loss function: Regularization:

1i r
F(X) = 51X = V)| g(X) =23 " oi(X) (Si-norm).
=

gradient:

- Prox operator (Singular Value
VIX)=Q (X -Y)) Thresholding):

prox,(Z) = Umax(S — M, 0)V'.
lteration:

X = prox,,, ((l — 02" Q)(X") + UtQTQ(Yt))

~
fill in missing observed

@ When 1 = 1, fill missings with predicted values X!, overwrite the
observed with observed values, then soft-threshold.
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Conjugate duality and dual ascent

@ Convex conjugate function
@ Lagrangian relaxation and dual problem
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Conjugate duality

The convex conjugate f* of a function f:

f*(y) = sup ((x,y) — f(x))

XeR"

f(x)

Since the maximum over linear functions is always convex, f need not
be convex.
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Demo

Try

@ demo_conjugate (@ (x)x."2/2,-5:0.1:5);

@ demo_conjugate (@ (x)abs(x),-5:0.1:5);

@ demo_conjugate (@ (x)x.*log(x)+(1l-x) .xlog(1l-x)
0.001:0.001:0.999);

[m] = = =
Ryota Tomioka (Univ Tokyo)
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Conjugate duality (dual view)

Convex conjugate function

Every pair (y, f*(y)) corresponds to a tangent line (x, y) — f*(y) of the
original function f(x).

Because
f*(y) = supx ((x,y) — f(x))
implies
o Ift < f*(y),thereisa x s.t.
f(x) < (x,y)—t
o Ift> f(y),

f(x) > (x,y) -t

for every x.
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Conjugate duality (dual view)

Convex conjugate function

Every pair (y, f*(y)) corresponds to a tangent line (x, y) — f*(y) of the
original function f(x).

Because
f*(y) = supx ((x,y) — f(x))
implies
e Ift < f*(y),thereisa x s.t.
f(x) < (x,y)—t.
o If t > f*(y), 1y
f(x) > (x,y) — t -f(y)

for every x.
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Conjugate duality (dual view)

Convex conjugate function

Every pair (y, f*(y)) corresponds to a tangent line (x, y) — f*(y) of the
original function f(x).

Because
f(y) = supx ((x,y) — f(x))
implies
e Ift < f*(y),thereisa x s.t.
f(x) < (x,y)—t.
o Ift>f(y),
f(x) = (x,y) -t
Fy) Y

for every x.
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Conjugate duality (dual view)

Convex conjugate function

Every pair (y, f*(y)) corresponds to a tangent line (x, y) — f*(y) of the
original function f(x).

Because
f*(y) = supy ({x,y) — f(x))

implies
o Ift < f*(y),thereisa x s.t.
f(x) < (x,y)—t.
o Ift>f(y),
fix) = (x,y) -t

for every x. _f*(y) V y
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Example of conjugate duality (y) = sup,cz. ((x,y) — f(x))

@ Quadratic function

2 2,,2
X oy
*
) = 2 =7
f(x) f*(y)
\ 4
A Y ,/
A Sol.” 7
~ PR ’
N So7
PR LR
- ~ ’ ~
P N S
Phd N ~
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Example of conjugate duality (y) = sup,cz. ((x,y) — f(x))

@ Logistic loss function

f(x) = log(1 +exp(—x))
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Example of conjugate duality (y) = sup,cz. ((x,y) — f(x))

@ Logistic loss function

f(x) = log(1 + exp(—x)) f*(—y) =ylog(y)+(1—y)log(1 —y)
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f(x) = Ix|

Example of conjugate duality (y) = sup,cz. ((x,y) — f(x))
@ L1 regularizer

Ryota Tomioka (Univ Tokyo)
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Example of conjugate duality (y) = sup,cz. ((x,y) — f(x))

@ L1 regularizer

fix) = = {—l—oo (otherwise)

f(X) ‘\ l'
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Bi-conjugate ** may be different from f

For nonconvex f,
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Lagrangian relaxation
Our optimization problem:

For example
miSiIELze f(Aw) + g(w) f(z) =3z - yl|3
© (squared loss)
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Lagrangian relaxation
Our optimization problem:

For example
mierirIBinze f(Aw) + g(w) f(z) =3z - yl|3
© (squared loss)

Equivalently written as
minimize f(z w
[minimize  1(2) + g(w),
st. z=Aw  (equality constraint)
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Lagrangian relaxation
Our optimization problem:

For example
. 0 0 _ 1 2
minimize  f(Aw) + g(w) f(z) =3llz-yll3
(squared loss)
Equivalently written as

minimize f(z w
ZERM WERD (2) + g(w).

st. z=Aw  (equality constraint)

Lagrangian relaxation

minimize  £(z,w, o) = £(2) + g(w) + a'(z— Aw)
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Lagrangian relaxation
Our optimization problem:

For example
mivrllir]ginze f(Aw) + g(w) f(z) =3z - yl|3
© (squared loss)

Equivalently written as

minimize  f(z) + g(w),
ZeR™M weR"

st. z=Aw (equality constraint)

Lagrangian relaxation
minimize  £(z,w, o) = £(2) + g(w) + a'(z— Aw)

@ Aslong as z = Aw, the relaxation is exact.
@ sup, £(z, w, o) recovers the original problem.
@ Minimum of £ is no greater than the minimum of the original.
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Weak duality

ﬂlc(z, W, a) < |uf(f(Aw) +g(w))=:p
proof
inf £(z, w, a) = min ( inf L(z,w,a), inf L(z, W,a))
zw z=Aw z+Aw

= min (p*,

*

zw.a)

inf L
z#£AwW
<p
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Dual problem

From the above argument

d(a) = inf L(z,w, o)

zw

is a lower bound for p* for any a. Why don’t we maximize over a?
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Dual problem
From the above argument
dla) := ;nj/ L(z,w, )
is a lower bound for p* for any a. Why don’t we maximize over a?
Dual problem
maaxei]gl"gze d(a)

Note

sup an,L(z, w,a)=d <p‘= injlsup L(z,W, )

If d* = p*, strong duality holds. This is the case if f and g both closed

and convex.
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Fenchel’'s duality

For convex' functions f and g, and a matrix A € R™<"

sup (4*(701) - g*(ATa)) = inf (f(Aw)+g(w))

acRM weR”?

Werner Fenchel
1905 — 1988

@ Only need conjugate functions f* and g* to compute the dual.
@ We can make a list of them (like Laplace transform)

MATLAB Exercise 1.5:

@ Compute the Fenchel dual of L1-logistic regression problem in
Ex.1 and implement the stopping criterion: stop optimization if

(0bjprim — Objgual)/Objprim < €  (relative duality gap).

"More precisely, proper, closed, and convex.
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Derivation of Fenchel’'s duality theorem

= inf (f(z) +g(w)+aT(z- Aw))

= inf ((2) + (e, 2)) + inf (g(w) - <ATa, w>)

= —sup ((~a.2) ~ 1(2)) — sup (AT w) — g(w))
——F(-a)-g'(A"a)
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Augmented Lagrangian and ADMM

Learning objectives
@ Structured sparse estimation
@ Augmented Lagrangian
@ Alternating direction method of multipliers (ADMM)
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Recap: Simple vs. structured sparse estimation
problems

@ Simple sparse estimation problem
miniv[/nize f(w) + A||w||4
» SNP analysis

» Compressed sensing with @~ (e.g., wavelet)
» Collaborative filtering (matrix completion)

@ Structured sparse estimation problem

minimize  f(w) + | ®w]4

» Compressed sensing without @~ (e.g., total variation)
» Low-rank tensor completion
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Total Variation based image denoising (rudin, osher, Fatemi 92]

m|n|m|ze —|| W— M|z + )‘Z H <8XWU)H

Original Wy Observed M
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In one dimension
@ Fused lasso [Tibshirani et al. 05]
1 n—1
minimize || w — yl3+ )\Z; (W1 — w;
j:

——True
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Structured sparse estimation

@ TV denoising

minimize —|| W— M|z + )‘Z H (8XWU ) Hz

@ Fused lasso

n—1
minimize —||w YIE+HAD Wit —w;
Jj=1
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Structured sparse estimation

@ TV denoising

minimize —|| W— M|z + )‘Z H (BXWU ) Hz

@ Fused lasso

n—1
minimize —||w YIE+HAD Wit —w;
Jj=1

Structured sparse estimation problem

we

minimize  f(w) + \||Aw|
R" N~ ——

data-fit  regularization
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Structured sparse estimation problem

minimize  f(w) + \||Aw||;
weRn —— N———

data-fit  regularization

@ Not easy to compute prox operator (because it is non-separable)
= difficult to apply IST-type methods.
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Structured sparse estimation problem

minimize  f(w) + \||Aw||;
weRn —— N———

data-fit  regularization

@ Not easy to compute prox operator (because it is non-separable)
= difficult to apply IST-type methods.

Can we use the Lagrangian relaxation trick?
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Forming the Lagrangian
Structured sparsity problem

minimize  f(w) + \||Aw||4
weR”" —— ——
data-fit  regularization

Equivalently written as
minimize f(w)+ \|z||1 ,
weR? N——"

separable!

st. z=Aw (equality constraint)
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Forming the Lagrangian
Structured sparsity problem

minimize  f(w) + \||Aw|
weR”" —— ——

data-fit  regularization

Equivalently written as

minimize f(w)+ \||Z|1 ,
weR”? ——
separable!

st. z=Aw (equality constraint)

Lagrangian function
L(w,z,a)=Ff(w)+\|Z||; + o' (z - Aw).

a: Lagrangian multiplier vector.
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Dual ascent
Dual problem

max anfl <f(w) +Mz]li +a'(z - Aw))

We can compute the dual objective d(«) by separately minimizing
; T
(1) min (f(w) -« Aw)

(2) min (AHZ||1 +aTz)
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Dual ascent
Dual problem

max anfl <f(w) +Mz]li +a'(z - Aw))

We can compute the dual objective d(«) by separately minimizing
(1) min (f(w) - aTAw) — _F(ATa),

(2) min (A2l +aTz) = (A 1)"(~).
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Dual ascent

Dual problem

max ;nvf, <f(w) +Mz]li +a'(z - Aw))

We can compute the dual objective d(«) by separately minimizing
(1) min (f(w) - aTAw) = ~f*(ATa),
(2) min (A2l +aTz) = (A 1)"(~).
But also we get the gradient of d(«) (for free) as follows:
Vod(a) =2" — AW™,
where w*: argmin of (1), z*: argmin of (2). See Chapter 6, Bertsekas 1999.
Gradient ascent (in the dual)!
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Dual ascent (Arrow, Hurwicz, & Uzawa 1958)

( Minimize the Lagrangian wrt x and z:
wt! = argmin,, (f(w) —a’Aw).

z!H1 = argmin, (\|z|1 + ' 2),
Update the Lagrangian multiplier a!:
altl = at ¢ (2t — Awtt),

H. Uzawa

primal

@ Pro: Very simple.

@ Con: When f* or g* is
non-differentiable, itisadual N\, / / ________
subgradient method (convergence
more tricky)

NB: f* is differentiable < f is strictly
convex.

dual
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Forming the augmented Lagrangian
Structured sparsity problem

minimize  f(w) + \||Aw|4
weR" —~— ——
data-fit  regularization
Equivalently written as (for any > 0)

minimize f(w) + A|z|; +2)z— Awl|Z,
weR” —_—— 2

| —

I
separable! penalty term

st. z=Aw  (equality constraint)
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Forming the augmented Lagrangian
Structured sparsity problem

minimize  f(w) + A|[|Aw||
weR" —~— ——
data-fit  regularization

Equivalently written as (for any > 0)

minimize f(w) + A|z|; +2)z— Awl|Z,
weR” —_—— 2

~—— —
I
separable! penalty term

st. z=Aw  (equality constraint)

Augmented Lagrangian function
Ly(w,z,0) = f(w) + Nzl + T (z— Aw) + ]|z~ Aw|}

«: Lagrangian multiplier, n: penalty parameter
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Augmented Lagrangian Method
Augmented Lagrangian function

Lo(w,z,a) = f(w)+ Az +a'(z— Aw) + guz — Aw|2.

Augmented Lagrangian method (Hestenes 69, Powell 69)

Minimize the AL function wrt w and z:

(w1, ztH1) = argmin £,(w, z,a).
wWeR? zeRM

Update the Lagrangian multiplier:

@ Pro: The dual is always differentiable due to the penalty term.

@ Con: Cannot minimize over w and z independently
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Alternating Direction Method of Multipliers (ADMM;
Gabay & Mercier 76)

Minimize the AL function £, (w, z!, a') wrt w:

wit! = argmin (f(w) + 22t - Aw + a’/nug) .
weR”? 2

Minimize the AL function £, (w!*', z, ') wrt z:

z*+1 = argmin (/\“2”1 + 2z - Awtt! 4 a’/nH%) .
zZeRM 2

Update the Lagrangian multiplier:
olt! = at—f—n(zt'H _ AWI_H).

@ Looks ad-hoc but convergence can be shown rigorously.
@ Stability does not rely on the choice of step-size 7.
@ The newly updated wi*! enters the computation of zi*1.
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MATLAB Exercise 2: implement an ADMM for fused
lasso

Fused lasso
1 n—1
. . 2
minimize §Hw— yliz+ A 21 (Wit — W
]:

@ What is the loss function f?

@ What is the matrix A for fused lasso?
@ How does the w-update step look?
@ How does the z-update step look?
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Conclusion

@ Three approaches for various sparse estimation problems
» lterative shrinkage/thresholding — proximity operator
» Uzawa’s method — convex conjugate function
» ADMM — combination of the above two
@ Above methods go beyond black-box models (e.g., gradient
descent or Newton’s method) — takes better care of the problem
structures.

@ These methods are simple enough to be implemented rapidly, but
should not be considered as a silver bullet.
= Trade-off between:

» Quick implementation — test new ideas rapidly
» Efficient optimization — more inspection/try-and-error/cross
validation
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Topics we did not cover

@ Beyond polynomial convergence O(1/k?)

» Dual Augmented Lagrangian (DAL) converges super-linearly
o(exp(—k)). Software
http://mloss.org/software/view/183/

(This is limited to non-structured sparse estimation.)

@ Beyond convexity

» Generalized eigenvalue problems.

» Difference of convex (DC) programming.

» Dual ascent (or dual decomposition) for sequence labeling in
natural language processing; see [Wainwright, Jaakkola, Willsky
05; Koo et al. 10]

@ Stochastic optimization
» Good tutorial by Nathan Srebro (ICML2010)
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Optimization for Machine Learning

A new book “Optimization for Machine Learning” (2011)

Ryota Tomioka (Univ Tokyo)
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Possible projects

@ Compare the three approaches, namely IST, dual ascent, and
ADMM, and discuss empirically (and theoretically) their pros and
cons.

© Apply one of the methods discussed in the lecture to model some
real problem with (structured) sparsity or low-rank matrix.
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