Convex Optimization: Old Tricks for New Problems

Ryota Tomioka

2012-08-15 @ DTU PhD Summer Course

Introduction

Why care about convex optimization (and sparsity)?

Why do we care about optimization — sparse estimation

- High dimensional problems (dimension >> # samples)
 - Bioinformatics (microarray, SNP analysis, etc)
 - Text-mining (POS tagging ,)
 - Magnetic resonance imaging compressed sensing
- Structure inference
 - Collaborative filtering low-rank structure
 - Graphical model inference— sparse graph structure

Ex. 1: SNP (single nucleotide polymorphism) analysis

 \boldsymbol{x}_i : input (SNP), $y_i = 1$: has the illness, $y_i = -1$: healthy

<u>Goal</u>: Infer the association from genetic variability x_i to the illness y_i .

Logistic regression

$$\underset{\boldsymbol{w} \in \mathbb{R}^n}{\text{minimize}} \qquad \underbrace{\sum_{i=1}^m \log(1 + \exp(-y_i \, \langle \boldsymbol{x}_i, \, \boldsymbol{w} \rangle))}_{\text{data-fit}} \quad + \quad \underbrace{\lambda \| \boldsymbol{w} \|_1}_{\text{Regularization}}$$

- E.g., # SNPs n = 500,000, # subjects m = 5,000
- MAP etimation with the logistic loss f.

$$\log(1+e^{-yz}) = -\log P(Y=y|z)$$

where
$$P(Y = +1|z) = \frac{e^z}{1+e^z}$$
.

f(x) = log(1 + exp(-x))

• Best convex approximation of $\|\boldsymbol{w}\|_0$.

• Best convex approximation of $\|\boldsymbol{w}\|_0$.

- Best convex approximation of $\|\boldsymbol{w}\|_0$.
- Threshold occurs for finite λ .

- Best convex approximation of $\|\boldsymbol{w}\|_0$.
- Threshold occurs for finite λ .
- Non-convex cases (p < 1) can be solved by re-weighted L1 minimization

Ex. 2: Compressed sensing [Candes, Romberg, & Tao 06]

Signal (MRI image) recovery from (noisy) low-dimensional measurements.

- y: Noisy signal
- w: Original signal
- Ω : $\mathbb{R}^n \to \mathbb{R}^m$: Observation matrix (random, fourier transform)
- Φ: Trnasformation s.t. the original signal is sparse

NB: If Φ^{-1} exists, we can solve instead

$$\label{eq:minimize} \underset{\tilde{\pmb{w}} \in \mathbb{R}^n}{\text{minimize}} \qquad \frac{1}{2} \| \pmb{y} - \pmb{A} \tilde{\pmb{w}} \|_2^2 + \lambda \| \tilde{\pmb{w}} \|_1,$$

where $\mathbf{A} = \mathbf{\Omega} \mathbf{\Phi}^{-1}$.

Ex. 3: Estimation of a low-rank matrix [Fazel+ 01; Srebro+ 05]

Goal: Recover a low-rank matrix \boldsymbol{X} from partial (noisy) measurement \boldsymbol{Y}

$$\begin{array}{ll} \text{minimize} & \frac{1}{2}\|\Omega(\pmb{X}-\pmb{Y})\|^2 + \lambda\|\pmb{X}\|_{S_1} \\ \text{where} & \|\pmb{X}\|_{S_1} := \sum_{j=1}^r \sigma_j(\pmb{X}) \quad \text{(Schatten 1-norm)} \end{array}$$

Aka trace norm, nuclear norm

- ⇒ Linear sum of singular values
- ⇒ Sparsity in the SV spectrum
- ⇒ Low-rank

Ex. 4: Low-rank tensor completion [Tomioka+11]

9/73

Simple vs. structured sparse estimation problems

Simple sparse estimation problem

minimize
$$L(\mathbf{w}) + \lambda \|\mathbf{w}\|_1$$

- SNP analysis
- Compressed sensing with Φ⁻¹ (e.g., wavelet)
- Collaborative filtering (matrix completion)
- Structured sparse estimation problem

minimize
$$L(\boldsymbol{w}) + \lambda \|\boldsymbol{\Phi}\boldsymbol{w}\|_1$$

- ▶ Compressed sensing without Φ^{-1} (e.g., total variation)
- Low-rank tensor completion

Common criticisms

- Convex optimization is another developed field (and it is boring).
 We can just use it as a black box.
 - Yes, but we can do much better by knowing the structure of our problems.

Common criticisms

- Convex optimization is another developed field (and it is boring).
 We can just use it as a black box.
 - Yes, but we can do much better by knowing the structure of our problems.
- Convexity is too restrictive.
 - Convexity depends on parametrization. A seemingly non-convex problem could be reformulated into a convex problem.

Common criticisms

- Convex optimization is another developed field (and it is boring).
 We can just use it as a black box.
 - Yes, but we can do much better by knowing the structure of our problems.
- Convexity is too restrictive.
 - Convexity depends on parametrization. A seemingly non-convex problem could be reformulated into a convex problem.
- I am only interested in making things work.
 - Yes, convex optimization works. But it can also be used for analyzing how algorithms perform at the end.

$$\begin{split} & \underset{q}{\text{minimize}} & & \underbrace{\mathbb{E}_q[f(w)]}_{\text{average energy}} + \underbrace{\mathbb{E}_q[\log q(w)]}_{\text{entropy}} \\ & \text{s.t.} & & q(w) \geq 0, \quad \int q(w) \mathrm{d}w = 1 \end{split}$$

where

$$f(w) = \underbrace{-\log P(D|w)}_{\text{neg. log likelihood}} \underbrace{-\log P(w)}_{\text{neg. log prior}}$$

$$\begin{array}{ll} \text{minimize} & \underbrace{\mathbb{E}_q[f(w)]}_{\text{average energy}} + \underbrace{\mathbb{E}_q[\log q(w)]}_{\text{entropy}} \\ \text{s.t.} & q(w) \geq 0, \quad \int q(w) \mathrm{d}w = 1 \end{array}$$

where

$$f(w) = \underbrace{-\log P(D|w)}_{\text{neg. log likelihood neg. log prior}} - \underbrace{\log P(w)}_{\text{neg. log likelihood neg. log prior}}$$

$$\Rightarrow q(w) = \frac{1}{Z}e^{-f(w)} \quad \text{(Bayesian posterior)}$$

$$\begin{array}{ll} \text{minimize} & \underbrace{\mathbb{E}_q[f(w)]}_{\text{average energy}} + \underbrace{\mathbb{E}_q[\log q(w)]}_{\text{entropy}} \\ \\ \text{s.t.} & q(w) \geq 0, \quad \int q(w) \mathrm{d}w = 1 \end{array}$$

where

$$f(w) = \underbrace{-\log P(D|w)}_{\text{neg. log likelihood neg. log prior}} \underbrace{-\log P(w)}_{\text{neg. log likelihood neg. log prior}}$$

$$\Rightarrow q(w) = \frac{1}{Z}e^{-f(w)} \quad \text{(Bayesian posterior)}$$

Inner approximations

- Variational Bayes
- Empirical Bayes

$$\begin{array}{ll} \text{minimize} & \underbrace{\mathbb{E}_q[f(w)]}_{\text{average energy}} + \underbrace{\mathbb{E}_q[\log q(w)]}_{\text{entropy}} \\ \text{s.t.} & q(w) \geq 0, \quad \int q(w) \mathrm{d}w = 1 \end{array}$$

where

$$f(w) = \underbrace{-\log P(D|w)}_{\text{neg. log likelihood neg. log prior}} - \underbrace{\log P(w)}_{\text{neg. log likelihood neg. log prior}}$$

$$\Rightarrow q(w) = \frac{1}{Z}e^{-f(w)} \quad \text{(Bayesian posterior)}$$

Inner approximations

- Variational Bayes
- Empirical Bayes

Outer approximations

Belief propagation
 See Wainwright & Jordan
 08.

Overview

- Convex optimization basics
 - Convex sets
 - Convex function
 - Conditions that guarantee convexity
 - Convex optimization problem
- Looking into more structures
 - Proximity operators
 - Conjugate duality and dual ascent
 - Augmented Lagrangian and ADMM

References:

Boyd &

Vandenberghe. (2004) Convex optimization.

Bertsekas (1999) Nonlinear Programming.

Rockafellar (1970) Convex Analysis.

Moreau (1965) Proximité et dualité dans un espace Hilbertien.

Convexity

Learning objectives

- Convex sets
- Convex function
- Conditions that guarantee convexity
- Convex optimization problem

Convex set

A subset $V \subseteq \mathbb{R}^n$ is a convex set

 \Leftrightarrow line segment between two arbitrary points $\mathbf{x}, \mathbf{y} \in V$ is included in V; that is,

$$\forall \boldsymbol{x}, \boldsymbol{y} \in V, \, \forall \lambda \in [0, 1], \quad \lambda \boldsymbol{x} + (1 - \lambda) \boldsymbol{y} \in V.$$

Convex function

A function $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is a convex function

 \Leftrightarrow the function f is below any line segment between two points on f; that is.

$$\forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n, \, \forall \lambda \in [0, 1], \quad f((1 - \lambda)\boldsymbol{x} + \lambda \boldsymbol{y}) \leq (1 - \lambda)f(\boldsymbol{x}) + \lambda f(\boldsymbol{y})$$

(Jensen's inequality)

NB: when the trict inequality < holds, f is called trictly convex.

Convex function

A function $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is a convex function

 \Leftrightarrow the epigraph of f is a convex set; that is

$$V_f := \{(t, \mathbf{x}) : (t, \mathbf{x}) \in \mathbb{R}^{n+1}, t \geq f(\mathbf{x})\}$$
 is convex.

Jointly convex

• A function f(x, y) can be convex wrt x(y) for any fixed y(x), respectively, zbut can fail to be convex for x and y simultaneously.

Jointly convex

• A function f(x, y) can be convex wrt x(y) for any fixed y(x), respectively, zbut can fail to be convex for x and y simultaneously.

f(x,y) is convex \Rightarrow (\Leftarrow) f(x,y) is convex for x and y individually

• To be more explicit, we sometimes say jointly convex.

Why do we allow infinity?

• f(x) = 1/x is convex for x > 0.

$$f(x) = \begin{cases} 1/x & \text{if } x > 0, \\ +\infty & \text{otherwise.} \end{cases}$$

and we can forget about the domain.

Why do we allow infinity?

• f(x) = 1/x is convex for x > 0.

$$f(x) = \begin{cases} 1/x & \text{if } x > 0, \\ +\infty & \text{otherwise.} \end{cases}$$

and we can forget about the domain.

• The indicator function $\delta_C(\mathbf{x})$ of a set C:

$$\delta_{C}(\mathbf{x}) = \begin{cases} 0 & \text{if } \mathbf{x} \in C, \\ +\infty & \text{otherwise.} \end{cases}$$

Is this a convex function? (consider the epigraph)

Condition #1: Hessian

Hessian $\nabla^2 f(\mathbf{x})$ is positive semidefinite (if f is differentiable)

Examples

(Negative) entropy is a convex function.

$$f(p) = \sum_{i=1}^{n} p_i \log p_i,$$

Condition #1: Hessian

Hessian $\nabla^2 f(\mathbf{x})$ is positive semidefinite (if f is differentiable)

Examples

• (Negative) entropy is a convex function.

$$f(p) = \sum_{i=1}^{n} p_i \log p_i,$$

$$\nabla^2 f(p) = \operatorname{diag}(1/p_1, \ldots, 1/p_n) \succeq 0.$$

Condition #1: Hessian

Hessian $\nabla^2 f(\mathbf{x})$ is positive semidefinite (if f is differentiable)

Examples

• (Negative) entropy is a convex function.

$$f(p) = \sum_{i=1}^n p_i \log p_i,$$

$$\nabla^2 f(p) = \operatorname{diag}(1/p_1, \ldots, 1/p_n) \succeq 0.$$

• log determinant is a *concave* (-f is convex) function

$$f(\mathbf{X}) = \log |\mathbf{X}| \quad (\mathbf{X} \succeq 0),$$

$$\nabla^2 f(\mathbf{X}) = -\mathbf{X}^{-\top} \otimes \mathbf{X}^{-1} \preceq 0$$

Maximum over convex functions $\{f_j(x)\}_{j=1}^{\infty}$

$$f(\mathbf{x}) := \max_{j} f_{j}(\mathbf{x})$$
 $(f_{j}(\mathbf{x}) \text{ is convex for all } j)$

is convex.

The same as saying "intersection of convex sets is a convex set"

Maximum over convex functions $\{f(x; \alpha) : \alpha \in \mathbb{R}^m\}$

$$f(\mathbf{x}) := \sup_{\boldsymbol{\alpha} \in \mathbb{R}^m} f(\mathbf{x}; \boldsymbol{\alpha})$$

is convex.

Example

Quadratic over linear is a convex function

$$f(x,y) = \sup_{\alpha \in \mathbb{R}} \left(-\frac{\alpha^2}{2} x + \alpha y \right) \qquad (x > 0)$$

Maximum over convex functions $\{f(x; \alpha) : \alpha \in \mathbb{R}^m\}$

$$f(\mathbf{x}) := \sup_{\boldsymbol{lpha} \in \mathbb{R}^m} f(\mathbf{x}; \boldsymbol{lpha})$$

is convex.

Example

Quadratic over linear is a convex function

$$f(x,y) = \sup_{\alpha \in \mathbb{R}} \left(-\frac{\alpha^2}{2} x + \alpha y \right) \qquad (x > 0)$$
$$= \frac{y^2}{2x}$$

Maximum over convex functions $\{f(x; \alpha) : \alpha \in \mathbb{R}^m\}$

$$f(\mathbf{x}) := \sup_{oldsymbol{lpha} \in \mathbb{R}^m} f(\mathbf{x}; oldsymbol{lpha})$$

is convex.

Example

Quadratic over linear is a convex function

$$f(x,y) = \sup_{\alpha \in \mathbb{R}} \left(-\frac{\alpha^2}{2} x + \alpha y \right) \qquad (x > 0)$$
$$= \frac{y^2}{2x}$$

Similarly

$$f(\mathbf{\Sigma}, \mathbf{y}) = \frac{1}{2} \mathbf{y}^{\top} \mathbf{\Sigma}^{-1} \mathbf{y}$$
 ($\mathbf{\Sigma} \succ 0$) is a convex function (show it!)

Partial minimum of a convex function f(x, y)

$$f(x) := \min_{y \in \mathbb{R}^n} f(x, y)$$
 is convex.

Examples

Hierarchical prior minimization

$$f(\mathbf{x}) = \min_{d_1, \dots, d_n \ge 0} \frac{1}{2} \sum_{j=1}^n \left(\frac{x_j^2}{d_j} + \frac{d_j^p}{p} \right) \quad (p \ge 1)$$

Partial minimum of a convex function f(x, y)

$$f(x) := \min_{y \in \mathbb{R}^n} f(x, y)$$
 is convex.

Examples

Hierarchical prior minimization

$$f(\mathbf{x}) = \min_{d_1, \dots, d_n \ge 0} \frac{1}{2} \sum_{j=1}^n \left(\frac{x_j^2}{d_j} + \frac{d_j^p}{p} \right)$$
$$= \frac{1}{q} \sum_{j=1}^n |x_j|^q \quad (q = \frac{2p}{1+p})$$

Partial minimum of a convex function f(x, y)

$$f(x) := \min_{y \in \mathbb{R}^n} f(x, y)$$
 is convex.

Examples

Hierarchical prior minimization

$$f(\mathbf{x}) = \min_{d_1, \dots, d_n \ge 0} \frac{1}{2} \sum_{j=1}^n \left(\frac{x_j^2}{d_j} + \frac{d_j^p}{p} \right) \quad (p \ge 1)$$
$$= \frac{1}{q} \sum_{j=1}^n |x_j|^q \quad (q = \frac{2p}{1+p})$$

Schatten 1- norm (sum of singularvalues)

$$f(\boldsymbol{X}) = \min_{\boldsymbol{\Sigma} \succ 0} \frac{1}{2} \left(\mathsf{Tr} \left(\boldsymbol{X} \boldsymbol{\Sigma}^{-1} \boldsymbol{X}^{\top} \right) + \mathsf{Tr} \left(\boldsymbol{\Sigma} \right) \right)$$

Partial minimum of a convex function f(x, y)

$$f(x) := \min_{y \in \mathbb{R}^n} f(x, y)$$
 is convex.

Examples

Hierarchical prior minimization

$$f(\boldsymbol{x}) = \min_{d_1, \dots, d_n \ge 0} \frac{1}{2} \sum_{j=1}^n \left(\frac{x_j^2}{d_j} + \frac{d_j^p}{p} \right) \quad (p \ge 1)$$

$$= \frac{1}{q} \sum_{j=1}^n |x_j|^q \quad (q = \frac{2p}{1+p})$$

Schatten 1- norm (sum of singularvalues)

$$f(\boldsymbol{X}) = \min_{\boldsymbol{\Sigma} \succeq 0} \frac{1}{2} \left(\operatorname{Tr} \left(\boldsymbol{X} \boldsymbol{\Sigma}^{-1} \boldsymbol{X}^{\top} \right) + \operatorname{Tr} \left(\boldsymbol{\Sigma} \right) \right) = \operatorname{Tr} \left((\boldsymbol{X}^{\top} \boldsymbol{X})^{1/2} \right) = \sum_{i=1}^{r} \sigma_{i}(\boldsymbol{X}).$$

Convex optimization problem

f: convex function, g: concave function (-g is convex), C: convex set.

$$\underset{\boldsymbol{x}}{\mathsf{minimize}} \quad f(\boldsymbol{x}),$$

s.t.
$$\mathbf{x} \in C$$
.

$$\max_{\boldsymbol{v}} \max_{\boldsymbol{v}} g(\boldsymbol{y}),$$

s.t.
$$y \in C$$
.

Why?

- local optimum ⇒ global optimum
- duality (later) can be used to check convergence
 - ⇒ We can be *sure* that we are doing the right thing!

Coming up next:

• Gradient descent:

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta_t \nabla f(\mathbf{w}^t)$$

- What do we do if we have
 - Constraints
 - ▶ Non-differentiable terms, like || **w**||₁
 - ⇒ projection/proximity operator

Proximity operators and iterative shrinkage/thresholding methods

Learning objectives

- (Projected) gradient method
- Iterative shrinkage/thresholding (IST) method
- Acceleration

Proximity view on gradient descent

"Linearize and Prox"

$$\mathbf{w}^{t+1} = \underset{\mathbf{w}}{\operatorname{argmin}} \left(\nabla f(\mathbf{w}^t) (\mathbf{w} - \mathbf{w}^t) + \frac{1}{2\eta_t} \|\mathbf{w} - \mathbf{w}^t\|^2 \right)$$
$$= \mathbf{w}^t - \eta_t \nabla f(\mathbf{w}^t)$$

- Step-size should satisfy η_t ≤ 1/L(f).
- L(f): the Lipschitz constant

$$\|\nabla f(\mathbf{y}) - \nabla f(\mathbf{x})\| \le L(f)\|\mathbf{y} - \mathbf{x}\|.$$

 L(f)=upper bound on the maximum eigenvalue of the Hessian

Constraint minimization problem

• What do we do, if we have a constraint?

$$\begin{array}{ll}
\text{minimize} & f(\mathbf{w}), \\
\mathbf{w} \in \mathbb{R}^n & \text{s.t.} & \mathbf{w} \in C.
\end{array}$$

Constraint minimization problem

• What do we do, if we have a constraint?

$$\begin{array}{ll}
\text{minimize} & f(\mathbf{w}), \\
\mathbf{w} \in \mathbb{R}^n & \text{s.t.} & \mathbf{w} \in C.
\end{array}$$

can be equivalently written as

$$\underset{\boldsymbol{w} \in \mathbb{R}^n}{\text{minimize}} \quad f(\boldsymbol{w}) + \frac{\delta_{\mathcal{C}}(\boldsymbol{w})}{\delta_{\mathcal{C}}(\boldsymbol{w})},$$

where $\delta_{C}(\mathbf{w})$ is the indicator function of the set C.

Projected gradient method (Bertsekas 99; Nesterov 03)

Linearize the objective f, δ_C is the indicator of the constraint C

$$\mathbf{w}^{t+1} = \underset{\mathbf{w}}{\operatorname{argmin}} \left(\nabla f(\mathbf{w}^t)(\mathbf{w} - \mathbf{w}^t) + \frac{\delta_C(\mathbf{w})}{2\eta_t} + \frac{1}{2\eta_t} \|\mathbf{w} - \mathbf{w}^t\|_2^2 \right)$$

$$= \underset{\mathbf{w}}{\operatorname{argmin}} \left(\frac{\delta_C(\mathbf{w})}{\delta_C(\mathbf{w})} + \frac{1}{2\eta_t} \|\mathbf{w} - (\mathbf{w}^t - \eta_t \nabla f(\mathbf{w}^t))\|_2^2 \right)$$

$$= \underset{\mathbf{v}}{\operatorname{proj}}_C(\mathbf{w}^t - \eta_t \nabla f(\mathbf{w}^t)).$$

- Requires $\eta_t \leq 1/L(f)$.
- Convergence rate

$$f(\mathbf{w}^k) - f(\mathbf{w}^*) \le \frac{L(f) \|\mathbf{w}_0 - \mathbf{w}^*\|_2^2}{2k}$$

 Need the projection proj_C to be easy to compute

Ideas for regularized minimization

Constrained minimization problem

$$\underset{\boldsymbol{w} \in \mathbb{R}^n}{\text{minimize}} \quad f(\boldsymbol{w}) + \delta_{\mathcal{C}}(\boldsymbol{w}).$$

⇒ need to compute the projection

$$\mathbf{w}^{t+1} = \operatorname*{argmin}_{\mathbf{w}} \left(\delta_{\mathcal{C}}(\mathbf{w}) + \frac{1}{2\eta_t} \|\mathbf{w} - \mathbf{y}\|_2^2 \right)$$

Ideas for regularized minimization

Constrained minimization problem

$$\underset{\boldsymbol{w} \in \mathbb{R}^n}{\text{minimize}} \quad f(\boldsymbol{w}) + \delta_{\mathcal{C}}(\boldsymbol{w}).$$

⇒ need to compute the projection

$$oldsymbol{w}^{t+1} = \operatorname*{argmin}_{oldsymbol{w}} \left(\delta_{C}(oldsymbol{w}) + rac{1}{2\eta_{t}} \|oldsymbol{w} - oldsymbol{y}\|_{2}^{2}
ight)$$

Regularized minimization problem

minimize
$$f(\mathbf{w}) + \lambda \|\mathbf{w}\|_1$$

⇒ need to compute the proximity operator

$$oldsymbol{w}^{t+1} = \operatorname*{argmin}_{oldsymbol{w}} \left(\lambda \| oldsymbol{w} \|_1 + rac{1}{2\eta_t} \| oldsymbol{w} - oldsymbol{y} \|_2^2
ight)$$

Proximal Operator: generalization of projection

$$\operatorname{prox}_g(\boldsymbol{y}) = \operatorname*{argmin}_{\boldsymbol{w}} \left(\underbrace{g(\boldsymbol{w})} + \frac{1}{2} \|\boldsymbol{w} - \boldsymbol{y}\|_2^2 \right)$$

- $g = \delta_C$: Projection onto a convex set $\operatorname{proj}_C(y)$.
- $g(\mathbf{w}) = \lambda \|\mathbf{w}\|_1$: Soft-Threshold

$$\operatorname{prox}_{\lambda}(\boldsymbol{y}) = \underset{\boldsymbol{w}}{\operatorname{argmin}} \left(\lambda \| \boldsymbol{w} \|_{1} + \frac{1}{2} \| \boldsymbol{w} - \boldsymbol{y} \|_{2}^{2} \right)$$
$$= \begin{cases} y_{j} + \lambda & (y_{j} < -\lambda), \\ 0 & (-\lambda \leq y_{j} \leq \lambda), \\ y_{j} - \lambda & (y_{j} > \lambda). \end{cases}$$

- Prox can be computed easily for a separable f.
- Non-differentiability is OK.

Exercise

Derive prox operator $prox_a$ for

Ridge regularization

$$g(\mathbf{w}) = \lambda \sum_{j=1}^{n} w_j^2$$

Group lasso regularization [Yuan & Lin 2006]

$$g(\mathbf{w}_1,\ldots,\mathbf{w}_n) = \lambda \sum_{j=1}^n \|\mathbf{w}_j\|_2$$

Iterative Shrinkage Thresholding (IST)

$$\begin{aligned} \boldsymbol{w}^{t+1} &= \underset{\boldsymbol{w}}{\operatorname{argmin}} \left(\nabla f(\boldsymbol{w}^t) (\boldsymbol{w} - \boldsymbol{w}^t) + \lambda \| \boldsymbol{w} \|_1 + \frac{1}{2\eta_t} \| \boldsymbol{w} - \boldsymbol{w}^t \|_2^2 \right) \\ &= \underset{\boldsymbol{w}}{\operatorname{argmin}} \left(\lambda \| \boldsymbol{w} \|_1 + \frac{1}{2\eta_t} \| \boldsymbol{w} - (\boldsymbol{w}^t - \eta_t \nabla f(\boldsymbol{w}^t)) \|_2^2 \right) \\ &= \underset{\boldsymbol{v}}{\operatorname{prox}}_{\lambda \eta_t} (\boldsymbol{w}^t - \eta_t \nabla f(\boldsymbol{w}^t)). \end{aligned}$$

 The same condition for η_t, the same O(1/k) convergence (Beck & Teboulle 09)

$$f(\mathbf{w}^k) - f(\mathbf{w}^*) \le \frac{L(f) \|\mathbf{w}_0 - \mathbf{w}^*\|^2}{2k}$$

- If the Prox operator $\operatorname{prox}_{\lambda}$ is easy, it is simple to implement.
- AKA Forward-Backward Splitting (Lions & Mercier 76)

IST summary

Solve minimization problem

$$\underset{\boldsymbol{w} \in \mathbb{R}^n}{\text{minimize}} \quad f(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_1$$

by iteratively computing

$$\mathbf{w}^{t+1} = \operatorname{prox}_{\lambda \eta_t}(\mathbf{w}^t - \eta_t \nabla f(\mathbf{w}^t)),$$

where

$$\operatorname{prox}_{\boldsymbol{\lambda}}(\boldsymbol{y}) = \underset{\boldsymbol{w}}{\operatorname{argmin}} \left(\boldsymbol{\lambda} \| \, \boldsymbol{w} \|_1 + \frac{1}{2} \| \, \boldsymbol{w} - \boldsymbol{y} \|_2^2 \right).$$

FISTA: accelerated version of IST (Beck & Teboulle 09;

Nesterov 07)

- Initialize \mathbf{w}^0 appropriately, $\mathbf{z}^1 = \mathbf{w}^0$, $s_1 = 1$.
- ② Update \mathbf{w}^t :

$$\mathbf{w}^t = \mathsf{prox}_{\lambda \eta_t}(\mathbf{z}^t - \eta_t \nabla f(\mathbf{z}^t)).$$

3 Update z^t :

$$\mathbf{z}^{t+1} = \mathbf{w}^t + \left(\frac{\mathbf{s}_t - 1}{\mathbf{s}_{t+1}}\right) (\mathbf{w}^t - \mathbf{w}^{t-1}),$$

where
$$s_{t+1} = (1 + \sqrt{1 + 4s_t^2})/2$$
.

- The same per iteration complexity. Converges as $O(1/k^2)$.
- Roughly speaking, z^t predicts where the IST step should be computed.

Effect of acceleration

From Beck & Teboulle 2009 SIAM J. IMAGING SCIENCES Vol. 2, No. 1, pp. 183-202

MATLAB Exercise 1: implement an L1 regularized logistic regression via IST

$$\underset{\boldsymbol{w} \in \mathbb{R}^n}{\text{minimize}} \qquad \underbrace{\sum_{i=1}^m \log(1 + \exp(-y_i \langle \boldsymbol{x}_i, \boldsymbol{w} \rangle))}_{\text{data-fit}} \quad + \underbrace{\lambda \sum_{j=1}^n |w_j|}_{\text{Regularization}}$$

Hint: define

$$f_{\ell}(\boldsymbol{z}) = \sum_{i=1}^{m} \log(1 + \exp(-z_i)).$$

Then the problem is

minimize
$$f_{\ell}(\boldsymbol{A}\boldsymbol{w}) + \lambda \sum\limits_{j=1}^{n} |w_j|$$
 where $\boldsymbol{A} = \begin{pmatrix} y_1 \boldsymbol{x}_1^{\top} \\ y_2 \boldsymbol{x}_2^{\top} \\ \vdots \\ y_m \boldsymbol{x}_m^{\top} \end{pmatrix}$

Some more hints

Compute the gradient of the loss term

$$abla_{\mathbf{w}} f_{\ell}(\mathbf{A}\mathbf{w}) = -\mathbf{A}^{\top} \left(\frac{\exp(-z_i)}{1 + \exp(-z_i)} \right)_{i=1}^{m} \quad (\mathbf{z} = \mathbf{A}\mathbf{w})$$

The gradient step becomes

$$\mathbf{w}^{t+\frac{1}{2}} = \mathbf{w}^t + \eta_t \mathbf{A}^{\top} \left(\frac{\exp(-z_i)}{1 + \exp(-z_i)} \right)_{i=1}^m$$

Then compute the proximity operator

$$\mathbf{w}^{t+1} = \operatorname{prox}_{\lambda \eta_t}(\mathbf{w}^{t+\frac{1}{2}})$$

$$= \begin{cases} w_j^{t+\frac{1}{2}} + \lambda \eta_t & (w_j^{t+\frac{1}{2}} < -\lambda \eta_t), \\ 0 & (-\lambda \eta_t \le w_j^{t+\frac{1}{2}} \le \lambda \eta_t), \\ w_j^{t+\frac{1}{2}} - \lambda \eta_t & (w_j^{t+\frac{1}{2}} > \lambda \eta_t). \end{cases}$$

$$f(\boldsymbol{X}) = \frac{1}{2} \|\Omega(\boldsymbol{X} - \boldsymbol{Y})\|^2.$$

$$g(\boldsymbol{X}) = \lambda \sum_{j=1}^{r} \sigma_{j}(\boldsymbol{X})$$
 (S₁-norm).

$$f(\boldsymbol{X}) = \frac{1}{2} \|\Omega(\boldsymbol{X} - \boldsymbol{Y})\|^2.$$

$$g(\boldsymbol{X}) = \lambda \sum_{j=1}^{r} \sigma_{j}(\boldsymbol{X})$$
 (S₁-norm).

gradient:

$$\nabla f(\boldsymbol{X}) = \Omega^{\top}(\Omega(\boldsymbol{X} - \boldsymbol{Y}))$$

$$f(\boldsymbol{X}) = \frac{1}{2} \|\Omega(\boldsymbol{X} - \boldsymbol{Y})\|^2.$$

gradient:

$$\nabla f(\boldsymbol{X}) = \Omega^{\top}(\Omega(\boldsymbol{X} - \boldsymbol{Y}))$$

$$g(\mathbf{X}) = \lambda \sum_{j=1}^{r} \sigma_j(\mathbf{X})$$
 (S₁-norm).

Prox operator (Singular Value Thresholding):

$$\operatorname{prox}_{\lambda}(\boldsymbol{Z}) = \boldsymbol{U} \operatorname{max}(\boldsymbol{S} - \lambda \boldsymbol{I}, 0) \boldsymbol{V}^{\top}.$$

$$f(\boldsymbol{X}) = \frac{1}{2} \|\Omega(\boldsymbol{X} - \boldsymbol{Y})\|^2.$$

$$g(\mathbf{X}) = \lambda \sum_{j=1}^{r} \sigma_j(\mathbf{X})$$
 (S₁-norm).

gradient:

$$\nabla f(\boldsymbol{X}) = \Omega^{\top}(\Omega(\boldsymbol{X} - \boldsymbol{Y}))$$

Prox operator (Singular Value Thresholding):

$$\operatorname{prox}_{\lambda}(\boldsymbol{Z}) = \boldsymbol{U} \operatorname{max}(\boldsymbol{S} - \lambda \boldsymbol{I}, 0) \boldsymbol{V}^{\top}.$$

Iteration:

$$\mathbf{\textit{X}}^{t+1} = \text{prox}_{\lambda \eta_t} \Big(\underbrace{(\mathbf{\textit{I}} - \eta_t \Omega^\top \Omega)(\mathbf{\textit{X}}^t)}_{\text{fill in missing}} + \underbrace{\eta_t \Omega^\top \Omega(\mathbf{\textit{Y}}^t)}_{\text{observed}} \Big)$$

• When $\eta_t = 1$, fill missings with predicted values \mathbf{X}^t , overwrite the observed with observed values, then soft-threshold.

Conjugate duality and dual ascent

- Convex conjugate function
- Lagrangian relaxation and dual problem

Conjugate duality

The convex conjugate f^* of a function f:

$$f^*(\mathbf{y}) = \sup_{\mathbf{x} \in \mathbb{R}^n} (\langle \mathbf{x}, \mathbf{y} \rangle - f(\mathbf{x}))$$

Since the maximum over linear functions is always convex, *f* need not be convex.

Demo

Try

- demo conjugate (@(x)x. $^2/2$, -5:0.1:5);
- demo_conjugate(@(x) abs(x), -5:0.1:5);
- demo_conjugate(@(x)x.*log(x)+(1-x).*log(1-x),... 0.001:0.001:0.999);

Convex conjugate function

Every pair $(y, f^*(y))$ corresponds to a tangent line $\langle x, y \rangle - f^*(y)$ of the original function f(x).

Because

$$f^*(\mathbf{y}) = \sup_{\mathbf{x}} (\langle \mathbf{x}, \mathbf{y} \rangle - f(\mathbf{x}))$$
 implies

• If $t < f^*(\mathbf{y})$, there is a \mathbf{x} s.t.

$$f(\mathbf{x}) < \langle \mathbf{x}, \mathbf{y} \rangle - t.$$

• If $t \ge f^*(y)$,

$$f(\mathbf{x}) \geq \langle \mathbf{x}, \mathbf{y} \rangle - t$$

Convex conjugate function

Every pair $(y, f^*(y))$ corresponds to a tangent line $\langle x, y \rangle - f^*(y)$ of the original function f(x).

Because

$$f^*(\mathbf{y}) = \sup_{\mathbf{x}} (\langle \mathbf{x}, \mathbf{y} \rangle - f(\mathbf{x}))$$
 implies

• If $t < f^*(y)$, there is a **x** s.t.

$$f(\mathbf{x}) < \langle \mathbf{x}, \mathbf{y} \rangle - t.$$

• If $t \ge f^*(y)$,

$$f(\mathbf{x}) \geq \langle \mathbf{x}, \mathbf{y} \rangle - t$$

Convex conjugate function

Every pair $(y, f^*(y))$ corresponds to a tangent line $\langle x, y \rangle - f^*(y)$ of the original function f(x).

Because

$$f^*(\mathbf{y}) = \sup_{\mathbf{x}} (\langle \mathbf{x}, \mathbf{y} \rangle - f(\mathbf{x}))$$
 implies

• If $t < f^*(y)$, there is a **x** s.t.

$$f(\mathbf{x}) < \langle \mathbf{x}, \mathbf{y} \rangle - t.$$

• If $t \ge f^*(y)$,

$$f(\mathbf{x}) \geq \langle \mathbf{x}, \mathbf{y} \rangle - t$$

Convex conjugate function

Every pair $(y, f^*(y))$ corresponds to a tangent line $\langle x, y \rangle - f^*(y)$ of the original function f(x).

Because

$$f^*(\mathbf{y}) = \sup_{\mathbf{x}} (\langle \mathbf{x}, \mathbf{y} \rangle - f(\mathbf{x}))$$
 implies

• If $t < f^*(\mathbf{y})$, there is a \mathbf{x} s.t.

$$f(\mathbf{x}) < \langle \mathbf{x}, \mathbf{y} \rangle - t.$$

• If $t \ge f^*(y)$,

$$f(\mathbf{x}) \geq \langle \mathbf{x}, \mathbf{y} \rangle - t$$

Quadratic function

$$f(x) = \frac{x^2}{2\sigma^2}$$

$$f^*(y) = \frac{\sigma^2 y^2}{2}$$

$$f^*(y)$$

Logistic loss function

$$f(x) = \log(1 + \exp(-x))$$

Logistic loss function

$$f(x) = \log(1 + \exp(-x))$$

$$f^*(-y) = y \log(y) + (1-y) \log(1-y)$$

L1 regularizer

$$f(x) = |x|$$

Example of conjugate duality $f^*(y) = \sup_{x \in \mathbb{R}^n} (\langle x, y \rangle - f(x))$

L1 regularizer

Bi-conjugate f^{**} may be different from f

For nonconvex f,

Our optimization problem:

$$\underset{\boldsymbol{w} \in \mathbb{R}^n}{\mathsf{minimize}} \quad f(\boldsymbol{Aw}) + g(\boldsymbol{w})$$

$$\begin{pmatrix}
\text{For example} \\
f(\mathbf{z}) = \frac{1}{2} ||\mathbf{z} - \mathbf{y}||_2^2 \\
\text{(squared loss)}
\end{pmatrix}$$

Our optimization problem:

$$\left(\begin{array}{l} \text{For example} \\ f(\boldsymbol{z}) = \frac{1}{2} \|\boldsymbol{z} - \boldsymbol{y}\|_2^2 \\ (\text{squared loss}) \end{array} \right)$$

Equivalently written as

$$\begin{array}{ll} \underset{\boldsymbol{z} \in \mathbb{R}^m, \boldsymbol{w} \in \mathbb{R}^n}{\text{minimize}} & f(\boldsymbol{z}) + g(\boldsymbol{w}), \\ \text{s.t.} & \boldsymbol{z} = \boldsymbol{A}\boldsymbol{w} & \text{(equality constraint)} \end{array}$$

Our optimization problem:

$$\underset{\boldsymbol{w} \in \mathbb{R}^n}{\mathsf{minimize}} \quad f(\boldsymbol{Aw}) + g(\boldsymbol{w})$$

$$\left(\begin{array}{l} \text{For example} \\ f(\boldsymbol{z}) = \frac{1}{2} \|\boldsymbol{z} - \boldsymbol{y}\|_2^2 \\ (\text{squared loss}) \end{array} \right)$$

Equivalently written as

$$\begin{array}{ll} \underset{\boldsymbol{z} \in \mathbb{R}^m, \boldsymbol{w} \in \mathbb{R}^n}{\text{minimize}} & f(\boldsymbol{z}) + g(\boldsymbol{w}), \\ \text{s.t.} & \boldsymbol{z} = \boldsymbol{A}\boldsymbol{w} & \text{(equality constraint)} \end{array}$$

Lagrangian relaxation

$$\underset{\boldsymbol{z},\boldsymbol{w}}{\text{minimize}} \quad \mathcal{L}(\boldsymbol{z},\boldsymbol{w},\alpha) = f(\boldsymbol{z}) + g(\boldsymbol{w}) + \alpha^{\top}(\boldsymbol{z} - \boldsymbol{A}\boldsymbol{w})$$

Our optimization problem:

$\begin{pmatrix} \text{For example} \\ f(\mathbf{z}) = \frac{1}{2} ||\mathbf{z} - \mathbf{y}||_2^2 \\ \text{(squared loss)} \end{pmatrix}$

Equivalently written as

$$\begin{array}{ll} \underset{\boldsymbol{z} \in \mathbb{R}^m, \boldsymbol{w} \in \mathbb{R}^n}{\text{minimize}} & f(\boldsymbol{z}) + g(\boldsymbol{w}), \\ \text{s.t.} & \boldsymbol{z} = \boldsymbol{A}\boldsymbol{w} & \text{(equality constraint)} \end{array}$$

Lagrangian relaxation

- As long as z = Aw, the relaxation is exact.
- $\sup_{\alpha} \mathcal{L}(\mathbf{z}, \mathbf{w}, \alpha)$ recovers the original problem.
- Minimum of \mathcal{L} is no greater than the minimum of the original.

Weak duality

$$\inf_{\boldsymbol{z},\boldsymbol{w}} \mathcal{L}(\boldsymbol{z},\boldsymbol{w},\boldsymbol{\alpha}) \leq \inf_{\boldsymbol{w}} (f(\boldsymbol{A}\boldsymbol{w}) + g(\boldsymbol{w})) =: \boldsymbol{\rho}^*$$

proof

$$\inf_{\boldsymbol{z},\boldsymbol{w}} \mathcal{L}(\boldsymbol{z},\boldsymbol{w},\alpha) = \min \left(\inf_{\boldsymbol{z} = \boldsymbol{A}\boldsymbol{w}} \mathcal{L}(\boldsymbol{z},\boldsymbol{w},\alpha), \inf_{\boldsymbol{z} \neq \boldsymbol{A}\boldsymbol{w}} \mathcal{L}(\boldsymbol{z},\boldsymbol{w},\alpha) \right) \\
= \min \left(\rho^*, \inf_{\boldsymbol{z} \neq \boldsymbol{A}\boldsymbol{w}} \mathcal{L}(\boldsymbol{z},\boldsymbol{w},\alpha) \right) \\
< \rho^*$$

Dual problem

From the above argument

$$d(\alpha) := \inf_{\boldsymbol{z}, \boldsymbol{w}} \mathcal{L}(\boldsymbol{z}, \boldsymbol{w}, \alpha)$$

is a lower bound for p^* for any α . Why don't we maximize over α ?

Dual problem

From the above argument

$$d(\alpha) := \inf_{\boldsymbol{z}, \boldsymbol{w}} \mathcal{L}(\boldsymbol{z}, \boldsymbol{w}, \alpha)$$

is a lower bound for p^* for any α . Why don't we maximize over α ?

Dual problem

$$\max_{\boldsymbol{\alpha} \in \mathbb{R}^m} \mathsf{d}(\boldsymbol{\alpha})$$

Note

$$\sup_{\alpha}\inf_{\boldsymbol{z},\boldsymbol{w}}\mathcal{L}(\boldsymbol{z},\boldsymbol{w},\alpha)=d^*\leq p^*=\inf_{\boldsymbol{z},\boldsymbol{w}}\sup_{\alpha}\mathcal{L}(\boldsymbol{z},\boldsymbol{w},\alpha)$$

If $d^* = p^*$, strong duality holds. This is the case if f and g both closed and convex.

Fenchel's duality

For convex¹ functions f and g, and a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$

$$\sup_{\boldsymbol{\alpha} \in \mathbb{R}^m} \left(-f^*(-\boldsymbol{\alpha}) - g^*(\boldsymbol{A}^\top \boldsymbol{\alpha}) \right) = \inf_{\boldsymbol{w} \in \mathbb{R}^n} \Bigl(f(\boldsymbol{A}\boldsymbol{w}) + g(\boldsymbol{w}) \Bigr)$$

Werner Fenchel 1905 – 1988

- Only need conjugate functions f^* and g^* to compute the dual.
- We can make a list of them (like Laplace transform)

MATLAB Exercise 1.5:

 Compute the Fenchel dual of L1-logistic regression problem in Ex.1 and implement the stopping criterion: stop optimization if

$$(obj_{prim} - obj_{dual})/obj_{prim} < \epsilon$$
 (relative duality gap).

¹More precisely, proper, closed, and convex.

Derivation of Fenchel's duality theorem

$$\begin{split} d(\alpha) &= \inf_{\boldsymbol{z}, \boldsymbol{w}} \mathcal{L}(\boldsymbol{z}, \boldsymbol{w}, \alpha) \\ &= \inf_{\boldsymbol{z}, \boldsymbol{w}} \left(f(\boldsymbol{z}) + g(\boldsymbol{w}) + \alpha^{\top} (\boldsymbol{z} - \boldsymbol{A} \boldsymbol{w}) \right) \\ &= \inf_{\boldsymbol{z}} \left(f(\boldsymbol{z}) + \langle \alpha, \boldsymbol{z} \rangle \right) + \inf_{\boldsymbol{w}} \left(g(\boldsymbol{w}) - \left\langle \boldsymbol{A}^{\top} \alpha, \boldsymbol{w} \right\rangle \right) \\ &= -\sup_{\boldsymbol{z}} \left(\langle -\alpha, \boldsymbol{z} \rangle - f(\boldsymbol{z}) \right) - \sup_{\boldsymbol{w}} \left(\left\langle \boldsymbol{A}^{\top} \alpha, \boldsymbol{w} \right\rangle - g(\boldsymbol{w}) \right) \\ &= -f^*(-\alpha) - g^*(\boldsymbol{A}^{\top} \alpha) \end{split}$$

Augmented Lagrangian and ADMM

Learning objectives

- Structured sparse estimation
- Augmented Lagrangian
- Alternating direction method of multipliers (ADMM)

Recap: Simple vs. structured sparse estimation problems

Simple sparse estimation problem

minimize
$$f(\mathbf{w}) + \lambda \|\mathbf{w}\|_1$$

- SNP analysis
- ▶ Compressed sensing with Φ^{-1} (e.g., wavelet)
- Collaborative filtering (matrix completion)
- Structured sparse estimation problem

minimize
$$f(\mathbf{w}) + \lambda \|\mathbf{\Phi}\mathbf{w}\|_1$$

- ► Compressed sensing without Φ^{-1} (e.g., total variation)
- Low-rank tensor completion

Total Variation based image denoising [Rudin, Osher, Fatemi 92]

Original W₀

Observed M

55 / 73

In one dimension

• Fused lasso [Tibshirani et al. 05]

Structured sparse estimation

TV denoising

Fused lasso

minimize
$$\frac{1}{2} \| \boldsymbol{w} - \boldsymbol{y} \|_2^2 + \lambda \sum_{j=1}^{n-1} \left| w_{j+1} - w_j \right|$$

Structured sparse estimation

TV denoising

Fused lasso

minimize
$$\frac{1}{2} \| \boldsymbol{w} - \boldsymbol{y} \|_2^2 + \lambda \sum_{j=1}^{n-1} | w_{j+1} - w_j |$$

Structured sparse estimation problem

$$\underset{\boldsymbol{w} \in \mathbb{R}^n}{\text{minimize}} \quad \underbrace{f(\boldsymbol{w})}_{\text{data-fit}} + \underbrace{\lambda \|\boldsymbol{A}\boldsymbol{w}\|_1}_{\text{regularization}}$$

Structured sparse estimation problem

Not easy to compute prox operator (because it is non-separable)
 difficult to apply IST-type methods.

Structured sparse estimation problem

$$\underset{\boldsymbol{w} \in \mathbb{R}^n}{\text{minimize}} \quad \underbrace{f(\boldsymbol{w})}_{\text{data-fit}} + \underbrace{\lambda \|\boldsymbol{A}\boldsymbol{w}\|_1}_{\text{regularization}}$$

Not easy to compute prox operator (because it is non-separable)
 difficult to apply IST-type methods.

Can we use the Lagrangian relaxation trick?

Forming the Lagrangian Structured sparsity problem

Equivalently written as

$$\label{eq:minimize} \begin{split} & \underset{\pmb{w} \in \mathbb{R}^n}{\text{minimize}} & & f(\pmb{w}) + \underbrace{\lambda \|\pmb{z}\|_1}_{\text{separable!}} \;, \\ & \text{s.t.} & & \pmb{z} = \pmb{A}\pmb{w} & \text{(equality constraint)} \end{split}$$

Forming the Lagrangian

Structured sparsity problem

Equivalently written as

$$\begin{array}{ll} \underset{\pmb{w} \in \mathbb{R}^n}{\text{minimize}} & f(\pmb{w}) + \underbrace{\lambda \|\pmb{z}\|_1}_{\text{separable!}}, \\ \text{s.t.} & \pmb{z} = \pmb{A}\pmb{w} \qquad \text{(equality constraint)} \end{array}$$

Lagrangian function

$$\mathcal{L}(\boldsymbol{w}, \boldsymbol{z}, \boldsymbol{\alpha}) = f(\boldsymbol{w}) + \lambda \|\boldsymbol{z}\|_1 + \boldsymbol{\alpha}^{\top} (\boldsymbol{z} - \boldsymbol{A}\boldsymbol{w}).$$

α: Lagrangian multiplier vector.

Dual ascent

Dual problem

$$\max_{\alpha} \inf_{\boldsymbol{z}, \boldsymbol{w}} \left(f(\boldsymbol{w}) + \lambda \|\boldsymbol{z}\|_1 + \alpha^\top (\boldsymbol{z} - \boldsymbol{A}\boldsymbol{w}) \right)$$

We can compute the dual objective $d(\alpha)$ by separately minimizing

(1)
$$\min_{\boldsymbol{w}} \left(f(\boldsymbol{w}) - \boldsymbol{\alpha}^{\top} \boldsymbol{A} \boldsymbol{w} \right)$$

(2)
$$\min_{\boldsymbol{z}} \left(\lambda \| \boldsymbol{z} \|_1 + \boldsymbol{\alpha}^\top \boldsymbol{z} \right)$$

Dual ascent

Dual problem

$$\max_{\alpha} \inf_{\boldsymbol{z}, \boldsymbol{w}} \left(f(\boldsymbol{w}) + \lambda \|\boldsymbol{z}\|_{1} + \alpha^{\top} (\boldsymbol{z} - \boldsymbol{A}\boldsymbol{w}) \right)$$

We can compute the dual objective $d(\alpha)$ by separately minimizing

(1)
$$\min_{\mathbf{w}} \left(f(\mathbf{w}) - \alpha^{\top} \mathbf{A} \mathbf{w} \right) = -f^* (\mathbf{A}^{\top} \alpha),$$

(2)
$$\min_{\mathbf{z}} \left(\lambda \|\mathbf{z}\|_{1} + \boldsymbol{\alpha}^{\top} \mathbf{z} \right) = -(\lambda \|\cdot\|_{1})^{*}(-\boldsymbol{\alpha}).$$

Dual ascent

Dual problem

$$\max_{\alpha} \inf_{\boldsymbol{z}, \boldsymbol{w}} \left(f(\boldsymbol{w}) + \lambda \|\boldsymbol{z}\|_{1} + \alpha^{\top} (\boldsymbol{z} - \boldsymbol{A}\boldsymbol{w}) \right)$$

We can compute the dual objective $d(\alpha)$ by separately minimizing

(1)
$$\min_{\mathbf{w}} \left(f(\mathbf{w}) - \alpha^{\top} \mathbf{A} \mathbf{w} \right) = -f^* (\mathbf{A}^{\top} \alpha),$$

(2)
$$\min_{\mathbf{z}} \left(\lambda \|\mathbf{z}\|_{1} + \alpha^{\top} \mathbf{z} \right) = -(\lambda \|\cdot\|_{1})^{*}(-\alpha).$$

But also we get the gradient of $d(\alpha)$ (for free) as follows:

$$\nabla_{\boldsymbol{\alpha}} d(\boldsymbol{\alpha}) = \boldsymbol{z}^* - \boldsymbol{A} \boldsymbol{w}^*,$$

where w^* : argmin of (1), z^* : argmin of (2). See Chapter 6, Bertsekas 1999.

Gradient ascent (in the dual)!

Dual ascent (Arrow, Hurwicz, & Uzawa 1958)

$$\begin{aligned} & \text{Minimize the Lagrangian wrt } \textbf{\textit{x}} \text{ and } \textbf{\textit{z}} : \\ & \textbf{\textit{w}}^{t+1} = \operatorname{argmin}_{\textbf{\textit{w}}} \left(f(\textbf{\textit{w}}) - \boldsymbol{\alpha}^{\top} \textbf{\textit{A}} \textbf{\textit{w}} \right). \\ & \textbf{\textit{z}}^{t+1} = \operatorname{argmin}_{\textbf{\textit{z}}} \left(\lambda \| \textbf{\textit{z}} \|_1 + \boldsymbol{\alpha}^{\top} \textbf{\textit{z}} \right), \\ & \text{Update the Lagrangian multiplier } \boldsymbol{\alpha}^t : \\ & \boldsymbol{\alpha}^{t+1} = \boldsymbol{\alpha}^t + \eta_t (\textbf{\textit{z}}^{t+1} - \textbf{\textit{A}} \textbf{\textit{w}}^{t+1}). \end{aligned}$$

- Pro: Very simple.
- Con: When f* or g* is non-differentiable, it is a dual subgradient method (convergence more tricky)

NB: f^* is differentiable $\Leftrightarrow f$ is strictly convex.

H. Uzawa

Forming the *augmented* Lagrangian Structured sparsity problem

$$\underset{\boldsymbol{w} \in \mathbb{R}^n}{\text{minimize}} \quad \underbrace{f(\boldsymbol{w})}_{\text{data-fit}} + \underbrace{\lambda \|\boldsymbol{A}\boldsymbol{w}\|_1}_{\text{regularization}}$$

Equivalently written as (for any $\eta > 0$)

minimize
$$f(\mathbf{w}) + \underbrace{\lambda \|\mathbf{z}\|_1}_{\text{separable!}} + \underbrace{\frac{\eta}{2} \|\mathbf{z} - \mathbf{A}\mathbf{w}\|_2^2}_{\text{penalty term}},$$

s.t.
$$z = Aw$$
 (equality constraint)

Forming the *augmented* Lagrangian Structured sparsity problem

$$\underset{\boldsymbol{w} \in \mathbb{R}^n}{\text{minimize}} \quad \underbrace{f(\boldsymbol{w})}_{\text{data-fit}} + \underbrace{\lambda \|\boldsymbol{A}\boldsymbol{w}\|_1}_{\text{regularization}}$$

Equivalently written as (for any $\eta > 0$)

minimize
$$f(\mathbf{w}) + \underbrace{\lambda \|\mathbf{z}\|_1}_{\text{separable!}} + \underbrace{\frac{\eta}{2} \|\mathbf{z} - \mathbf{A}\mathbf{w}\|_2^2}_{\text{penalty term}},$$

s.t. z = Aw (equality constraint)

Augmented Lagrangian function

$$\mathcal{L}_{\eta}(\boldsymbol{w}, \boldsymbol{z}, \boldsymbol{\alpha}) = f(\boldsymbol{w}) + \lambda \|\boldsymbol{z}\|_{1} + \boldsymbol{\alpha}^{\top}(\boldsymbol{z} - \boldsymbol{A}\boldsymbol{w}) + \frac{\eta}{2}\|\boldsymbol{z} - \boldsymbol{A}\boldsymbol{w}\|_{2}^{2}$$

 α : Lagrangian multiplier, η : penalty parameter

Augmented Lagrangian Method

Augmented Lagrangian function

$$\mathcal{L}_{\eta}(\boldsymbol{w},\boldsymbol{z},\alpha) = f(\boldsymbol{w}) + \lambda \|\boldsymbol{z}\|_{1} + \alpha^{\top}(\boldsymbol{z} - \boldsymbol{A}\boldsymbol{w}) + \frac{\eta}{2}\|\boldsymbol{z} - \boldsymbol{A}\boldsymbol{w}\|^{2}.$$

Augmented Lagrangian method (Hestenes 69, Powell 69)

$$\begin{cases} & \text{Minimize the AL function wrt } \boldsymbol{w} \text{ and } \boldsymbol{z} \text{:} \\ & (\boldsymbol{w}^{t+1}, \boldsymbol{z}^{t+1}) = \underset{\boldsymbol{w} \in \mathbb{R}^n, \boldsymbol{z} \in \mathbb{R}^m}{\operatorname{argmin}} \mathcal{L}_{\eta}(\boldsymbol{w}, \boldsymbol{z}, \boldsymbol{\alpha}^t). \\ & \text{Update the Lagrangian multiplier:} \\ & \alpha^{t+1} = \alpha^t + \eta(\boldsymbol{z}^{t+1} - \boldsymbol{A}\boldsymbol{w}^{t+1}). \end{cases}$$

$$\alpha^{t+1} = \alpha^t + \eta(\mathbf{z}^{t+1} - \mathbf{A}\mathbf{w}^{t+1}).$$

- Pro: The dual is always differentiable due to the penalty term.
- Con: Cannot minimize over w and z independently

Alternating Direction Method of Multipliers (ADMM; Gabay & Mercier 76)

- Looks ad-hoc but convergence can be shown rigorously.
- Stability does not rely on the choice of step-size η .
- The newly updated w^{t+1} enters the computation of z^{t+1} .

MATLAB Exercise 2: implement an ADMM for fused lasso

Fused lasso

minimize
$$\frac{1}{2} \| \boldsymbol{w} - \boldsymbol{y} \|_2^2 + \lambda \sum_{j=1}^{n-1} | w_{j+1} - w_j |$$

- What is the loss function f?
- What is the matrix A for fused lasso?
- How does the w-update step look?
- How does the z-update step look?

Conclusion

- Three approaches for various sparse estimation problems
 - Iterative shrinkage/thresholding proximity operator
 - Uzawa's method convex conjugate function
 - ► ADMM combination of the above two
- Above methods go beyond black-box models (e.g., gradient descent or Newton's method) – takes better care of the problem structures.
- These methods are simple enough to be implemented rapidly, but should not be considered as a silver bullet.
 - ⇒ Trade-off between:
 - Quick implementation test new ideas rapidly
 - Efficient optimization more inspection/try-and-error/cross validation

Topics we did not cover

- Beyond polynomial convergence $O(1/k^2)$
 - Dual Augmented Lagrangian (DAL) converges super-linearly o(exp(-k)). Software http://mloss.org/software/view/183/

```
(This is limited to non-structured sparse estimation.)
```

- Beyond convexity
 - Generalized eigenvalue problems.
 - Difference of convex (DC) programming.
 - Dual ascent (or dual decomposition) for sequence labeling in natural language processing; see [Wainwright, Jaakkola, Willsky 05; Koo et al. 10]
- Stochastic optimization
 - Good tutorial by Nathan Srebro (ICML2010)

Optimization for Machine Learning

A new book "Optimization for Machine Learning" (2011)

Possible projects

- Compare the three approaches, namely IST, dual ascent, and ADMM, and discuss empirically (and theoretically) their pros and cons.
- Apply one of the methods discussed in the lecture to model some real problem with (structured) sparsity or low-rank matrix.

Recent surveys

- Tomioka, Suzuki, & Sugiyama (2011) Augmented Lagrangian Methods for Learning, Selecting, and Combining Features. In Sra, Nowozin, Wright., editors, Optimization for Machine Learning, MIT Press.
- Combettes & Pesquet (2010) Proximal splitting methods in signal processing. In Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer-Verlag.
- Boyd, Parikh, Peleato, & Eckstein (2010) Distributed optimization and statistical learning via the alternating direction method of multipliers.

Textbooks

- Rockafellar (1970) Convex Analysis. Princeton University Press.
- Bertsekas (1999) Nonlinear Programming. Athena Scientific.
- Nesterov (2003) Introductory Lectures on Convex Optimization: A Basic Course. Springer.
- Boyd & Vandenberghe. (2004) Convex optimization, Cambridge University Press.

IST/FISTA

- Moreau (1965) Proximité et dualité dans un espace Hilbertien. Bul letin de la S. M. F.
- Nesterov (2007) Gradient Methods for Minimizing Composite Objective Function.
- Beck & Teboulle (2009) A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems. SIAM J Imag Sci 2, 183–202.

Dual ascent

- Arrow, Hurwicz, & Uzawa (1958) Studies in Linear and Non-Linear Programming. Stanford University Press.
- Ohapter 6 in Bertsekas (1999).
- Wainwright, Jaakkola, & Willsky (2005) Map estimation via agreement on trees: message-passing and linear programming. IEEE Trans IT, 51(11).

Augmented Lagrangian

- Rockafellar (1976) Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. of Oper. Res. 1.
- Bertsekas (1982) Constrained Optimization and Lagrange Multiplier Methods. Academic Press.
- Tomioka, Suzuki, & Sugiyama (2011) Super-Linear Convergence of Dual Augmented Lagrangian Algorithm for Sparse Learning. JMLR 12.

ADMM

- Gabay & Mercier (1976) A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput Math Appl 2, 17–40.
- Lions & Mercier (1979) Splitting Algorithms for the Sum of Two Nonlinear Operators. SIAM J Numer Anal 16, 964–979.
- Eckstein & Bertsekas (1992) On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators.

Matrices

- Srebro, Rennie, & Jaakkola (2005) Maximum-Margin Matrix Factorization. Advances in NIPS 17, 1329–1336.
- Cai, Candès, & Shen (2008) A singular value thresholding algorithm for matrix completion.
- Tomioka, Suzuki, Sugiyama, & Kashima (2010) A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices. In ICML 2010.
- Mazumder, Hastie, & Tibshirani (2010) Spectral Regularization Algorithms for Learning Large Incomplete Matrices. JMLR 11, 2287–2322.

Multi-task/Mutliple kernel learning

- Evgeniou, Micchelli, & Pontil (2005) Learning Multiple Tasks with Kernel Methods. JMLR 6, 615–637.
- Lanckriet, Christiani, Bartlett, Ghaoui, & Jordan (2004) Learning the Kernel Matrix with Semidefinite Programming.
- Bach, Thibaux, & Jordan (2005) Computing regularization paths for learning multiple kernels. Advances in NIPS, 73–80.

Structured sparsity

- Tibshirani, Saunders, Rosset, Zhu and Knight. (2005) Sparsity and smoothness via the fused lasso. J. Roy. Stat. Soc. B, 67.
- Rudin, Osher, Fetemi. (1992) Nonlinear total variation based noise removal algorithms.
 Physica D: Nonlinear Phenomena, 60.
- Goldstein & Osher (2009) Split Bregman method for L1 regularization problems. SIAM J. Imag. Sci. 2.
- Mairal, Jenatton, Obozinski, & Bach. (2011) Convex and network flow optimization for structured sparsity.

Bayes & Probabilistic Inference

 Wainwright & Jordan (2008) Graphical Models, Exponential Families, and Variational Inference.