Building blocks for this lecture

Ryota Tomioka

August 14, 2013

1 Equalities

1. Euclidean norm

$$\|\boldsymbol{x}\|_2^2 = \boldsymbol{x}^\top \boldsymbol{x}.$$

2. Expanding the squared norm of the sum of two vectors

$$\|m{x} + m{y}\|_2^2 = \|m{x}\|_2^2 + 2m{x}^{ op}m{y} + \|m{y}\|_2^2.$$

3. Singular value decomposition

$$X = USV^{\top},$$

where \boldsymbol{U} and \boldsymbol{V} are orthogonal matrices and \boldsymbol{S} is diagonal.

4. Orthogonal matrix

 $\boldsymbol{U}^{\top}\boldsymbol{U} = \boldsymbol{U}\boldsymbol{U}^{\top} = \boldsymbol{I}.$

5. Trace identity

$$\operatorname{Tr}(\boldsymbol{A}\boldsymbol{B}) = \operatorname{Tr}(\boldsymbol{B}\boldsymbol{A}).$$

2 Inequalities

- 6. Any norm $\|\cdot\|$ satisfies
 - (a) Positive homogeneity

$$||a\boldsymbol{x}|| = |a|||\boldsymbol{x}||.$$

(b) Triangular inequality

$$\|oldsymbol{x}\|-\|oldsymbol{y}\|\leq\|oldsymbol{x}+oldsymbol{y}\|\leq\|oldsymbol{x}\|+\|oldsymbol{y}\|.$$

(c) Zero means zero

$$\|\boldsymbol{x}\| = 0 \quad \Rightarrow \quad \boldsymbol{x} = \boldsymbol{0}.$$

(d) Positivity

$$\|\boldsymbol{x}\| \ge 0.$$

(implied by the positive homogeneity and the triangular inequality).

7. Euclidean norm is dual to itself

$$oldsymbol{x}^ opoldsymbol{y} \leq \|oldsymbol{x}\|_2\|oldsymbol{y}\|_2.$$

8. ℓ_{∞} - and ℓ_1 -norms are dual to each other

$$\boldsymbol{x}^{\top} \boldsymbol{y} \leq \|\boldsymbol{x}\|_{\infty} \|\boldsymbol{y}\|_{1},$$

where $\|\boldsymbol{x}\|_{\infty} = \max_{j} |x_{j}|$ and $\|\boldsymbol{y}\|_{1} = \sum_{j=1}^{p} |y_{j}|$.

9. Compatibility between ℓ_1 and ℓ_2 (Euclidean norm): if \boldsymbol{x} is k-sparse (only k non-zero entries), then

$$\|\boldsymbol{x}\|_1 \leq \sqrt{k} \|\boldsymbol{x}\|_2.$$

10. Euclidean norm increases when adding two orthogonal vectors: if $\boldsymbol{x}^{\top}\boldsymbol{y} = 0$,

 $\|x\|_{2} \le \|x+y\|_{2}$ and $\|y\|_{2} \le \|x+y\|_{2}$

3 Probability theory

11. Linearity of expectation

$$\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y].$$

12. Reproducibility of Gaussian: if $X, Y \sim \mathcal{N}(0, \sigma^2)$,

$$aX + bY \sim \mathcal{N}(0, (a^2 + b^2)\sigma^2)$$

13. Gaussian covariance: if $\boldsymbol{x} \sim \mathcal{N}(0, \boldsymbol{\Sigma})$,

$$\mathbb{E}[xx^{ op}] = \Sigma.$$

14. Union bound: the probability of any of the *n* events E_1, \ldots, E_n being true is bounded by the sum of the probabilities:

$$P(\bigcup_{i=1}^{n} E_i) \le \sum_{i=1}^{n} P(E_i).$$

15. Max of Gaussians: let $z_j \sim \mathcal{N}(0, \sigma_j^2)$ $(j = 1, \dots, p)$, then

$$\Pr\left(\max_{j} |z_{j}| \ge 2R\sqrt{\log p}\right) \le \frac{2}{p} \quad \text{where} \quad R := \max_{j} \sigma_{j}.$$

In other words, with probability at least 1 - 2/p, we have

$$\max_{j} |z_j| \le 2R\sqrt{\log p}$$