Introduction to the analysis of learning algorithms

— Does Bayesianism save you?

Ryota Tomioka Toyota Technological Institute at Chicago tomioka@ttic.edu

Exercise materials: https://github.com/ryotat/dtuphd14

Why learn theory?

- Think about your market value
 - Many good algorithms
 - Many good implementations (e.g., scikitlearn, mahout, Stan, infer.net, Church,…)

Two sides of machine learning

About this lecture

- I will try to make it as interactive as possible
- If you don't get something, probably I am doing something wrong.
- So, please ask questions
 - It will not only help you but also help others.
 - It will help you stay awake!

Key questions

- Learning
 - the goal is to generalize to a new test example from a limited number of training instances
- What is over-fitting?
- How do we avoid over-fitting?
- Does Bayesian methods avoid overfitting?

The key is to understand an estimator as a *random variable*

What we will cover

- First part
 - Ridge regression
 - Bias-variance decomposition
 - Model selection
 - Mallows' C_L
 - Leave-one-out cross validation

Second part

- Bayesian regression
- PAC Bayes theory

Ridge Regression

Key idea:

Estimator is a random variable

Problem Setting

• Training examples: (x_i, y_i) $(i=1, \dots, n)$, $x_i \in \mathbb{R}^d$ $y_1 \quad y_2 \quad y_n$ $X_1 \quad X_2 \quad \bullet \quad \bullet \quad X_n \quad \sim P(X,Y)$

- Goal
 - Learn a linear function

$$f(x) = w^{T}x \quad (w \in \mathbb{R}^{p})$$
that predicts the output y_{n+1} for a test point $(x_{n+1}, y_{n+1}) \sim P(X,Y)$

 Note that the test point is not included in the traning examples (We want generalization!)

Ridge Regression

Solve the minimization problem

Note: Can be interpreted as a Maximum A Posteriori (MAP) estimation – Gaussian likelihood with Gaussian prior.

Ridge Regression

More compactly

Target output
$$y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$
 Design matrix $X = \begin{pmatrix} x_1^\top \\ x_2^\top \\ \vdots \\ x_n^\top \end{pmatrix}$

Note: Can be interpreted as a Maximum A Posteriori (MAP) estimation – Gaussian likelihood with Gaussian prior.

Designing the design matrix

- Columns of X can be different sources of info
 - e.g., predicting the price of an apartment

- Columns of X can also be nonlinear
 - e.g., polynomial regression

$$m{X} = egin{pmatrix} x_1^p & \cdots & x_1^2 & x_1 & 1 \ x_2^p & \cdots & x_2^2 & x_2 & 1 \ dots & & & dots \ x_n^p & \cdots & x_n^2 & x_n & 1 \end{pmatrix}$$

Solving ridge regression

Take the gradient, and solve

$$-\boldsymbol{X}^{\top} (\boldsymbol{y} - \boldsymbol{X} \boldsymbol{w}) + \lambda \boldsymbol{w} = 0$$

which gives

$$\hat{m{w}} = ig(m{X}^ op m{X} + \lambda m{I}_dig)^{-1} m{X}^ op m{y}$$
 (I_d : d×d identity matrix)

The solution can also be written as (exercise)

$$\hat{oldsymbol{w}} = oldsymbol{X}^ op ig(oldsymbol{X}oldsymbol{X}^ op ig(oldsymbol{X}oldsymbol{X}^ op + \lambda oldsymbol{I}_nig)^{-1}oldsymbol{y}$$

Example: polynomial fitting

Degree d-1 polynomial model

$$y = w_1 x^{d-1} + \dots + w_{d-1} x + w_d + \text{noise}$$

$$= \begin{pmatrix} x^{d-1} & \cdots & x & 1 \end{pmatrix} \begin{pmatrix} w_1 \\ \vdots \\ w_{d-1} \\ w_d \end{pmatrix} + \text{noise}$$
Design matrix:

$$\boldsymbol{X} = \begin{pmatrix} x_1^{d-1} & \cdots & x_1^2 & x_1 & 1 \\ x_2^{d-1} & \cdots & x_2^2 & x_2 & 1 \\ \vdots & & & \vdots \\ x_n^{d-1} & \cdots & x_n^2 & x_n & 1 \end{pmatrix}$$

True

$$oldsymbol{w}^* = \left(egin{array}{c} 0 \ 1 \ 0 \ -1 \ 0 \end{array}
ight)$$

$$\mathbf{w} = \begin{pmatrix} -0.36 \\ 0.30 \\ 2.32 \\ -1.34 \\ -1.93 \\ 0.61 \end{pmatrix}$$

True

$$oldsymbol{w}^* = \left(egin{array}{c} 0 \ 1 \ 0 \ -1 \ 0 \end{array}
ight)$$

$$\mathbf{w} = \begin{pmatrix} -0.27 \\ 0.25 \\ 1.99 \\ -1.16 \\ -1.73 \\ 0.56 \end{pmatrix}$$

True

$$oldsymbol{w}^* = \left(egin{array}{c} 0 \ 1 \ 0 \ -1 \ 0 \end{array}
ight)$$

$$m{w} = egin{pmatrix} 0.08 \\ 0.05 \\ 0.74 \\ -0.52 \\ -0.98 \\ 0.36 \end{pmatrix}$$

True

$$oldsymbol{w}^* = \left(egin{array}{c} 0 \ 1 \ 0 \ -1 \ 0 \end{array}
ight)$$

$$m{w} = egin{pmatrix} 0.27 \\ -0.06 \\ -0.01 \\ -0.12 \\ -0.41 \\ 0.19 \end{pmatrix}$$

True

$$oldsymbol{w}^* = \left(egin{array}{c} 0 \ 1 \ 0 \ -1 \ 0 \end{array}
ight)$$

$$m{w} = egin{pmatrix} 0.22 \\ -0.07 \\ 0.01 \\ -0.05 \\ -0.10 \\ 0.04 \end{pmatrix}$$

Binary classification

Target y is +1 or -1.

Outputs to be predicted
$$y=\begin{pmatrix} 1\\-1\\1\\\vdots\\1\end{pmatrix}$$
 or lemon (-1)

- Just apply ridge regression with +1/-1 targets
 - forget about the Gaussian noise assumption!

Multi-class classification

USPS digits dataset

7291 training samples,2007 test samples

http://www-stat-class.stanford.edu/~tibs/ElemStatLearn/datasets/zip.info

USPS dataset

We can obtain 88% accuracy on a held-out test-set using about 7300 training examples

Summary (so far)

- Ridge regression (RR) is very simple.
- RR can be coded in one line:

```
W=(X'*X+lambda*eye(d))(X'*Y);
```

- RR can prevent over-fitting by regularization.
- Classification problem can also be solved by properly defining the output Y.
- Nonlinearities can be handled by using basis functions (polynomial, Gaussian RBF, etc.).

Singularity

- The dark side of RR

USPS dataset (d=256) (What I have been hiding)

The more data the less accurate??

Breast Cancer Wisconsin (diagnostic) dataset (d=30)

30 real-valued features

- radius
- texture
- perimeter
- area, etc.

SPECT Heart dataset (d=22)

22 binary features

Spambase dataset (d=57)

55 real-valued features

- word frequency
- character frequency
- 2 integer-valued feats
- run-length

Musk dataset (d=166)

166 real-valued features

Singularity

Why does it happen? How can we avoid it?

Let's analyze the simplest case: regression.

- Model
 - Design matrix X is fixed (X is not random)
 - Output

$$oldsymbol{y} = oldsymbol{X} oldsymbol{w}^* + oldsymbol{\xi}$$
 : noise

Estimator

$$\hat{oldsymbol{w}} = \left(oldsymbol{X}^{ op}oldsymbol{X} + \lambda oldsymbol{I}_d
ight)^{-1}oldsymbol{X}^{ op}oldsymbol{y}$$

Estimation Error

$$\operatorname{Err}(\hat{m{w}}) = \mathbb{E}_{m{\xi}} \left\| \hat{m{w}} - m{w}^* \right\|^2$$
 expectation over noise

The estimator is a random variable!

Demo

try exp_ridgeregression_poly.m

Estimator as a random variable

- Deriving the generalization error reduces to understanding how the estimator behaves as a random variable.
- Two strategies
 - Worst case
 - Average case this is what we'll do today

Average case analysis

Be careful!

$$\mathbb{E}_{\boldsymbol{\xi}} \left\| \hat{\boldsymbol{w}} - \boldsymbol{w}^* \right\|^2 \neq \left\| \mathbb{E}_{\boldsymbol{\xi}} \hat{\boldsymbol{w}} - \boldsymbol{w}^* \right\|^2$$

Average case error (what we will analyze)

Error of the averaged estimator

Which is smaller?

Bias-variance decomposition

$$\mathbb{E}_{oldsymbol{\xi}} \left\|\hat{oldsymbol{w}} - oldsymbol{w}^*
ight\|^2 = \mathbb{E}_{oldsymbol{\xi}} \left\|\hat{oldsymbol{w}} - ar{oldsymbol{w}}
ight\|^2 + \left\|ar{oldsymbol{w}} - oldsymbol{w}^*
ight\|^2$$
 where $ar{oldsymbol{w}} = \mathbb{E}_{oldsymbol{arepsilon}} \hat{oldsymbol{w}}$ variance

Bias: error coming from the model/design matrix

- under-fitting

Variance: error caused by the noise - over-fitting

Demo

- Try exp_ridgeregression_poly.m again
 - How can we reduce variance?
 - How can we reduce bias²?

For ridge regression,

• Since $\boldsymbol{y} = \boldsymbol{X}\boldsymbol{w}^* + \boldsymbol{\xi}$, if $\mathbb{E}\boldsymbol{\xi} = 0$, $\operatorname{Cov}(\boldsymbol{\xi}) = \sigma^2\boldsymbol{I}_n$

$$\mathbb{E}_{oldsymbol{\xi}}[\hat{oldsymbol{w}}] = \left(\hat{oldsymbol{\Sigma}} + \lambda_n oldsymbol{I}_d\right)^{-1} \hat{oldsymbol{\Sigma}} oldsymbol{w}^*$$

$$Cov(\hat{\boldsymbol{w}}) = \frac{\sigma^2}{n} \left(\hat{\boldsymbol{\Sigma}} + \lambda_n \boldsymbol{I}_d \right)^{-1} \hat{\boldsymbol{\Sigma}} \left(\hat{\boldsymbol{\Sigma}} + \lambda_n \boldsymbol{I}_d \right)^{-1}$$

where
$$\lambda_n := \lambda/n$$
 and $\hat{oldsymbol{\Sigma}} = \frac{1}{n} oldsymbol{X}^{ op} oldsymbol{X}$

Let's see if this is correct…

Exercise

- Analytical exercise:
 - Derive the expressions for both $\,\mathbb{E}_{m{\xi}}[\hat{m{w}}]\,\mathsf{and}\,\mathrm{Cov}(\hat{m{w}})$
 - Use them to derive bias² and variance.
- Empirical exercise: Plot the ellipse corresponding to the theoretically derived mean and covariance of the ridge regression estimator
 - Key function: plotEllipse(mu, Sigma, color, width, marker_size)

mean covariance (2x1 column vec) (2x2 matrix)

Bias² and variance from the mean $\mathbb{E}_{\boldsymbol{\xi}}[\hat{\boldsymbol{w}}]$ and covariance $\mathrm{Cov}(\hat{\boldsymbol{w}})$

• Bias 2 $\left\|ar{m{w}} - m{w}^*
ight\|^2 = \left\|\mathbb{E}_{m{\xi}}\hat{m{w}} - m{w}^*
ight\|^2$ $= \lambda_n^2 \left\|\left(\hat{m{\Sigma}} + \lambda_n m{I}_d\right)^{-1} m{w}^*
ight\|^2$

 $(\lambda_n := \lambda/n)$

Variance

$$\mathbb{E}_{\boldsymbol{\xi}} \|\hat{\boldsymbol{w}} - \bar{\boldsymbol{w}}\|^2 = \operatorname{Tr}\left(\operatorname{Cov}(\hat{\boldsymbol{w}})\right)$$

Explaining the singularity

- Bias² is an increasing function of λ and bounded by $\| {\boldsymbol w}^* \|^2$ (cannot cause phase transition)
- Variance can be very large when the smallest eigenvalue of ∑ is close to zero
 (⇔ smallest singular-value of X is close to zero)
- Try sample a random d x n matrix and see when the smallest singular-value is close to zero.

Simulation ($\lambda = 10^{-6}$)

Simulation ($\lambda = 0.001$)

Simulation ($\lambda = 1$)

Estimation error and generalization error

So far, we've analyzed the estimation error

$$\mathbb{E}_{oldsymbol{\xi}} \left\| \hat{oldsymbol{w}} - oldsymbol{w}^*
ight\|^2$$

 One might be more interested in analyzing the generalization error

$$egin{aligned} \operatorname{Gen}(oldsymbol{x}) &= \mathbb{E}_{oldsymbol{\xi}}(oldsymbol{x}^{ op} oldsymbol{w}^* - oldsymbol{x}^{ op} \hat{oldsymbol{w}})^2 \ &= \mathbb{E}_{oldsymbol{\xi}}\left\{oldsymbol{x}^{ op}(oldsymbol{w}^* - \hat{oldsymbol{w}})
ight\}^2 \ & ext{x: Test point} \end{aligned}$$

• Try exp_frequentists_errorbar.m

Exercise

- Analytical: derive the expression for the generalization error Gen(x) at an arbitrary point x.
 - Hint: use the decomposition

$$m{w}^* - \hat{m{w}} = (m{w}^* - ar{m{w}}) + (ar{m{w}} - \hat{m{w}})$$

- Empirical: try
 - exp_frequentists_errorbar.m and see
 - when is the error under-estimated?
 - how does it compare to Bayesian posterior?

Generalization error at x

Gen
$$(\boldsymbol{x}) = \mathbb{E}_{\boldsymbol{\xi}} \left\{ \boldsymbol{x}^{\top} (\boldsymbol{w}^* - \hat{\boldsymbol{w}}) \right\}^2$$

$$= \lambda_n^2 \left\{ \boldsymbol{x}^{\top} \hat{\boldsymbol{\Sigma}}_{\lambda_n}^{-1} \boldsymbol{w}^* \right\}^2 + \frac{\sigma^2}{n} \boldsymbol{x}^{\top} \hat{\boldsymbol{\Sigma}}_{\lambda_n}^{-1} \hat{\boldsymbol{\Sigma}} \hat{\boldsymbol{\Sigma}}_{\lambda_n}^{-1} \boldsymbol{x}$$

$$(\hat{\boldsymbol{\Sigma}}_{\lambda_n} := \hat{\boldsymbol{\Sigma}} + \lambda_n \boldsymbol{I}_d)$$

Caution

- w* is not known!

$$\left\{oldsymbol{x}^{ op}\hat{oldsymbol{\Sigma}}_{\lambda_n}^{-1}oldsymbol{w}^*
ight\}^2 \leq \|\hat{oldsymbol{\Sigma}}_{\lambda_n}^{-1}oldsymbol{x}\|^2 \cdot \|oldsymbol{w}^*\|^2$$

$$\mathbb{E}_{\boldsymbol{w}^*} \left\{ \boldsymbol{x}^{\top} \hat{\boldsymbol{\Sigma}}_{\lambda_n}^{-1} \boldsymbol{w}^* \right\}^2 = \alpha^{-1} \|\hat{\boldsymbol{\Sigma}}_{\lambda_n}^{-1} \boldsymbol{x}\|^2$$

assuming
$$\mathbb{E}_{\boldsymbol{w}^*}[\boldsymbol{w}^*\boldsymbol{w}^{*\top}] = \alpha^{-1}\boldsymbol{I}_d$$

Frequentists' error-bar

How do we choose λ ?

- Bias² cannot be computed in practice (because we don't know w*)
- Practical approaches
 - Mallow's C_I
 - Leave-one-out cross validation

Mallows C [Mallows 1973]

 Tells us how the training error is related to bias²

$$\frac{1}{n} \mathbb{E}_{\boldsymbol{\xi}} \| \boldsymbol{y} - \boldsymbol{X} \hat{\boldsymbol{w}} \|^2 + \frac{2\sigma^2}{n} \operatorname{Tr} \left(\hat{\boldsymbol{\Sigma}} (\hat{\boldsymbol{\Sigma}} + \lambda_n \boldsymbol{I}_d)^{-1} \right)$$

$$= \sigma^2 + \mathbb{E}_{\boldsymbol{\xi}} (\hat{\boldsymbol{w}} - \bar{\boldsymbol{w}})^{\top} \hat{\boldsymbol{\Sigma}} (\hat{\boldsymbol{w}} - \bar{\boldsymbol{w}}) + (\bar{\boldsymbol{w}} - \boldsymbol{w}^*)^{\top} \hat{\boldsymbol{\Sigma}} (\bar{\boldsymbol{w}} - \boldsymbol{w}^*)$$

$$\text{Variance} \qquad \qquad \text{Bias}^2$$

$$(\lambda_n := \lambda/n)$$

 $\operatorname{Tr}\left(\hat{\boldsymbol{\Sigma}}(\hat{\boldsymbol{\Sigma}}+\lambda_n\boldsymbol{I}_d)^{-1}\right)$: known as the effective degrees of freedom

Schematically

$$\frac{1}{n} \mathbb{E}_{\boldsymbol{\xi}'} \mathbb{E}_{\boldsymbol{\xi}} \| \boldsymbol{y}' - \boldsymbol{X} \hat{\boldsymbol{w}} \|^2$$

$$\frac{2\sigma^2}{n} \operatorname{Tr} \left(\hat{\boldsymbol{\Sigma}} (\hat{\boldsymbol{\Sigma}} + \lambda_n \boldsymbol{I}_d)^{-1} \right)$$

$$\frac{1}{n}\mathbb{E}_{\boldsymbol{\xi}}\|oldsymbol{y} - oldsymbol{X}\hat{oldsymbol{w}}\|^2$$

Expected (fixed design) generalization error

$$(\boldsymbol{y}' = \boldsymbol{X} \boldsymbol{w}^* + \boldsymbol{\xi}')$$

This is how much we have overfitted!

Expected training error

Leave-one-out cross validation

- Idea: compute an estimator $\hat{w}_{\setminus i}$ leaving sample (x_i, y_i) out. Then test it on (x_i, y_i) .
- It turns out that

$$\sum_{i=1}^{n} (y_i - \boldsymbol{x}_i^{\top} \hat{\boldsymbol{w}}_{\setminus i})^2 = \sum_{i=1}^{n} \left(\frac{y_i - \boldsymbol{x}_i^{\top} \hat{\boldsymbol{w}}}{1 - S(i, i)} \right)^2$$

where
$$oldsymbol{S} = oldsymbol{X} (oldsymbol{X}^ op oldsymbol{X} + \lambda oldsymbol{I}_d)^{-1} oldsymbol{X}^ op$$

 This can be obtained by solving just one ridge regression problem.

Discussion

- Mallow's C_L is a good approximation of the test error when $\hat{\Sigma} \simeq \Sigma$
 - but it requires the knowledge of σ^2
- Leave-one-out cross validation is an almost unbiased estimator of the generalization error
 - does not require the knowledge of σ^2
 - can be unstable (e.g., S(i,i) close to one)
 - cannot be used for other number of folds (e.g., 10 folds)

Exercise

- Analytical exercise: Derive Mallow's C_L , or LOO-CV, or both.
- Empirical exercise:
 - Try and compare the two strategies on some dataset.
 - compare them to the *cheating strategy*, i.e., choose λ that minimizes the test error
 - also try them on a classification problem.

Further exercise

- Take any model or classifier (logistic regression, L1-regularization, kernel ridge regression, etc)
 - simulate a problem
 - visualize the scattering of the estimated coefficient vector
 - does it look Gaussian?
 - can you see a trade-off between bias and variance?

Summary

- Estimator is a random variable
 - it fluctuates depending on the training examples
 - characterizing the fluctuation is a key to understand its ability
- Training error is an under-estimate of the generalization error
 - systematically biased
 - understanding the bias is a key to derive a model selection criterion

What we did not discuss

- Other loss functions/regularization
 - analysis becomes significantly more challenging because the estimator is not analytically obtained
 - Solution 1: asymptotic second-order expansion. Cf. AIC
 - Solution 2: upper bounding using $\operatorname{Objective}(\hat{\boldsymbol{w}}) \leq \operatorname{Objective}(\boldsymbol{w}^*)$
- Truth (w*) not contained in the model
 - VC dim, Rademacher complexity, etc. The bound becomes significantly looser.

Bayesian regression

Can we justify why we should predict with uncertainty?

Bayesian linear regression

Generative process

Coefficient vector
$$m{w} \sim \mathcal{N}(0, lpha^{-1} m{I}_d)$$
 Noise vector $m{\xi} \sim \mathcal{N}(0, \sigma^2 m{I}_n)$ Observation $m{y} = m{X} m{w} + m{\xi}$

Estimator

$$egin{aligned} oldsymbol{w} | oldsymbol{y} &\sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{C}) \ oldsymbol{\mu} := (oldsymbol{X}^ op oldsymbol{X} + \sigma^2 lpha oldsymbol{I}_d)^{-1} oldsymbol{X}^ op oldsymbol{y} \ oldsymbol{C} := \sigma^2 (oldsymbol{X}^ op oldsymbol{X} + \sigma^2 lpha oldsymbol{I}_d)^{-1} \end{aligned}$$

Let's visualize it

- Try exp_bayesian_regression.m
- Does Bayesian regression get away with over-fitting?

Discussion

S. Kullback R. Leibler

- From a frequentists' point of view, Bayesian posterior is a distributionvalued estimator.
- In fact,

$$p(\boldsymbol{w}|\boldsymbol{y}) = \underset{q(\boldsymbol{w})}{\operatorname{argmin}} \left\{ \mathbb{E}_{\boldsymbol{w} \sim q(\boldsymbol{w})} \left[-\log p(\boldsymbol{y}|\boldsymbol{w}) \right] + D(q||p) \right\},$$
subject to
$$\int q(\boldsymbol{w}) d\boldsymbol{w} = 1.$$

Bayesian posterior Average log-likelihood

Regularization

p(w): prior distribution

Predictive distributions

Bayesian predictive distribution

$$y_{n+1}|\boldsymbol{x}_{n+1},\boldsymbol{y} \sim \mathcal{N}(\boldsymbol{x}_{n+1}^{\top}\boldsymbol{\mu},\sigma^2+\boldsymbol{x}^{\top}\boldsymbol{C}\boldsymbol{x})$$

Plug-in predictive distribution (via RR)

$$y_{n+1}|\boldsymbol{x}_{n+1},\boldsymbol{y} \sim \mathcal{N}(\boldsymbol{x}_{n+1}^{\top}\hat{\boldsymbol{w}},\sigma^2)$$

Note: $\hat{\boldsymbol{w}} = \boldsymbol{\mu}$ if $\lambda = \alpha \sigma^2$

⇒ They only differ in the predictive variance!

Evaluating the qualities of predictive distributions

 Kullback-Leibler divergence between the true and the predictive distributions

$$\begin{split} D\big(p_{\boldsymbol{w}^*}(y_{n+1}|\boldsymbol{x}_{n+1}) \| \hat{p}(y_{n+1}|\boldsymbol{x}_{n+1}) \big) \\ &= \frac{\left\{\boldsymbol{x}_{n+1}^{\top}(\boldsymbol{w}^* - \hat{\boldsymbol{w}})\right\}^2}{2\sigma_{\mathrm{pred}}^2} + \frac{1}{2} \left\{ \frac{\sigma^2}{\sigma_{\mathrm{pred}}^2} + \log\left(\frac{\sigma_{\mathrm{pred}}^2}{\sigma^2}\right) - 1 \right\} \\ &\text{Discounted} \\ &\text{generalization error} \end{aligned} \quad \begin{array}{c} \text{Penalty for} \\ \text{uncertainty} \end{split}$$

where

$$p_{\boldsymbol{w}^*}(\boldsymbol{y}_{n+1}|\boldsymbol{x}_{n+1}): y_{n+1}|\boldsymbol{x}_{n+1} \sim \mathcal{N}(\boldsymbol{x}_{n+1}^{\top}\boldsymbol{w}^*, \sigma^2)$$

$$\hat{p}(\boldsymbol{y}_{n+1}|\boldsymbol{x}_{n+1}): y_{n+1}|\boldsymbol{x}_{n+1} \sim \mathcal{N}(\boldsymbol{x}_{n+1}^{\top}\hat{\boldsymbol{w}}, \sigma_{\text{pred}}^2)$$

Exercise

- 1. Derive the expression for the KL divergence.
- 2. Show that the penalty term is nonnegative and increasing for $\sigma_{\text{pred}}^2 \geq \sigma^2$.
- 3. Derive the optimal σ_{pred}^2 that minimizes the KL divergence.

Optimal predictive variance

$$\sigma_{\text{pred}}^{*2} = \sigma^2 + \{\boldsymbol{x}_{n+1}^{\mathsf{T}}(\boldsymbol{w}^* - \hat{\boldsymbol{w}})\}^2$$

Noise variance + Frequentists' gen. error

Is Bayesian predictive variance optimal?

• In some sense, yes:

$$\mathbb{E}_{\boldsymbol{w}^* \sim \mathcal{N}(0, \alpha^{-1}\boldsymbol{I}_d)} \mathbb{E}_{\boldsymbol{\xi}} \left\{ \boldsymbol{x}_{n+1}^\top (\boldsymbol{w}^* - \hat{\boldsymbol{w}}) \right\}^2 = \boldsymbol{x}^\top \boldsymbol{C} \boldsymbol{x}$$

- this assumes that we know the correct noise variance σ^2 and the prior variance α^{-1}
- average over the draw of the true
 coefficient vector w*

Bayes risk [see Haussler & Opper 1997]

 More generally, Bayesian predictive distribution is the minimizer of the Bayes risk

$$R[q_{\boldsymbol{y}}] = \mathbb{E}_{\boldsymbol{w} \sim p(\boldsymbol{w})} \mathbb{E}_{\boldsymbol{y} \sim \prod_{i=1}^{n} p(y_i | \boldsymbol{w})} \left[D(p(y_{n+1} | \boldsymbol{w}) || \underline{q_{\boldsymbol{y}}(y_{n+1})}) \right]$$

Any distribution over y_{n+1} that depends on previous samples y_1, \dots, y_n

Assumes that the truth w comes from the prior, and the samples are drawn from the likelihood p(y|w)!

Discussion

- Bayesian predictive distribution minimizes the Bayes risk given the correct prior and correct likelihood.
 - Clearly not satisfying.
- Can we make it independent of the choice of prior/likelihood?
 - PAC Bayes theory

Preliminaries

- Loss function $L(s, oldsymbol{w})$
 - assumed to be bounded by L_{max}
 - e.g., classification error $L(s, \boldsymbol{w}) = \begin{cases} 0 & \text{if } y \boldsymbol{x}^\top \boldsymbol{w} \geq 0, \\ 1 & \text{otherwise} \end{cases}$

 $(s = (y, x), L_{\text{max}} = 1)$

Training Gibbs error

$$\hat{L}(Q) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{\boldsymbol{w} \sim Q(\boldsymbol{w})} [L(s_i, \boldsymbol{w})]$$

• Gibbs error (for some "posterior" Q over w)

$$L(Q) = \mathbb{E}_s \mathbb{E}_{\boldsymbol{w} \sim Q(\boldsymbol{w})} [L(s, \boldsymbol{w})]$$

- this is the quantity that we care about

PAC-Bayes training-variance bound

[McAllester 1999, 2013; Catoni 2007]

• Let $\lambda > 1/2$, "prior" P(w) is fixed before seeing the data, "posterior" Q(w) can be any distribution that depends on the data. Then we have

$$\mathbb{E}_{S}L(Q) \leq \frac{1}{1 - \frac{1}{2\lambda}} \left(\mathbb{E}_{S}\hat{L}(Q) + \frac{\lambda L_{\max}}{n} \mathbb{E}_{S}D(Q||P) \right)$$

Expectation with respect to training examples (average case)

Note: the worst case version is more commonly presented as PAC Bayes

Discussion

- What is Gibbs error?
 - Error of a prediction made randomly according to the posterior
 - Bayes generalization error ≤ Gibbs generalization error
- What is the role of λ ?
 - more or less an artifact in the analysis
 - can be fixed at a large but fixed constant (say $\lambda = 10$)
- What is the best prior P(w)?
 - $-P(w) = E_S[Q(w)]$ minimizes $E_S D(Q(w)|P(w))$
 - $E_SD(Q(w)|E_S[Q(w)])$: measure of variance of the posterior Q(w)

Summary

- Bayesian methods are not exempt from overfitting.
- Posterior- and predictive distribution are random distributions
- Does it make sense to predict with posterior variance?
 - Only if you measure the quality of the predictive distribution with the KL (or other) divergence.
- PAC-Bayes training-variance bound reflects the variance of the posterior distribution.

Beyond this lecture

- Non-parametric analysis of GP
 - van der Vaart & van Zanten (2011)
 "Information Rates of Nonparametric Gaussian Process Methods"

$$\mathbb{E}_S \|\hat{f} - f^*\|_n^2 \le O\left(n^{-\min(\alpha,\beta)/(2\alpha+d)}\right)$$

for f^* with smoothness parameter β and posterior mean f^* using Matérn kernel with parameter α .