Introduction to the analysis
of learning algorithms
— Does Bayesianism save you?

Exercise materials:
https://github.com/ryotat/dtuphd 14



Why learn theory?

« Think about your market value
— Many good algorithms
— Many good implementations (e.g., scikit-
learn, mahout, Stan, infer.net, Church,---)

AN scikit-learn

Machine Learning in Python
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Two sides of machine learning

Modeling Evaluating
(How to (How they
do things) perform)



About this lecture

| will try to make It as interactive as

possible
I you don't get something, probably |

am doing something wrong.

« S0, please ask questions
— |t will not only help you but also help
others.
— It will help you stay awake!



Key questions

» Learning
—the goal Is to generalize to a new test
example from a limited number of
training instances

« What is over-fitting?
« How do we avoid over-fitting?
« Does Bayesian methods avoid over-
fitting™?
The key is to understand an estimator
as a random variable



What we will cover

« First part
— Ridge regression
— Blas-variance decomposition

— Model selection
« Mallows’ C,
e | eave-one-out cross validation

Second part
— Bayesian regression
— PAC Bayes theory



Ridge Regression

Key Idea:
Estimator Is a random variable



Problem Setting

Training examples: (x;, y) (i=1,--, n), xeR?
Vi Yo Yn

11D
o 0o o ~ P(X,Y)

y r r

Goal

— Learn a linear function
f(xX) = wx (weRP)

that predicts the output y, ., for a test point
(Xn+1’yn+1) NP(X’Y) d

Note that the test point i1s not included in the
traning examples (We want generalization!)



Ridge Regression

« Solve the minimization problem

n
minimize Z (yz — fl?z'T”w)2 + A|w]|3
weRe i=1
\

J l J
| |

Training error  Regularization (ridge) term
(A\: regularization const.)

Note: Can be interpreted as a Maximum A Posteriori (MAP) estimation
— Gaussian likelihood with Gaussian prior.



Ridge Regression

 More compactly

minimize ||y — Xw|? + Mw||*
w | J | /
| |
Training error Regularization (ridge) term
(A\: regularization const.)

-
Target (91\ Design (wlT\
output Y2 tri T2

p y — matrix o _

Note: Can be interpreted as a Maximum A Posteriori (MAP) estimation
— Gaussian likelihood with Gaussian prior.




Designing the designh matrix

« Columns of X can be different sources of info
— e.qg., predicting the price of an apartment

o | 52|82
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« Columns of X can also be nonlinear
— e.g., polynomial regression
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Solving ridge regression

- Take the gradient, and solve
X' (y—Xw)+ I w=0
which gives
W= (X"TX+A,) X'y
(/;: dxd identity matrix)
The solution can also be written as (exercise)

w=X" (XX +A,) vy



Example: polynomial fitting

« Degree d-1 polynomial model

Yy = wlxd_l + .-+ wyg_1x + wy + noise

w1
— (.Cl?d_l oz 1) f + noise
wd—1
Design matrix: Wd
d—1
(2] vi w1 1)
azg_l 5 Ty 1

X =




Example: 5th-order

polynomial fitting

’=0.001

Learned

(—4136\

0.30
2.32
—1.34
—1.93

\ 0.61




Example: 5th-order
polynomial fitting

A=0.01




Example: 5th-order
polynomial fitting

' A=0.1

True
0
0
w* = | {
—1
0
Learned
0.08 \
( 0.05
o | 074
| —0.52
—0.98




Example: 5th-order
polynomial fitting

True
0
( (1) )
* —
w = 0
—1
0
Learned
0.27 \
(—0.06
| —0.01
Y=1_0.12
—0.41




Example: 5th-order
polynomial fitting

r=10

Learned

(Qm\

—0.07
0.01
—0.05
—0.10

\ 0.04




Binary classification

« Targetyis +1 or-1.

Outputs 11 Sk
to be B > Orange (+1)
predicted Y = . or lemon (-1)

1

« Just apply ridge regression with +1/-1
targets
— forget about the Gaussian noise assumption!



Multi-class classification

USPS digits dataset 7291 training samples,

2007 test samples
http://www-stat-class.stanford.edu/~tibs/ElemStatLearn/datasets/zip.info
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USPS dataset

We can obtain 88% accuracy on a held-out test-set

using about 7300 training examples
100

80

T0F

Accuracy (%)

A machine can learn!
(using a very simple

so/ learning algorithm)
\=106 ‘ ‘ ‘ ‘

500 1000 2000 4000 8000
Number of samples



Summary (so far)

« Ridge regression (RR) Is very simple.
 RR can be coded in one line:
W=(X'*X+lambda*eye(d) )\ (X' *Y);

« RR can prevent over-fitting by regularization.

« Classification problem can also be solved by
properly defining the output Y.

« Nonlinearities can be handled by using basis
functions (polynomial, Gaussian RBF, etc.).



Singularity
- The dark side of RR



USPS dataset (d=256)
(What | have been hiding)

e The

0=

~
o

more data the less accurate??

- 256 is the number
~ of pixels (16x16)

-~ in the image
. ; ; : ‘
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Number of samples (n)




Breast Cancer

Wisconsin (diaghostic)

dataset (d=30)

Accuracy (%)
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Breast Cancer Wisconsin
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Number of samples

30 real-valued features
* radius

* texture

* perimeter

* area, etc.



SPECT Heart dataset
(d=22)

SPECT Heart p=22

1 22 binary features

0 50 100 150 200 250
Number of samples (n)



Spambase dataset
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Musk dataset (d=166)

musk p=166
85 f ' ' T
sob -1 \L1 1 166 real-valued features
| | d
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Singularity

Why does it happen?
How can we avoid It?



Let’s analyze the simplest case:

regression.
 Model
— Design matrix Xis fixed (XIs not random)
— Output
y=Xw" + & € : noise
« Estimator

w = (XTX + )\Id)_l XTy
 Estimation Error
Err(w) = E¢

‘ﬁ) _w* H2 expectation
over noise

The estimator is a random variable!




Demo

» try exp_ridgeregression_poly.m



Estimator as a random variable

« Deriving the generalization error
reduces to understanding how the
estimator behaves as a random

variable.

« Two strategies

— Worst case
— Average case - this i1s what we’ll do today



Average case analysis

« Be careful!

T 2 . 2
U |l —w™||” # [Eew — w7

Average case error Error of the
(what we will analyze) averaged estimator

« Which is smaller?



Bias-variance decomposition

A 2 s 2 _ 2
e [|[w —w™||” = E¢ [|[w —w|” + [[w —w”|

Variance Bias?

where W = Lew

Bias: error coming from the \ Bigs
model/design matrix

- under-fitting
Variance: error caused by the ?
aFtdnce de\f—)

noise - over-fitting



Demo

« Try exp_ridgeregression_poly.m again
— How can we reduce variance?
— How can we reduce bias??



For ridge regression,

e Since y = Xw*+¢&, if E¢€=0, Cov(¢) =1,

A -1
eiw] = (34 Anla)  Sw’

o /. -1 . /. —1
Cov(w) = (2 + AnId) 5 (2 + )\nId)
T
n 1 -
where A\, :=A/n and X =-X'X
T

Let's see If this Is correct:--



Exercise

« Analytical exercise:
— Derive the expressions for both Iig [ﬁ)] and COV(’II})
— Use them to derive bias? and variance.

« Empirical exercise: Plot the ellipse corresponding to
the theoretically derived mean and covariance of

the ridge regression estimator

— Key function:
plotEllipse(mu, Sigma, color, width, marker_size)

mean covariance
(2x1 column vec) (2x2 matrix)



Bias2 and variance from the
mean E¢|w]and covariance Cov(w)

« Bias? , ,
|w —w*||” = [[Egw — w”|
A 1
= 2[[(B+Anda)  w’
e Variance ()\n c = A/n)

W — w|” = Tr (Cov(w))

435




Explaining the singularity

« Bias? is an increasing function of A and
bounded by ||w*||?
(cannot cause phase transition)
« Variance can be very large when the smallest
eigenvalue of ﬁ] IS close to zero
(& smallest singular-value of X is close to zero)
« Try sample a random d x n matrix and see
when the smallest singular-value Is close to zero.



Simulation (A =10-)

Ridge Regression: number of variables=100, lambda=1e-06

| ——simulation |
|- --bias® _
... |'=-variance ||

Estimation error IIw—w*II2

Number of samples n



Simulation (A =0.001)

Ridge Regression: number of variables=100, lambda=0.001
SRR RESEEEERNNEENE EREEERERNNERES o ——simulation |]

|- - -bias®

...|'=- variance |

Estimation error IIw—w*II2

Number of samples n



Simulation (A=1)

. Ridge Regression: number of variables=100, lambda=1
10 ; R o

LI N TR T

....... Sl ——simulation |

TR OO ST O T S R S O S ;.4.;.,.45151---bia52 ]
..... . .........l==variance |

Estimation error llw—w*|12

Number of samples n



Estimation error and
generalization error

« S0 far, we've analyzed the estimation error

AT (12
g ||l — w”|
« One might be more interested in analyzing

the generalization error
T

w' —x'w)?

Gen(x) = E¢(x

5 T * ¢ 2
X: Test point
« Try exp_frequentists_errorbar.m




Exercise

Analytical: derive the expression for the
generalization error Gen(x) at an arbitrary

point x.
— Hint: use the decomposition

*

w' —w = (w* —w)+ (w— w)

Empirical: try
exp_frequentists_errorbar.m and see

— when is the error under-estimated?
— how does it compare to Bayesian posterior?



Generalization error at x

Gen(x) = E¢ {z ' (w* — 12))}2

(X, =2+ A\ dy)
 Caution
—w* Is hot known! _ 2 1
—worst case {wTEAn’w*} < 12y, zl* - [lw"|?

~—1 2 ~—1
—average case - [ {:BTE,\nw*} =a X, x

assuming E - [w*w* '] = a1,



Frequentists’ error-bar
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How do we choose A?

 Bias? cannot be computed in practice
(because we don't know w™)

« Practical approaches
— Mallow’s C,
— Leave-one-out cross validation



Mallows’ C|_ [Mallows 1973]

» Tells us how the training error Is
related to bias?

1 n 12 20'2 A A 1
~Eelly - Xw|® + —Tx (2(2+An14) )
= 0?2+ Ee(w —w) B(w — w) + (0w —w*) Z(w — w*)
1 ] |\ J
i j
Variance Bias?
(A := A/n)

Tr (f](ﬁ] + )\nId)_l) . known as the effective degrees of freedom



Schematically

1 / 2
— KK _ f
e Yy — Xuw| Expected
(fixed design)
generalization
error
202 (y = Xw* + ¢

This 1s how much
we have overfitted!

y — X

436

Expected
training error



Leave-one-out cross validation

« |[dea: compute an estimator ﬁJ\Z-Ieaving
sample (x; y;) out. Then test it on (x, V).
* [t turns out that

n n T A 2
o T N2 Yi — L W
Z(yz £Lj w\z) Z ( 1 — S(Z, Z) )

1=1 1=1

where S:X(XTX+)\Id)_1XT

— This can be obtained by solving just one
ridge regression problem.



Discussion

« Mallow’s C, Is a good approximation
of the test error when 3 ~ 3
— but it requires the knowledge of o2

« | eave-one-out cross validation Is an

almost unbiased estimator of the

generalization error

— does not require the knowledge of o4

— can be unstable (e.g., S(i,i) close to one)

— cannot be used for other number of
folds (e.g., 10 folds)




Exercise

« Analytical exercise: Derive Mallow’s C,,
or LOO-CV, or both.

« Empirical exercise:

— Try and compare the two strategies on
some dataset.

— compare them to the cheating strategy,
l.e., choose A that minimizes the test
error

— also try them on a classification problem.



Further exercise

« Take any model or classifier (logistic
regression, L1-reqgularization, kernel
ridge regression, etc)

— simulate a problem

— visualize the scattering of the estimated
coefficient vector

— does it look Gaussian?

— can you see a trade-off between bias
and variance?



Summary

« Estimator is a random variable
— It fluctuates depending on the training
examples
— characterizing the fluctuation is a key to
understand its ability

« Training error is an under-estimate of

the generalization error

— systematically biased
— understanding the bias is a key to derive
a model selection criterion



What we did not discuss

« Other loss functions/regularization

— ana
cha
ana

ysis becomes significantly more
lenging because the estimator is not
ytically obtained

— Solution 1: asymptotic second-order
expansion. Cf. AlC
— Solution 2: upper bounding using

Objective(w) < Objective(w™)

e Truth

(W*) not contained in the model

— VC dim, Rademacher complexity, etc. The
bound becomes significantly looser.



Bayesian regression

Can we justify why we should
predict with uncertainty?



Bayesian linear regression

« Generative process

Coefficient vector w ~ N (0, oz_lId)

Noise vector ¢~ N(0,0°I,)
Observation y=Xw-+ &
« Estimator
wly ~ N(p, C)

p=(X"'X+o%al;) ' X"y
C:=0*(X'X+c%aly)™!



Let’s visualize It

« Try exp_bayesian_regression.m
« Does Bayesian regression get away
with over-fitting?



S. Kullback R. Leibler

Discussion

 From a frequentists’ point of view,
Bayesian posterior is a distribution-
valued estimator.

 |n fact,

p(wly) = argmin {Eqyq(w) [~ log p(y[w)] + D(ql[p) } ,

q(w)
/Fubject to /q(w/[dw = 1. /

Bayesian posterior Average log-likelihood Regularization

p(w): prior distribution



Predictive distributions

« Bayesian predictive distribution

Yni1|Tni1,y ~ N(@pi1 p,0° + ' Crx)

« Plug-in predictive distribution (via RR)

Yn+1 ‘wn—l-lv Yy ~ N(wn—l—l—rﬁj7 02)

Note: w=p if \=ac’
= They only differ in the predictive variance!



Evaluating the qualities of
predictive distributions

« Kullback-Leibler divergence between the
true and the predictive distributions

D (pw* (Yn+1]Tn+1)|D(Yn+1 ’wn+1))

~ 2
_ {ahk+1T(lu*__1U)} +_}_ 02 +-k) aﬁmﬁ_ 1
B 202 2 | o2 5 o2

pred pred
I ] |\ J

Discounted ! Penalty for!
generalization error uncertainty

where

Pw* (yn—l—l wn—l—l) c Yn+1|Ln+1 7 N(mn—l—l—r

’LU*,O'z)

ﬁ(yn+1 fl?n+1) c Yn+1|Ln4+1 N($n+1Tﬁ?>Ugred)



Exercise

1.

2.

. Derive the optimal o

Derive the expression for the KL
divergence.

Show that the penalty term is
nonnegative and increasing for
Gpredz > 0%

oreq” that

minimizes the KL divergence.



Optimal predictive variance

Opred. = 0"+ {Zn1 | (w" —w)}?

Noise variance + Frequentists’ gen. error



|s Bayesian predictive
variance optimal?

* In some sense, yes:

2

~

4

o N (00— T Ee {Tnt1 ' (W' — )} =z Cx

—this assumes that we know the correct
noise variance o4 and the prior
variance !

— average over the draw of the true
coefficient vector w*



Bayes I‘iSk [see Haussler & Opper 1997]

« More generally, Bayesian predictive
distribution is the minimizer of the
Bayes risk
R|qy] = Eaprp(w) By~T1, plyi |w) [D (p(yn+1|w)qu(yn+1)ﬂ

-

Any distribution over vy, ,; that
depends on previous samples yq, .Y,

Assumes that the truth w comes from the
prior, and the samples are drawn from the
likelihood p(y|w)!



Discussion

« Bayesian predictive distribution
minimizes the Bayes risk given the

correct prior and correct likelihood.
— Clearly not satistying.

« Can we make It independent of the

choice of prior/likelihood?
— PAC Bayes theory



Preliminaries

- Loss function L(s,w)
— assumed to be bounded by L.,

— e.g., classification error 0 ifyx'w >0,
L(s,w) = -

1 otherwise

 Training Gibbs error (s =(y, ), Lmax =1)
) ] o
L(Q) — E Z thQ(w)[L(Siaw)]

i=1
« Gibbs error (for some “posterior” Q over w)

L(Q) = g ﬂwa(w)[L(Sv w)]

- this Is the quantity that we care about




PAC-Bayes training-variance
bou nd [McAllester 1999, 2013; Catoni 2007]

« Let A>1/2, "prior” P(w) is fixed before
seeing the data, “posterior” Q(w) can be
any distribution that depends on the
data. Then we have

1
55L(@) < 1 (EsL(@) + 222EsD(Q|1P) )

— 1
1 =55

Expectation with respect to training examples
(average case)

Note: the worst case version is more commonly presented as PAC Bayes



Discussion

« What is Gibbs error?
— Error of a prediction made randomly according to

the posterior
— Bayes generalization error < Gibbs generalization

error
« What is the role of A7
— more or less an artifact in the analysis
— can be fixed at a large but fixed constant (say
A=10)
« What is the best prior P(w)?
— P(w) = Eg[Q(w)] minimizes Eg D(Q(w)|P(w))
— EsD(Q(wW) |Es[Q(W)]): measure of variance of the
posterior Q(w)



Summary

« Bayesian methods are not exempt from
overfitting.

« Posterior- and predictive distribution are
random distributions

« Does it make sense to predict with posterior

variance?
— Only If you measure the quality of the predictive
distribution with the KL (or other) divergence.

« PAC-Bayes training-variance bound reflects
the variance of the posterior distribution.



Beyond this lecture

« Non-parametric analysis of GP
—van der Vaart & van Zanten (201 1)
‘Information Rates of Nonparametric
Gaussian Process Methods”

‘]? B f>l<H2 <0 (Tl_ min(a,ﬁ)/(Qa—l—d))

tS

for * with smoothness parameter B
and posterior mean " using Matérn
kernel with parameter «.



