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1 Introduction

This paper attempts to give an extension of learning theory to a setting where the assumption

of i.i.d. data is weakened. We hypothesize that a sequence of examples (xt, yt) in X × Y for

t = 1, 2, 3, . . . is drawn from a probability distribution ρt on X × Y .

The marginal probabilities on X are supposed to converge to a limit probability on X.

Two main examples for this time process are discussed. The first is a stochastic one

which in the special case of a finite space X is defined by a stochastic matrix and more

generally by a stochastic kernel.

The second is determined by an underlying discrete dynamical system on the space X.

∗The first author is partially supported by NSF grant 0325113. The second author is supported by the
Research Grants Council of Hong Kong [Project No. CityU 103206]. The main results of the paper were
announced in Uruguay in December 2005 at the International Conference on Probability and Dynamical
Systems. Here discussions with various participants especially Mike Shub were very helpful.
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Our theoretical treatment requires that this dynamics be hyperbolic (or ”Axiom A”) which

still permits a class of chaotic systems (with Sinai-Ruelle-Bowen attractors). Even in the

case of a limit Dirac point probability, one needs the measure theory to be defined using

Hölder spaces.

Many implications of our work remain unexplored. These include for example the rela-

tion to Hidden Markov Models, as well as Markov Chain Monte Carlo methods. It seems

reasonable that further work consider the push forward of the process from X × Y by some

kind of observable function to a data space.

2 General Setting of Learning in RKHS

Let X be a compact metric space with metric d. Each x ∈ X is assigned a probability

measure ρx on Y = R. The regression function is defined as

fρ(x) =

∫
Y

ydρx, x ∈ X.

Our standing hypothesis for {ρx}x∈X is that for some M > 0, |y| ≤M almost surely for each

x ∈ X.

We study an online algorithm learning fρ in reproducing kernel Hilbert spaces from

random samples (not i.i.d) drawn according to a sequence of probability measures.

Let K : X ×X → R be a Mercer kernel and HK the corresponding Reproducing Kernel

Hilbert Space (RKHS) completed by the set of functions {Kx = K(x, ·) : x ∈ X} with the

inner product 〈·, ·〉K given by 〈Kx, Ky〉K = K(x, y). Denote κ = supx∈X
√
K(x, x).

Assume that there is a sequence of probability measures {ρ(t)}t=1,2,··· on Z = X ×Y such

that the conditional distribution of each ρ(t) at x ∈ X is ρx, independent of t.

We consider an online algorithm for learning fρ in HK . It is defined as f1 = 0 and

ft+1 = ft − pt
(
(ft(xt)− yt)Kxt + λtft

)
, for t ∈ N (2.1)

where λt > 0 is the regularization parameter and pt > 0 is the step size. For each t,

zt = (xt, yt) is a random sample drawn according to ρ(t).

The i.i.d. case corresponding to the special choice of ρ(t) = ρ for each t was studied in

[2, 9, 19, 28, 24].

2



Let ρ
(t)
X be the marginal distribution of ρ(t) on X. Unlike the i.i.d. case, the convergence

depends largely on the sequence {ρ(t)
X }. The analysis for the algorithm (2.1) will be done in

this paper under the assumption that the sequence {ρ(t)
X } converges exponentially fast in the

dual of the Hölder space Cs(X). Here the Hölder space Cs(X), with 0 ≤ s ≤ 1, is defined

as the space of all continuous functions on X with the following norm finite:

‖f‖Cs(X) = ‖f‖∞ + |f |Cs(X), where |f |Cs(X) := sup
x 6=y∈X

|f(x)− f(y)|
(d(x, y))s

.

It is a Banach space [11] and each probability measure µ on X can be regarded as a bounded

linear functional on Cs(X), i.e., µ ∈ (Cs(X))∗.

Definition 1. Let 0 ≤ s ≤ 1. We say that the sequence {ρ(t)
X } converges exponentially fast

in (Cs(X))∗ to a probability measure ρX on X, or converges exponentially in short, if

there exist C > 0 and 0 < α < 1 such that

‖ρ(t)
X − ρX‖(Cs(X))∗ ≤ Cαt, t ∈ N. (2.2)

By the definition of the dual space (Cs(X))∗, the decay (2.2) can be expressed as∣∣∣∣∫
X

f(x)dρ
(t)
X −

∫
X

f(x)dρX

∣∣∣∣ ≤ Cαt‖f‖Cs(X), ∀f ∈ Cs(X), t ∈ N. (2.3)

We shall verify the above exponential convergence in Sections 4 and 5 for the case when

marginal distributions are generated by iterates of a linear operator acting on an initial

probability measure.

Let M(X) be the space of (signed) bounded measures on X. It is the dual of the Banach

space C(X) of continuous functions on X with the norm ‖ · ‖C(X) = ‖ · ‖∞: M(X) = C(X)∗.

(But the dual of M(X) is L∞(X), the space of essentially bounded functions on X, not

C(X).) For more details, see [11]. Note that C0(X) and C(X) are equivalent.

Denote M+(X) as the subset of M(X) consisting of positive bounded measures, and

P(X) the set of all probability measures on X. Then

M+(X) = {cµ : µ ∈ P(X), c ≥ 0}, M(X) = {µ+ − µ− : µ+, µ− ∈M+(X)}.

A bounded linear operator A on M(X) is positive if M+(X) is invariant under A, that

is, Aµ ∈ M+(X) for any µ ∈ M+(X). We call A stochastic if A maps P(X) into itself. In

this special case, we know that Mo := {µ ∈ M(X) :
∫
X
dµ = 0}, the subspace of M(X)
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consisting of measures with total measure zero, is invariant under A and the restriction A|Mo

is well defined. In fact, Mo the annillator in M(X) = C(X)∗ of the constant function with

value 1.

We study the sequence of measures {Atγ}t∈N generated by iterations of a stochastic linear

operator A on M(X) where γ ∈ P(X), and consider the exponential convergence (2.2) of

the sequence {ρ(t)
X = Atγ} in two settings.

The first setting is when the stochastic linear operator A is compact. Here we may take

s = 0, hence the exponential convergence (2.2) is that of measures in the space M(X) and

it implies the exponential convergence for any 0 < s ≤ 1 according to (2.3).

The second setting is when A is induced by a contracting (or more general) dynamics on

X where the Hölder space Cs(X) cannot be replaced by C(X) (i.e., s > 0). In both settings,

we shall verify the exponential converge (2.2), that is,

‖Atγ − ρX‖(Cs(X))∗ ≤ Cαt, t ∈ N.

Here the index α is a characteristic of the stochastic operator A and is independent of γ.

The constant C also depends (largely) on the initial measure γ. They are related to ”mixing

time” studied in the literature of dynamical systems and the smallest integer t0 ∈ N with

Cαt0 ≤ 1 is critical for the bound Cαt to be less than 1.

3 Main Results on Learning Rates

Let 0 ≤ s ≤ 1 be a fixed Hölder exponent used in the exponential convergence of measures.

Definition 2. We say that the Mercer kernel K satisfies the kernel condition (of order

s) if for some constant κ2s > 0, K ∈ Cs(X ×X) and for all u1, u2, v1, v2 ∈ X

|K(u1, v1)−K(u2, v1)−K(u1, v2) +K(u2, v2)| ≤ κ2s (d(u1, u2))
s (d(v1, v2))

s . (3.1)

When X is a domain of Rn with smooth boundary and K is C2, we know from [30] that

the kernel condition holds.

We shall take the parameters {λt}t and {pt}t for the algorithm (2.1) as

λt = λ1t
−β, pt = p1t

−θ ∀t ∈ N,where λ1 > 0, p1 > 0, 0 < θ < 1 and 0 ≤ β ≤ 1− θ. (3.2)

Besides K, {λt}, {pt}, and the measures {ρx : x ∈ X} determining the function fρ,

the algorithm (2.1) involves the sequence of marginal distributions {ρ(t)
X } which is a special
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feature of this online process. Let us mention two examples which satisfy the condition

of exponential convergence in Definition 1 to illustrate the main results on learning rates.

See more details in Sections 4 and 5 respectively. In both examples, we assume the kernel

condition (3.1) for K and the parameter form (3.2) with θ = 2
3
, β = 1

3
and p1λ1 >

1
6
. We

say that ν ∈ P(X) is strict positivity if µ(Γ) > 0 for any nonempty open subset Γ of X.

Example 1. Let ν ∈ P(X) be strictly positive and ψ ∈ C(X × X) be strictly positive

satisfying
∫
X
ψ(x, u)dν(u) = 1 for each x ∈ X. Define the sequence {ρ(t)

X } by

ρ
(t+1)
X (Γ) =

∫
Γ

{∫
X

ψ(x, u)dρ
(t)
X (x)

}
dν(u), t ∈ N, and Borel set Γ ⊆ X.

Then {ρ(t)
X } converges exponentially to some ρX ∈ P(X). If fρ =

∫
X
Kvgρ(v)dρX(v) for some

gρ ∈ L2
ρX

(X), then we have by Theorem 1 below

IEz1,...,zt (‖ft+1 − fρ‖K) ≤ C∗t−
1
6 ,

where C∗ is a constant independently of t.

In the special case of a finite space X, the function ψ above is a positive stochastic matrix

(a stochastic density kernel in general).

Example 2. Let X be a Riemannian manifold and S : X → X be a C2 diffeomorphism

with an Axiom A attractor X0. Let X∗ be the basin of attraction of X0. If ρ
(1)
X ∈ P(X∗)

is absolutely continuous on the transversal to the stable manifolds of the attractor, and the

sequence {ρ(t)
X } is given by

ρ
(t+1)
X (Γ) = ρ

(t)
X (S−1Γ), t ∈ N, and Borel set Γ ⊆ X,

then {ρ(t)
X } converges exponentially to some ρX ∈ P(X0). If fρ =

∫
X0
Kvgρ(v)dρX(v) for

some gρ ∈ L2
ρX

(X0), then we have by Theorem 1 below

IEz1,...,zt (‖ft+1 − fρ‖K) ≤ C∗t−
1
6 .

The above learning rates t−
1
6 can be improved to t−

2r−1
4r+2 with an exponent 1

2
< r ≤ 3

2

used in the following regularity condition for fρ.

Definition 3. For a probability measure µ, we define an integral operator LK,µ : L2
µ → L2

µ

as

LK,µf =

∫
X

Kvf(v)dµ(v).
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It is a compact operator and its power LrK,µ is well-defined. The function fρ is said to satisfy

the regularity condition (of order r) if

fρ = LrK,ρX
(gρ) for some gρ ∈ L2

ρX
(X). (3.3)

Now we can state our main result of the paper about learning rates of the online algorithm

(2.1) under the assumption of exponential convergence of the marginal distributions. Denote

the norm in L2
ρX

(X) as ‖ · ‖ρX
.

Theorem 1. Define {ft}t by (2.1) with parameters (3.2). Assume the exponential conver-

gence (2.2) for {ρ(t)
X }, the kernel condition (3.1) for K, and the regularity condition (3.3)

for fρ. The following bounds hold for t ∈ N,

IEz1,...,zt (‖ft+1 − fρ‖K) ≤ ‖gρ‖ρX
λ
r− 1

2
1 t−β(r− 1

2
)

+



(
p1C

∗
1 + (Cλ

r− 3
2

1 + λ
r− 1

2
1 )C∗

2

)
t−min{β(r− 1

2
), θ−β

2
}, if 0 < β < 1− θ, α < 1,(

p1C
∗
1 + (Cλ

r− 3
2

1 + λ
r− 1

2
1 )C∗

2

)
t−min{β(r− 1

2
),θ− 1

2
,p1λ1} log(t+ 1), if β = 1− θ, α < 1,(

p1C
∗
1 + Cλ

r− 3
2

1 C∗
2

)
t−

θ
2 , if β = 0, α < 1,

p1C
∗
1 t
− θ

2 + Cλ
r− 3

2
1 C∗

2 t
θ, if β = 0, α = 1

(3.4)

Here C∗
1 , C

∗
2 are constants independent of t or C, λ1. They depend on κ, κ2s, α, β, θ, r, CK

and p1λ1 and will be given explicitly in the proof.

Remark 1. We can see from the proof of Theorem 1 given in Section 6 that the factor

log(t+ 1) can be omitted when p1λ1 6= β(r − 1
2
) or θ − 1

2
in the case β = 1− θ, α < 1. Note

that the constants C∗
1 and C∗

2 depend on the product p1λ1, but not λ1 meaning that they are

the same for different pairs (p1, λ1) as long as the product p1λ1 is invariant.

3.1 Optimal learning rate

In contrast to the exponents θ and β, the exponent r in the regularity condition (3.3) needs

information on fρ and is not involved in the algorithm (2.1). When r ≥ θ
2−2θ

, we get the

following rate from Theorem 1 and Remark 1.

Corollary 1. Let θ = 2r
2r+1

, β = 1
2r+1

and p1λ1 >
2r−1
4r+2

. Under the kernel condition (3.1),

regularity condition (3.3), and the exponential convergence (2.2) with α < 1, we have

IEz1,...,zt (‖ft+1 − fρ‖K) ≤
(
‖gρ‖ρX

λ
r− 1

2
1 + p1C

∗
1 + (Cλ

r− 3
2

1 + λ
r− 1

2
1 )C∗

2

)
t−

2r−1
4r+2 . (3.5)
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In the i.i.d. case, C = 0 and the learning rate for p1 = λ1 = 1 can be stated as follows.

Corollary 2. Let pt = t−
2r

2r+1 , λt = t−
1

2r+1 and ρ
(t)
X ≡ ρX ∈ P(X) for t ∈ N in (2.1). If the

kernel condition (3.1) and the regularity condition (3.3) hold, then (3.5) is true.

This result in the i.i.d. case was given by Tarrés and Yao [24]. Their work led us to

generalize the form of the regularization parameters from λt = λ1 (for t = 1, . . . , T with T

depending on the approximation error) in our original version to λt = λ1t
−β in the current

version.

In the special case of r = 3
2
, the learning rate in Corollary 2 is IEz1,...,zt (‖ft+1 − fρ‖K) =

O
(
t−

1
4

)
, the same as those in the literature [22, 24].

In the case when ρX is a Dirac measure δx∗ with x∗ ∈ X, Corollary 1 seems odd: the

locations of the points {xt} used in the learning algorithm (2.1) tend to a single point x∗ and

one expects to learn the function fρ well only near x∗, not on the whole region X. However,

the assumption (3.3) takes a special form in this case. In fact, LK,ρX
(f) =

∫
X
Kxf(x)dρX =

f(x∗)Kx∗ . Hence LK,ρX
is a rank one operator mapping Kx∗ to K(x∗, x∗)Kx∗ . The func-

tion gρ ∈ L2
ρX

equals aρKx∗ for some aρ ∈ R since L2
ρX

has dimension one. We find that

LrK,ρX
(gρ) = aρ(K(x∗, x∗))rKx∗ . This is the function fρ. For this function with only one

parameter aρ, its value at the single point x∗ is sufficient for learning.

3.2 Mixing time

Our approach assumes one has a sample drawn from ρ(t) for each t. In the literature of

Markov Chain Monte Carlo methods or geometric random walks [25], many algorithms such

as ones for volume computation take only one sample at ”mixing time” and repeat this

sampling taking process for m times, then the m samples are used in the computation.

There the emphasis is to find a good sample from a measure close to an equilibrium. In our

setting, it can be expressed in the following where Tt is a mixing time.

Definition 4. For each t, Tt ∈ N, and we take a sample zt = (x
(t)
Tt
, y

(t)
Tt

) where {(x(t)
i , y

(t)
i )}Tt

i=1

is a random sample drawn drawn according to {ρ(i)}Tt
i=1. Then we define {ft}t∈N by (2.1).

By a mixing time Tt, we mean that ρ
(Tt)
X is close to ρX within a threshold. So we can

take {ρ(Tt)
X }t∈N as the sequence of measures in Theorem 1, C = ε and get the following error

bounds in the case α = 1, β = 0.
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Theorem 2. Define {ft}t by Definition 4 with parameters λt ≡ λ1 > 0 and pt = 1
λ1
t−θ for

some 0 < θ < 1. Assume the kernel condition (3.1) and the regularity condition (3.3). If for

some ε > 0,

‖ρ(Tt)
X − ρX‖(Cs(X))∗ ≤ ε, ∀t ∈ N, (3.6)

then we have

IEz1,...,zt (‖ft+1 − fρ‖K) ≤ ‖gρ‖ρX
λ
r− 1

2
1 + C∗

1λ
−1
1 t−

θ
2 + ελ

r− 3
2

1 C∗
2 t
θ, (3.7)

where C∗
1 , C

∗
2 are constants independent of t, ε or λ1. In particular, if we take λ1 = ε

1
2+2r

and ε−
1+2r

(2+2r)θ ≤ t = tε < ε−
1+2r

(2+2r)θ + 1, we have

IEz1,...,ztε
(‖ftε+1 − fρ‖K) ≤ (‖gρ‖ρX

+ C∗
1 + 2C∗

2) ε
2r−1
4+4r .

Let us compare the above error with that for (2.1) in the special case r = 3
2

stated in

Corollary 1. The rate in Theorem 2 is O(ε
1
5 ) with ε−

4
5θ ≤ tε < ε−

4
5θ +1 samples. According to

Corollary 1, the same number of samples used in the algorithm (2.1) with θ = 2r
1+2r

= 3
4

would

yield a learning rate O(t
− 1

4
ε ) = O(ε

4
15 ). So it seems that the convergence of the algorithm in

Definition 4, using mixing time samples only, is slower than that of algorithm (2.1) using all

samples. Moreover, each of the tε samples involves a long sampling process.

3.3 Main difficulty in the non i.i.d. case

To demonstrate the essential difference between our study and the i.i.d. setting, we recall

that the off-line version of the online algorithm (2.1) is

fz,λ = arg min
f∈HK

{
1

T

T∑
t=1

(f(xt)− yt)
2 + λ‖f‖2

K

}
.

Its noise-free limit in the i.i.d. case with ρ
(t)
X ≡ µ is

fλ,µ = arg min
f∈HK

{∫
X

(f(x)− fρ(x))
2dµ(x) + λ‖f‖2

K

}
. (3.8)

In our setting, the measures {ρ(t)
X } vary and an essential error is caused by the change of

these marginal distributions. When the sequence {ρ(t)
X } converges exponentially, we can use

the following bound, to be proved in Section 6, to estimate this essential error.
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Proposition 1. Let µ and µ′ be two probability measures on X, and 0 ≤ s ≤ 1. If fρ ∈
Cs(X) and K satisfies the kernel condition (3.1), then the functions defined by (3.8) satisfy

‖fλ,µ − fλ,µ′‖K ≤ CK
λ
‖µ− µ′‖(Cs(X))∗‖fλ,µ′ − fρ‖Cs(X), (3.9)

where CK is a constant depending only on K given by CK =
√
κ2 + 2|K|Cs(X×X) + κ2s.

In particular, when {ρ(t)
X } converges exponentially and the regularity condition (3.3)

holds, we shall derive ‖f
λt,ρ

(t)
X
− fλt,ρX

‖K = O(αtλ
r−3/2
t ).

4 Measures Induced by Compact Operators

In this section we consider the convergence of the measure sequence {Atγ}t∈N when A is

compact. Under some mild conditions, we show the exponential convergence in the space

M(X) = (C(X))∗ which implies the exponential convergence in the space (Cs(X))∗ accord-

ing to the expression (2.3) and ‖f‖C(X) ≤ ‖f‖Cs(X). The following spectral theorem can be

found in [16].

Spectral Theorem. Let a linear operator A on M(X) be stochastic and compact. Then

M(X) can be decomposed as a direct sum of a closed subspace W and a finite set of finite

dimensional closed subspaces {∆λ}λ∈Λ, all invariant under A, such that the following hold:

(1) The spectral radius of A|W is less than 1. There are C > 0, 0 < α < 1 satisfying

‖Atw‖M(X) ≤ Cαt‖w‖M(X), ∀t ∈ N, w ∈ W. (4.1)

(2) The set Λ contains all eigenvalues of A with modulus 1. It is a finite set containing

1 and each λ ∈ Λ satisfies λk = 1 for some k ∈ N. Moreover, ∆λ is the eigenspace of A
associated with the eigenvalue λ ∈ Λ.

Applying the spectral theorem to iterates of a stochastic linear operator yields the fol-

lowing convergence result.

Corollary 3. Let A be a stochastic and compact linear operator on M(X), and γ ∈ P(X).

Set W and {∆λ}λ∈Λ as in the spectral theorem. Then the sequence {Atγ} converges in M(X)

as t→∞ if (and only if) γ ∈ ∆1 +W . The following statements hold true.

(1) If γ = γ(1) + w(1) with γ(1) ∈ ∆1 and w(1) ∈ W , then Atγ → γ(1) and

‖Atγ − γ(1)‖M(X) ≤ Cαt‖w(1)‖M(X), t ∈ N.
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(2) If 1 is a simple eigenvalue with eigenvector ρX ∈ P(X) and all the other eigenvalues

of A are less than one in modulus, then W = Mo and for any γ ∈ P(X),

‖Atγ − ρX‖M(X) ≤ Cαt‖γ − ρX‖M(X), t ∈ N.

4.1 Special setting of a finite input space

Consider the special case of a finite input space X = {1, 2, . . . , k}. In this setting, stochastic

linear operators can be represented by stochastic matrices.

Let P = [pi,j]
k
i,j=1 be a stochastic matrix, that is,

pi,j ≥ 0,
k∑
j=1

pi,j = 1, ∀i, j = 1, . . . , k. (4.2)

Then it induces a stochastic linear operator A on M(X) as

A(
k∑
i=1

γiδi) =
k∑
j=1

(
k∑
i=1

pi,jγi

)
δj (4.3)

since each measure γ ∈ M(X) can be written as γ =
∑k

i=1 γiδi. If we denote the measure

γ as a vector γ = (γ1, γ2, . . . , γk) ∈ Rk, then Atγ = (P t)Tγ = (γTP t)T . To study the

convergence of the sequence {Atγ}t, we need a canonical form for the stochastic matrix P .

Definition 5. A k×k stochastic matrix P is called irreducible if there exists no permutation

matrix T such that T −1PT =

[
P1 0

B P2

]
where P1, P2 are square matrices of size less than

k. An irreducible matrix P of size k ≥ 2 is called primitive if 1 is the only eigenvalue of

modulus 1.

The primitivity of an irreducible matrix P is equivalent to that the matrix P p is strictly

positive for some integer p or that limp→∞ P p exists.

The canonical form of a stochastic matrix P by a suitable renumbering of states in X is

P =


R0 S1 · · · Sm

0 P1 · · · 0
... · · · . . . · · ·
0 0 · · · Pm

 , (4.4)
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where each square matrix Pj with 1 ≤ j ≤ m is irreducible stochastic indexed by a subset

Xj of X and the square matrix R0, indexed by a (possibly empty) subset X0 of X, has

spectral radius less than 1. Assume further that P1, . . . , P` are primitive (0 ≤ ` ≤ m) and

P`+1, . . . , Pm are not primitive. Then we know that limt→∞Rt
0 = 0 and limt→∞ P t

j exists

if and only if 1 ≤ j ≤ `. For 1 ≤ j ≤ `, let Vj be the only eigenvector of P T
j whose

components sum to 1, then limt→∞ P t
j is the matrix with each row being V T

j . Moreover,

for each 1 ≤ j ≤ m, the limit Qj := limt→∞
1
t

∑t
s=1 P

s
j exists and its transpose QT

j has an

only eigenvector Vj whose components sum to 1. (This vector is the same as the one defined

above when j ≤ `.) The limit limt→∞ Stj exists with each row being a multiple of V T
j . So

it can be written as limt→∞ Stj = S̃jV
T
j where S̃j ∈ RT0

+ . All these facts are well known and

can be found in e.g. [16]. From these we get the following convergence.

Corollary 4. Let X = {1, . . . , k} and P be a k × k stochastic matrix taking the canonical

form (4.4). Let A be the stochastic linear operator on M(X) defined by (4.3) and γ ∈ P(X).

Then the sequence {Atγ} converges in M(X) as t→∞ if and only if γi = 0 for i ∈ ∪mj=`+1Xj

and the vector γ|X0 is orthogonal to each S̃j with `+1 ≤ j ≤ m. In this case, the exponential

decay (2.2) holds with ρX ∈ P(X) supported on ∪`j=1Xj and given by

ρX |Xj
=

∑
i∈Xj

γi + γ|X0 · S̃j

Vj, 1 ≤ j ≤ `.

4.2 Connection to hidden Markov models

The special setting described in subsection 4.1 is related to the standard hidden Markov

model (HMM) which was first applied in speech recognition e.g. [14] and is now widely

used in various fields in many different forms e.g. [10]. In the HMM terminology, X =

{1, . . . , k} is the state space with k states, P is the transition probability matrix with pi,j

being the probability to go from state i to state j, and {ρx = ρx(y) : x ∈ X} is the emission

probabilities characterizing the likelihood of a certain observation y ∈ Y if the model is in

the state x. The sample {(xt, yt)}Tt=1 corresponds to the state sequence {x1, x2, . . . , xT} and

the observation sequence {y1, y2, . . . , yT}. In our learning process, the state sequence is part

of the sampling. But in HMM, it is hidden, only the observation sequence is available. It

would be interesting to develop some learning algorithms which use the observation sequence

{y1, y2, . . . , yT} only.
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4.3 Measures generated by stochastic kernels

Let us turn to a setting generated by stochastic density kernels.

Definition 6. Let ν be a probability measure on X. A function ψ ∈ C(X × X) is called

a stochastic density kernel with respect to ν if
∫
X
ψ(x, u)dν(u) = 1 for each x ∈ X. The

integral operator Lψ associated with the pair (ψ, ν) is defined on C(X) by

Lψf(x) =

∫
X

ψ(x, u)f(u)dν(u), x ∈ X, f ∈ C(X). (4.5)

The operator Lψ is compact. Its dual Aψ is defined on M(X), therefore is also compact.

We have for Borel sets Γ of X

Aψµ(Γ) =

∫
Γ

{∫
X

ψ(x, u)dµ(x)

}
dν(u). (4.6)

Consider now the sequence {At
ψγ}. Recall the following definition of ergodicity e.g. [8].

Definition 7. The operator Aψ associated with the pair (ψ, ν) is ergodic if there exists

a strictly positive probability measure ρX on X such that At
ψγ → ρX (as t → ∞) for any

initial probability measure γ. The convergence At
ψγ → ρX means limt→∞(At

ψγ)(Γ) = ρX(Γ)

for any open set Γ whose boundary has ρX-measure zero.

By [8] (p. 249), the convergenceAt
ψγ → ρX is equivalent to that limt→∞

∫
X
f(x)d(At

ψγ) =∫
X
f(x)dρX for any f ∈ C(X). That is, At

ψγ converges to ρX in the weakly∗ topology.

Remark 2. If the measure ν is strictly positive, and the kernel function ψ is strictly positive

on X ×X, then the associated operator Aψ is ergodic. See [8].

Proposition 2. If the operator Aψ associated with the pair (ψ, ν) is ergodic, then there

exists a strictly positive probability measure ρX on X and some constants C > 0, 0 < α < 1

such that ∣∣∣∣∫
X

f(x)d(At
ψγ)−

∫
X

f(x)dρX

∣∣∣∣ ≤ Cαt‖f‖C(X), ∀t ∈ N, f ∈ C(X). (4.7)

Hence {At
ψγ}t∈N converges exponentially fast in (Cs(X))∗ to ρX for every 0 ≤ s ≤ 1.

Proof. By the definition of ergodicity, there is a strictly positive probability measure ρX on

X such that At
ψγ → ρX for any initial probability measure γ. That is, At

ψγ converges to ρX

12



in the weakly∗ topology and AψρX = ρX . By Corollary 3, we know that M(X) = ∆1 +W ,

and ∆1 is a one dimensional subspace spanned by ρX . So Corollary 3 (2) tells us that

W = Mo, and that

‖At
ψγ − ρX‖M(X) ≤ Cαt‖γ − ρX‖M(X).

Since M(X) is the dual of the Banach space C(X), our conclusion follows from ‖γ −
ρX‖M(X) ≤ 2 by replacing 2C by C.

5 Measures Induced by Dynamical Systems

We turn to the second setting when the stochastic linear operator A on M(X) is induced

by a continuous map S : X → X.

The continuous map S on X induces a linear operator S# : Cs(X) → Cs(X) by

S#(f)(x) = f(Sx), f ∈ Cs(X), x ∈ X.

The dual A = AS of S# is a linear operator on (Cs(X))∗. These two operators are dual

satisfying

〈f,Aρ〉 = 〈S#f, ρ〉, f ∈ Cs(X), ρ ∈ (Cs(X))∗.

Note that M(X) ⊂ (Cs(X))∗. We see that A(M(X)) ⊆M(X) satisfying

Aρ(B) = ρ(S−1B)

for any Borel set B ⊆ X and Borel measure ρ on X.

One example of dynamical system is the northpole southpole system (e.g. [15]) given on

the unit circle by the map S with some 0 < ε < 1/(2π) as S(θ) = θ + ε sin(2πθ) mod 1. It

has two fixed points, one attracting θ = 1/2 and the other repelling θ = 0. We can state

this example as follows.

Example 3. Let X = {eiπ(x+1/2)} be parameterized by the parameter x ∈ [0, 1), 0 < ε <

1/(2π) and the map S : X → X be gievn by

S(x) = x+ ε sin(2πx), x ∈ [0, 1).

Note that S ′(x) = 1 + 2πε cos(2πx) > 0 and S has two fixed points: i and −i. Consider

the fixed point −i corresponding to the parameter value x∗ = 1
2
∈ [0, 1) and the open subset

X∗ = (0, 1) of [0, 1). There holds

|S(x)− x∗| ≤
(
1− 4ε cos(π|x− x∗|)

)
|x− x∗|.

13



If we choose t0 ∈ N such that
(
1− 4ε cos(π|x− x∗|)

)t0 ≤ 2
3
, then |St0(x)− x∗| ≤ 1

3
and

|St(x)− x∗| ≤
(
1− 4ε cos(π|St0(x)− x∗|)

)t−t0|St0(x)− x∗| ≤
(
1− 2ε

)t−t0|x− x∗|

for t > t0. Hence with α0 = 1− 2ε < 1 we have

|St(x)− x∗| ≤ C̃(x)αt0|x− x∗|, ∀x ∈ X∗, t ∈ N. (5.1)

Here C̃ : X∗ → R+ is a continuous function given from an explicit expression for t0 as

C̃(x) = (1− 2ε)−1−log 2
3
/ log(1−4ε cos(π|x−x∗|)), x ∈ X∗.

A class of examples is given by contractive maps of complete matric spaces. A map

S : X → X is (strictly) contractive if there exist 0 < α < 1 and C0 > 0 such that

d(Stx,Sty) ≤ C0α
td(x, y) for any x, y ∈ X and all t ∈ N. It follows that the map S has a

unique fixed point x∗ ∈ X.

Example 4. Let S be a contractive map on X with the unique fixed point x∗. Then for any

γ ∈ P(X) and 0 < s ≤ 1, the sequence of measures {Atγ} converges exponentially fast in

(Cs(X))∗ to the Dirac measure ρX = δx∗.

Note that if X0 is an S-invariant compact subset of X, then the linear operator AS|X0
:

M(X0) →M(X0) induced by the restriction of S onto X0 is well defined. When X0 is finite,

AS|X0
can be represented by a stochastic matrix.

Example 5. Let S be a continuous map on the compact metric space X and X∗ be an open

subset of X. Assume that X0 ⊂ X∗ is an S-invariant finite subset of X such that AS|X0
has

a simple eigenvalue 1 with eigenvector ρX ∈ P(X0) and all the other eigenvalues are less

than one in modulus. Suppose there exists a measurable function C : X∗ → R+ such that

each u ∈ X∗ corresponds to some x ∈ X0 satisfying

d(Stu,Stx) ≤ C(u)αt, ∀t ∈ N. (5.2)

If γ ∈ P(X∗) satisfies
∫
X∗ C(u)dγ(u) <∞, then for any 0 < s ≤ 1, the sequence of measures

{Atγ} converges exponentially fast in (Cs(X))∗ to ρX .

Proof. For each x ∈ X0, define Fx to be the set of all points u ∈ X∗ such that (5.2) holds.

Define a (marginal) measure γX0 on X0 by γX0({x}) = γ (Fx). Then γX0 ∈ P(X0). More-

over, there is a probability (conditional) measure γ(u|x) on Fx such that
∫
X∗ g(u)dγ(u) =∫

X0

∫
Fx
g(u)dγ(u|x)dγX0(x) for any measurable function g on X∗.
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Let f ∈ Cs(X). Since γ vanishes on X \X∗, we have

〈f,Atγ〉 =

∫
X

f(u)d
(
Atγ

)
=

∫
X

f(Stu)dγ =

∫
X∗
f(Stu)dγ.

This equals
∫
X0

{∫
Fx
f(Stu)dγ(u|x)

}
dγX0(x). The definition of the seminorm ‖·‖Cs(X) gives∣∣∣∣〈f,Atγ〉 −

∫
X0

f(Stx)dγX0(x)

∣∣∣∣ =

∣∣∣∣∫
X0

{∫
Fx

f(Stu)− f(Stx)dγ(u|x)
}
dγX0(x)

∣∣∣∣
≤

∫
X0

|f |Cs(X)

{∫
Fx

(
d(Stu,Stx)

)s
dγ(u|x)

}
dγX0(x).

Using the condition (5.2), we see that the above expression can be bounded by

|f |Cs(X)

∫
X0

{∫
Fx

(
C(u)αt

)s
dγ(u|x)

}
dγX0(x).

This in connection with the Hölder inequality tells us that∣∣∣∣〈f,Atγ〉 −
∫
X0

f(Stx)dγX0(x)

∣∣∣∣ ≤ |f |Cs(X)α
ts

(∫
X∗
C(u)dγ(u)

)s
.

Observe that∫
X0

f(Stx)dγX0 =

∫
X0

f |X0

(
(S|X0)

tx
)
dγX0 = 〈f |X0 , (AS|X0

)tγX0〉 =
(
(AS|X0

)tγX0

)
(f |X0).

According to Corollary 3, the eigenvalue condition on AS|X0
tells us that there exist some

0 < α < 1 and C0 > 0 such that

‖(AS|X0
)tγX0 − ρX‖(Cs(X0))∗ ≤ C0α

t, ∀t ∈ N.

Also, (AS|X0
)tρX = ρX for each t ∈ N. Therefore,∣∣∣∣∫

X0

f(Stx)dγX0 −
∫
X0

f(x)dρX

∣∣∣∣ =
∣∣∣((AS|X0

)tγX0

)
(f |X0)− ρX(f |X0)

∣∣∣
≤
∥∥∥(AS|X0

)tγX0 − ρX

∥∥∥
(Cs(X0))∗

‖f |X0‖Cs(X0) ≤ C0α
t‖f‖Cs(X).

If we denote the trivial extension of ρX onto X as ρX , then
∫
X0
f(x)dρX =

∫
X
f(x)dρX =

〈f, ρX〉. So we have∥∥〈f,Atγ − ρX〉
∥∥ ≤ {C0 +

(∫
X∗
C(u)dγ(u)

)s}
‖f‖Cs(X)α

ts.

Since f is arbitrary in Cs(X), we have∥∥Atγ − ρX
∥∥

(Cs(X))∗
≤
{
C0 +

(∫
X∗
C(u)dγ(u)

)s}
αts.

This proves the exponential convergence.
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Remark 3. Let S be a continuous map on X with a fixed point x∗. Let X∗ be an open

subset of X which contains x∗. Assume there are α ∈ (0, 1) and a measurable function

C : X∗ → R+ such that

d(Stx, x∗) ≤ C(x)αt, ∀x ∈ X∗, t ∈ N. (5.3)

If γ ∈ P(X∗) satisfies
∫
X∗ C(u)dγ(u) <∞, then for any 0 < s ≤ 1, the sequence of measures

{Atγ} converges exponentially fast in (Cs(X))∗ to δx∗.

When s = 0, the exponential convergence (2.3) does not hold in general. For example

when X0 is an S-invariant subset of X containing the fixed point x∗ and S|X0 is injective,

we take γ = δx0 with x0 6= x∗, then Atγ is the Dirac at the point Stx0 6= x∗ and ‖Atγ −
δx∗‖M(X0) = 2 for each t ∈ N.

Finally we turn to a general dynamical system. The following result about the exponential

convergence of the sequence {Atγ}t was forwarded to us by Mike Shub [17]:

”I asked Jasha Pesin the following question.

Let D be a disc in the basin of attraction of an axiom a attractor of a C2 diffeomorphism.

Suppose that D is transversal to the stable manifolds of the attractor. Then is it true that

the push forwards of a normalized (to have probability one) smooth volume on D converge

to the SRB measure on the attractor? Moreover, is the convergence exponential in the dual

space to Hölder functions?

Jasha said yes and you can quote him. On the other hand he nor Viana nor anyoneone

else who all thought the statement very reasonable could give a direct reference. Jasha said

he thought that the best approximation would be his paper with Sinai entitled something

like ”Gibbs Measures for partially hyperbolic...”1. The Gibbs measure for the log of the

unstable Jacobian is the SRB measure of the attractor.”

Some discussions on the Sinai-Ruelle-Bowen measure of S can be found in [29].

6 Error Analysis for Online Learning in RKHS

We proceed to the proof of Theorem 1.

1This no doubt is the reference: Ya. B. Pesin and Ya. G. Sinai, Gibbs measures for partially hyperbolic
attractors, Ergodic Theory Dynam. Systems 2 (1982), 417-438.
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Since the range of LK,µ is in HK , it can also be regarded as an operator on HK or an

operator from L2
µ to HK . We shall use the same notion for these operators.

The noise-free limit function fλ,µ defined by (3.8) can be expressed in terms of the integral

operator LK,µ as

fλ,µ =
(
LK,µ + λI

)−1
LK,µfρ. (6.1)

We shall estimate the error ft+1 − fρ by decomposing into three parts:

ft+1 − fρ = first term + middle term + last term

=

{
ft+1 − f

λt,ρ
(t)
X

}
+

{
f
λt,ρ

(t)
X
− fλt,ρX

}
+

{
fλt,ρX

− fρ

}
. (6.2)

The last term above is easy to deal with and will be bounded in subsection 6.1 because

the measure ρX is fixed. The middle term involves the varying marginal distributions {ρ(t)
X }

for which the exponential convergence is needed. It can be bounded by Proposition 1 proved

in subsection 6.2. The first term is the most difficult part. It involves the change of the

regularization parameter λt and the marginal distribution ρ
(t)
X . We shall decompose this term

further by (6.10) below and make the detailed analysis in subsection 6.4.

6.1 The regularization error

The last term of (6.2) is incurred by the regularization parameter and called the approxima-

tion error.

Proposition 3. If fρ satisfies the condition (3.3), then for any λ > 0 we have

‖fλ,ρX
− fρ‖K ≤ ‖gρ‖ρX

λr−
1
2 . (6.3)

Proof. Observe that fλ,ρX
−fρ = −λ

(
LK,ρX

+λI
)−1

fρ. Write fρ = LrK,ρX
(gρ) as L

r− 1
2

K,ρX
L

1
2
K,ρX

gρ

where gρ comes from the condition (3.3), and split the power −1 of LK,ρX
+λI in two factors

with powers r − 3
2

and 1
2
− r. We find the expression

fλ,ρX
− fρ = −λ

(
LK,ρX

+ λI
)r− 3

2

{(
LK,ρX

+ λI
) 1

2
−r
L
r− 1

2
K,ρX

}
L

1
2
K,ρX

gρ.

This together with the positivity of the operator LK,ρX
and the norm equality ‖L

1
2
K,ρX

gρ‖K =

‖gρ‖ρX
(see e.g. [4]) implies (6.3).
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6.2 Error caused by measure differences

Recall the reproducing property of HK :

〈f,Kx〉K = f(x), f ∈ HK , x ∈ X. (6.4)

It follows that (6.4) implies

|f(x)| ≤ ‖f‖C(X) ≤ κ‖f‖K , f ∈ HK , x ∈ X. (6.5)

When the condition (3.1) is valid, it was proved in [30] that HK is included in Cs(X)

with the inclusion bounded:

‖f‖Cs(X) ≤ (κ+ κ2s)‖f‖K , ∀f ∈ HK . (6.6)

Now we can prove Proposition 1 concerning the error fλ,µ−fλ,µ′ caused by the difference

of measures. It will provide bounds for the middle term of (6.2).

Proof of Proposition 1. Since (LK,µ′ + λI)fλ,µ′ = LK,µ′fρ, we have

fλ,µ − fλ,µ′ = (LK,µ + λI)−1 {(LK,µ − LK,µ′)fρ + LK,µ′fλ,µ′ − LK,µfλ,µ′} .

It follows that

fλ,µ − fλ,µ′ = (LK,µ + λI)−1(LK,µ − LK,µ′)(fρ − fλ,µ′)

and

‖fλ,µ − fλ,µ′‖K ≤ 1

λ
‖(LK,µ − LK,µ′)(fρ − fλ,µ′)‖K . (6.7)

Note that fλ,µ′ ∈ HK ⊆ Cs(X). Denote f = fρ − fλ,µ′ ∈ Cs(X). We can express the

norm square ‖(LK,µ − LK,µ′)f‖2
K as∫

X

f(u)

{∫
X

f(v)K(u, v)d(µ− µ′)(v)

}
d(µ− µ′)(u).

Since M(X) ⊆ (Cs(X))∗, according to the definition of the norm in (Cs(X))∗, we have

‖(LK,µ − LK,µ′)f‖2
K ≤ ‖µ− µ′‖(Cs(X))∗‖g‖Cs(X) = ‖µ− µ′‖(Cs(X))∗

(
‖g‖C(X) + |g|Cs(X)

)
.

Here g denotes the function

g(u) = f(u)

{∫
X

f(v)K(u, v)d(µ− µ′)(v)

}
, u ∈ X.
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We need to estimate the norm for g.

First, by the definition of the norm in (Cs(X))∗, there holds

‖g‖C(X) ≤ ‖f‖C(X) sup
u∈X

∣∣∣∣∫
X

f(v)K(u, v)d(µ− µ′)(v)

∣∣∣∣
Second, consider g as the product of two functions. We have

|g|Cs(X) ≤ |f |Cs(X) sup
u∈X

∣∣∣∣∫
X

f(v)K(u, v)d(µ− µ′)(v)

∣∣∣∣
+‖f‖C(X)

∣∣∣∣∫
X

f(v)K(u, v)d(µ− µ′)(v)

∣∣∣∣
Cs(X)

.

For the first term above, we have for any u ∈ X,∣∣∣∣∫
X

f(v)K(u, v)d(µ− µ′)(v)

∣∣∣∣ ≤ ‖µ− µ′‖(Cs(X))∗‖f(·)K(u, ·)‖Cs(X)

≤ ‖µ− µ′‖(Cs(X))∗
{
κ2‖f‖C(X) + |f |Cs(X)κ

2 + ‖f‖C(X)κ2s

}
.

The second term above
∣∣∫
X
f(v)K(u, v)d(µ− µ′)(v)

∣∣
Cs(X)

equals

sup
u1 6=u2∈X

∣∣∣∣∫
X

f(v)
K(u1, v)−K(u2, v)

(d(u1, u2))
s d(µ− µ′)(v)

∣∣∣∣ .
Using the definition of the norm in (Cs(X))∗ again, the above quantity is bounded by

sup
u1 6=u2∈X

‖µ− µ′‖(Cs(X))∗

∥∥∥∥f(v)
K(u1, v)−K(u2, v)

(d(u1, u2))
s

∥∥∥∥
Cs(X)

while the last Cs(X) norm has an upper bound as

‖f‖C(X)|K|Cs(X×X) + |f |Cs(X)|K|Cs(X×X)

+‖f‖C(X) sup
u1 6=u2∈X

|K(u1, v1)−K(u2, v1)−K(u1, v2) +K(u2, v2)|
(d(u1, u2))

s (d(v1, v2))
s

≤ ‖f‖Cs(X)|K|Cs(X×X) + ‖f‖C(X)κ2s ≤ ‖f‖Cs(X)

(
|K|Cs(X×X) + κ2s

)
.

Combining all the above analysis, we have

‖g‖Cs(X) ≤ ‖f‖2
Cs(X)‖µ− µ′‖(Cs(X))∗

{
κ2 + 2|K|Cs(X×X) + κ2s

}
.

It follows that

‖(LK,µ − LK,µ′)f‖2
K ≤ ‖f‖2

Cs(X)‖µ− µ′‖2
(Cs(X))∗

{
κ2 + 2|K|Cs(X×X) + κ2s

}
.
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This in connection with (6.7) implies that

‖fλ,µ − fλ,µ′‖K ≤ 1

λ

√
κ2 + 2|K|Cs(X×X) + κ2s‖µ− µ′‖(Cs(X))∗‖fρ − fλ,µ′‖Cs(X).

This proves Proposition 1.

6.3 The error caused by varying regularization parameters

Since the regularization parameter changes with the step, we need a result which was stated

by Tarrés and Yao [24] with µ = ρX . Their proof yields

Proposition 4. Let ρX ∈ P(X) and λ, λ′ > 0. If fρ satisfies (3.3), then

‖fλ,ρX
− fλ′,ρX

‖K ≤
∣∣∣λr− 1

2 − (λ′)r−
1
2

∣∣∣ ‖gρ‖ρX

r − 1/2
. (6.8)

Remark 4. If we only assume fρ ∈ HK, then there holds

‖fλ,µ − fλ′,µ‖K ≤ |λ− λ′|
λ

‖fρ‖K . (6.9)

6.4 Proof of the error bounds

Now we turn to the first term of (6.2). It will be studied by iteration. Going from ft to ft+1

involves the change of the function f
λt−1,ρ

(t−1)
X

to f
λt,ρ

(t)
X

, hence an error caused by the change

of the regularization parameter

f
λt−1,ρ

(t−1)
X

− f
λt,ρ

(t)
X

=

{
f
λt−1,ρ

(t−1)
X

− fλt−1,ρX
+ fλt,ρX

− f
λt,ρ

(t)
X

}
+

{
fλt−1,ρX

− fλt,ρX

}
. (6.10)

The following bounds for (6.10) and the middle term of (6.2) are obtained by combining

(6.6) with Propositions 3, 1 and 4.

Lemma 1. Let 0 ≤ s ≤ 1. Assume (3.2), (2.2) and (3.3). If K ∈ Cs(X × X) satisfies

(3.1), then

‖f
λt,ρ

(t)
X
− fλt,ρX

‖K ≤ C ′C‖gρ‖ρX
αttβ( 3

2
−r)

and

‖f
λt−1,ρ

(t−1)
X

− f
λt,ρ

(t)
X
‖K ≤

 4‖gρ‖ρX

{
C ′Cαt−1tβ( 3

2
−r) + λ

r− 1
2

1 t−β(r− 1
2
)−1

}
, if β > 0,

2‖gρ‖ρX
C ′Cαt−1, if β = 0,

where C ′ is the constant C ′ := CK(κ+κ2s)

λ
3/2−r
1

.

20



Remark 5. If we only assume fρ ∈ HK, then we have ‖fλt,µ − fλt+1,µ‖K ≤ β‖fρ‖K

t
.

We shall use the following elementary inequalities in our proof.

Lemma 2. (a) For c, a > 0, there holds

exp {−cx} ≤
( a
ec

)a
x−a, ∀x > 0, (6.11)

(b) Let c > 0 and q2 ≥ 0. If 0 < q1 < 1, then for any t ∈ N we have

t−1∑
i=1

i−q2 exp

{
−c

t∑
j=i+1

j−q1
}
≤

(
2q1+q2

c
+ +

(
1 + q2

ec(1− 2q1−1)

) 1+q2
1−q1

)
tq1−q2 . (6.12)

For q1 = 1, we have

t−1∑
i=1

i−q2 exp

{
−c

t∑
j=i+1

j−1

}
≤

{
2q2

|c−q2+1|t
−min{c,q2−1}, if c 6= q2 − 1,

2q2t−c log t, if c = q2 − 1.
(6.13)

Proof. The first inequality (6.11) is an elementary one and can be found in [19].

(b) First consider the case q1 < 1. In this case, we observe that
∑t

j=i+1 j
−q1 ≥

∫ t+1

i+1
x−q1dx =

1
1−q1 ((t+ 1)1−q1 − (i+ 1)1−q1). Then we have

I1 :=
∑

t/2≤i<t

i−q2 exp

{
−c

t∑
j=i+1

j−q1
}

≤
∑

t/2≤i<t

(
t

2

)−q2
exp

{
−c(t+ 1)1−q1

1− q1

(
1−

(
1− t− i

t+ 1

)1−q1)}
.

We use an elementary inequality

(1− x)1−q1 ≤ 1− (1− q1)x ∀0 ≤ x < 1

which is proved by considering the function f(x) = (1 − x)1−q1 − 1 + (1 − q1)x on [0, 1)

satisfying f(0) = 0 and f ′(x) < 0 on (0, 1). Then we have

I1 ≤
∑

t/2≤i<t

(
t

2

)−q2
exp

{
−c(t+ 1)1−q1 t− i

t+ 1

}
=

∑
1≤i≤t/2

(
t

2

)−q2
exp

{
−c(t+ 1)−q1i

}

≤
(
t

2

)−q2 ∫ t
2

0

exp

{
−c(t+ 1)−q1x

}
dx.
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Since ∫ t
2

0

exp

{
−c(t+ 1)−q1x

}
dx =

(t+ 1)q1

c

[
1− exp

{
−c(t+ 1)−q1

t

2

}]
,

we see that

I1 ≤
2q1+q2

c
tq1−q2 .

Consider the part i < t
2
. We have i+ 1 ≤ (t+ 1)/2 and

∑t
j=i+1 j

−q1 ≥ 1−2q1−1

1−q1 (t+ 1)1−q1 .

It follows that

I2 :=
∑

1≤i<t/2

i−q2 exp

{
−c

t∑
j=i+1

j−q1
}
≤ t

2
exp

{
−c(1− 2q1−1)

1− q1
(t+ 1)1−q1

}
.

Applying the inequality in part (a) with a = 1+q2
1−q1 and x = (t+ 1)1−q1 we know that

I2 ≤
1

2

(
1 + q2

ec(1− 2q1−1)

) 1+q2
1−q1

t−q2 .

Thus (6.12) is verified.

If q1 = 1, then
∑t

j=i+1 j
−1 ≥

∫ t+1

i+1
x−1dx = log t+1

i+1
. Hence

t−1∑
i=1

i−q2 exp

{
−c

t∑
j=i+1

j−1

}
≤

t−1∑
i=1

i−q2
(
i+ 1

t+ 1

)c
≤ 2q2(t+ 1)−c

t−1∑
i=1

(i+ 1)c−q2 .

But

t−1∑
i=1

(i+ 1)c−q2 ≤


1

q2−c−1
, if c− q2 < −1,

log t, if c− q2 = −1,
(t+1)c−q2+1

c−q2+1
, if c− q2 > −1.

Then the inequality (6.13) follows.

For x ∈ X, we use the sampling operator Sx : HK → R defined by Sxf = f(x). See

[21, 22]. Its adjoint STx : R → HK is given by Sx(c) = cKx. Then STx Sx : HK → HK is

given by STx Sx(f) = f(x)Kx = 〈f,Kx〉KKx. It is a rank-one positive operator bounded by

κ2. This is an approximation of the integral operator L
K,ρ

(t)
X

and IE
ρ
(t)
X

(STx Sx) = L
K,ρ

(t)
X

.

We are in a position to prove our main result on learning rates of the online algorithm

(2.1).

Proof of Theorem 1. Denote the first term of the error decomposition (6.2) as

Wt+1 = ft+1 − f
λt,ρ

(t)
X
.
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The first step of the proof is to establish a simple expression for Wt+1, (6.14) below, by

iterating a one-step recursion.

In the definition (2.1), we notice that ytKxt = STxt
yt and ft(xt)Kxt = Sxt(ft)Kxt =

STxt
Sxt(ft). Then we know that

Wt+1 = ft − f
λt,ρ

(t)
X
− pt

{
STxt

Sxt

(
ft
)
− STxt

yt + λtft

}
= ft − f

λt,ρ
(t)
X
− pt

{
STxt

Sxt

(
ft − f

λt,ρ
(t)
X

)
+ STxt

Sxtfλt,ρ
(t)
X
− STxt

yt + λtft

}
.

To group in terms of ft − f
λt,ρ

(t)
X

, we write λtft as λt(ft − f
λt,ρ

(t)
X

) + λtfλt,ρ
(t)
X

. The definition

(6.1) with the measure ρ
(t)
X yields λtfλt,ρ

(t)
X

= L
K,ρ

(t)
X

(fρ − f
λt,ρ

(t)
X

). Therefore, we have

Wt+1 =

(
(1−ptλt)I−ptSTxt

Sxt

)(
ft−fλt,ρ

(t)
X

)
−pt

{
STxt

Sxtfλt,ρ
(t)
X
−STxt

yt+LK,ρ(t)X
(fρ−fλt,ρ

(t)
X

)

}
.

Denote At = (1−ptλt)I−ptSTxt
Sxt and χt = pt

{
STxt

Sxtfλt,ρ
(t)
X
−STxt

yt+LK,ρ(t)X
(fρ−fλt,ρ

(t)
X

)

}
.

Observe that Wt = ft − f
λt−1,ρ

(t−1)
X

and

ft − f
λt,ρ

(t)
X

= Wt +
{
f
λt−1,ρ

(t−1)
X

− f
λt,ρ

(t)
X

}
.

If we denote f
λ0,ρ

(0)
X

= 0, then there holds

Wt+1 = AtWt + At
(
f
λt−1,ρ

(t−1)
X

− f
λt,ρ

(t)
X

)
− χt, ∀t ∈ N.

Denote Πi = AtAt−1 . . . Ai and Πt+1 = I. Since f1 = 0 gives W1 = 0, by iteration we

obtain

Wt+1 =
t∑
i=1

Πi

(
f
λi−1,ρ

(i−1)
X

− f
λi,ρ

(i)
X

)
−

t∑
i=1

Πi+1χi, ∀t ∈ N. (6.14)

The operator piλiI + piS
T
xi
Sxi

is positive and bounded by (piλi + piκ
2)I. So for i ≥ t0,

the smallest integer greater than (p1λ1 + p1κ
2)1/θ, the operator Ai : HK → HK is positive

and bounded by (1 − piλi)I, hence ‖Ai‖HK→HK
≤ 1 − piλi ≤ exp{−piλi}. For i < t0,

‖Ai‖HK→HK
≤ 1 + piλi + piκ

2. It follows that the operator norm of Πi satisfies

‖Πi‖HK→HK
≤ C̃0 exp

{
−p1λ1

t∑
j=i

j−β−θ
}

∀1 ≤ i ≤ t, (6.15)
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where C̃0 is the constant given by

C̃0 = (1 + p1λ1 + p1κ
2)(p1λ1+p1κ2)1/θ

exp
{
p1λ1(p1λ1 + p1κ

2)1/θ
}
.

The second step of the proof is to bound the first term in (6.14). Apply Lemma 1 and

(6.15). We find that∥∥∥∥∥
t∑
i=1

Πi

(
f
λi−1,ρ

(i−1)
X

− f
λi,ρ

(i)
X

)∥∥∥∥∥
K

≤

 4‖gρ‖ρX
C̃0

∑t
i=1 exp

{
−p1λ1

∑t
j=i j

−β−θ}{C ′Cαi−1iβ( 3
2
−r) + λ

r− 1
2

1 i−β(r− 1
2
)−1

}
, if β > 0,

2‖gρ‖ρX
C̃0

∑t
i=1 exp

{
−p1λ1

∑t
j=i j

−θ}C ′Cαi−1, if β = 0.

Consider the case β > 0 and α < 1. Because the exponential decay is faster than any

polynomial decay, we know that the term with αiiβ( 3
2
−r) is dominated by the polynomial

term i−β(r− 1
2
)−1. In fact, by Lemma 2 (a) with c = log(1/α) and a = 2, we have

αi = exp
{
−i log(1/α)

}
≤
(

2

e log(1/α)

)2

i−2. (6.16)

So for each i ∈ N,

αi−1iβ( 3
2
−r) ≤

(
4

e log(1/α)

)2

i−β(r− 1
2
)−1.

It follows that∥∥∥∥∥
t∑
i=1

Πi

(
f
λi−1,ρ

(i−1)
X

− f
λi,ρ

(i)
X

)∥∥∥∥∥
K

≤ C ′′
t∑
i=1

i−β(r− 1
2
)−1 exp

{
−p1λ1

t∑
j=i

j−β−θ
}
,

where C ′′ is the constant

C ′′ = 4‖gρ‖ρX
C̃0

{
C ′C

(
4

e log(1/α)

)2

+ λ
r− 1

2
1

}
.

Applying Lemma 2 (b) with c = p1λ1, q2 = β(r− 1
2
) + 1 and q1 = β + θ, we obtain a bound

for the first term of (6.14) as

∥∥∥∥∥
t∑
i=1

Πi

(
f
λi−1,ρ

(i−1)
X

− f
λi,ρ

(i)
X

)∥∥∥∥∥
K

≤


C̃ ′t−β(r− 1

2
)−1+β+θ, if β + θ < 1,

C̃ ′t−min{β(r− 1
2
),p1λ1}, if β + θ = 1 and p1λ1 6= β(r − 1

2
),

C̃ ′t−β(r− 1
2
) log(t+ 1), if β + θ = 1 and p1λ1 = β(r − 1

2
),

(6.17)
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where C̃ ′ is the constant given by C̃ ′ = C ′′C ′′′ with

C ′′′ :=


8

p1λ1
+ 1 +

(
2+β(r− 1

2
)

ep1λ1(1−2β+θ−1)

) 2+β(r− 1
2 )

1−β−θ

, if β + θ < 1,

4
|p1λ1−β(r− 1

2
)| + 1, if β + θ = 1 and p1λ1 6= β(r − 1

2
),

5, if β + θ = 1 and p1λ1 = β(r − 1
2
).

The case β = 0 is easier. We apply (6.16) when α < 1. Lemma 2 (b) with c = p1λ1 and

q1 = θ yields ∥∥∥∥∥
t∑
i=1

Πi

(
f
λi−1,ρ

(i−1)
X

− f
λi,ρ

(i)
X

)∥∥∥∥∥
K

≤

{
C̃ ′t−1, if β = 0, α < 1,

C̃ ′tθ, if β = 0, α = 1,

where the constant C̃ ′ is given by C̃ ′ = 2‖gρ‖ρX
C̃0C

′CC ′′′ with

C ′′′ :=


(

4
e log(1/α)

)2{
8

p1λ1
+ 1 +

(
3

ep1λ1(1−2θ−1)

) 3
1−θ

}
, if β = 0, α < 1,

2
p1λ1

+ 1 +
(

1
ep1λ1(1−2θ−1)

) 1
1−θ

, if β = 0, α = 1.

The third step of the proof is to estimate the second term of (6.14). Write∥∥∥∥∥
t∑
i=1

Πi+1χi

∥∥∥∥∥
2

K

=
t∑
i=1

t∑
`=1

〈Πi+1χi,Π`+1χ`〉K .

Observe that IEzi
(STxi

yi) = IEzi
(yiKxi

) = L
K,ρ

(i)
X
fρ, and χi depends only on zi while Πi+1

depends only on zt, zt−1, . . . , zi+1. So IEzi|zt,zt−1,...,zi+1

(
Πi+1χi

)
= 0. It follows that for ` > i,

the expected value IEz1,z2,...,zt (〈Πi+1χi,Πi+1χ`〉K) equals

IEzt,zt−1,...,zi+1
〈IEzi|zt,zt−1,...,zi+1

(Πi+1χi) ,Π`+1χ`〉K = 0.

Hence

IEz1,z2,...,zt

∥∥∥∥∥
t∑
i=1

Πi+1χi

∥∥∥∥∥
2

K

 =
t∑
i=1

IEz1,z2,...,zt

(
‖Πi+1χi‖2

K

)
.

It follows from (6.15) that

IEz1,z2,...,zt

∥∥∥∥∥
t∑
i=1

Πi+1χi

∥∥∥∥∥
2

K

 ≤
t∑
i=1

C̃2
0 exp

{
−2p1λ1

t∑
j=i+1

j−β−θ
}
IEzi

(
‖χi‖2

K

)
.
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Since χi = pi

{
(f
λi,ρ

(i)
X

(xi)− yi)Kxi
+ L

K,ρ
(i)
X

(fρ − f
λi,ρ

(i)
X

)
}

, we see that

‖χi‖2
K ≤ 2p2

iκ
2
{

(f
λi,ρ

(i)
X

(xi)− yi)
2 + ‖fρ − f

λi,ρ
(i)
X
‖2

ρ
(i)
X

}
.

Then

IEzi

(
‖χi‖2

K

)
≤ 4p2

iκ
2
{
‖fρ − f

λi,ρ
(i)
X
‖2

ρ
(i)
X

+M2
}
.

To bound the norm, we take f = 0 in (3.8) with λ = λi and µ = ρ
(i)
X , and find that

‖f
λi,ρ

(i)
X
− fρ‖2

ρ
(i)
X

+ λi‖fλ,ρ(i)X
‖2
K ≤ ‖fρ‖2

ρ
(i)
X

≤M2.

Hence ‖fρ − f
λi,ρ

(i)
X
‖2

ρ
(i)
X

≤M2 and IEzi

(
‖χi‖2

K

)
≤ 8p2

iκ
2M2. Therefore,

IEz1,z2,...,zt

∥∥∥∥∥
t∑
i=1

Πi+1χi

∥∥∥∥∥
2

K

 ≤ 8p2
1κ

2M2C̃2
0

t∑
i=1

i−2θ exp

{
−2p1λ1

t∑
j=i+1

j−β−θ

}
.

Applying Lemma 2 (b) with c = 2p1λ1, q2 = 2θ and q1 = β+θ and the Schwarz inequality,

we know that

IEz1,z2,...,zt

(∥∥∥∥∥
t∑
i=1

Πi+1χi

∥∥∥∥∥
K

)
≤


3p1κMC̃0C̃

′′t
β−θ

2 , if β + θ < 1,

3p1κMC̃0C̃
′′t−min{θ− 1

2
,p1λ1}, if β + θ = 1, p1λ1 6= θ − 1

2
,

3p1κMC̃0C̃
′′t

1
2
−θ
√

log(t+ 1), if β + θ = 1, p1λ1 = θ − 1
2
,

where C̃ ′′ is the constant given by

C̃ ′′ =


2√
p1λ1

+ 1 +

(
2

ep1λ1(1−2β+θ−1)

) 2
1−β−θ

, if β + θ < 1,

2√
|2p1λ1−2θ+1|

+ 1, if β + θ = 1, p1λ1 6= θ − 1
2
,

3, if β + θ = 1, p1λ1 = θ − 1
2
,

This in connection with (6.17) provides a bound for the first term of (6.2).

The last step of the proof is to estimate the total error ‖ft+1 − fρ‖K by applying the

triangle inequality to the error decomposition (6.2). The first term of (6.2) is estimated in

Proposition 3 as

‖fλt,ρX
− fρ‖K ≤ ‖gρ‖ρX

λ
r− 1

2
1 t−β(r− 1

2
)

while the middle term is bounded in Lemma 1 as

‖f
λt,ρ

(t)
X
− fλt,ρX

‖ ≤ C ′C‖gρ‖ρX
αttβ( 3

2
−r).
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Note that when α < 1, we have αt = exp{− log 1
α
t} ≤ 1

e log 1
α

t−1 by Lemma 2 (a) with a = 1

and c = log 1
α
. Adding bounds for the three terms verifies the error estimate (3.4) with the

constants C∗
1 , C∗

2 given explicitly by

C∗
1 = 3κMC̃0C̃

′′,

C∗
2 = ‖gρ‖ρX


CK(κ+κ2s)

e log 1
α

+ 4C ′′′C̃0

{
CK(κ+ κ2s)

(
4

e log(1/α)

)2

+ 1

}
, if β > 0, α < 1,

CK(κ+κ2s)

e log 1
α

+ 2C ′′′C̃0CK(κ+ κ2s), if β = 0, α < 1,

CK(κ+ κ2s)
(
1 + 2C ′′′C̃0

)
, if β = 0, α = 1.

The proof of Theorem 1 is completed.
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