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1 Introduction

The goal of learning theory (and a goal in some other contexts as well) is to find
an approximation of a function f, : X — Y known only through a set of pairs
z = (x;,y;)i~, drawn from an unknown probability measure p on X x Y (f, is the
“regression function” of p).

An approach championed by Poggio (see e.g. [5]) with ideas going back to
Ivanov [7] and Tikhonov [13] is to minimize

m
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=1

1
m

where A is an differential operator and E?,(X ) is the Hilbert space of square inte-
grable functions on X with measure py on X defined via p. See [4] (in the sequel
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denoted by [CS]) for background on this and, even more importantly, for results
used here.

This minimization is well-conditioned and solved by straightforward finite di-
mensional least squares linear algebra (see Theorem 1 below) to yield f,,: X — Y.
The problem is posed: How good an approximation is f, to f,, or measure the
error [y (fyz — f»)?7 and What is the best choice of v to minimize this error?

Our goal in this report is to give some answers to these questions.

Main result.  We exhibit, for each m € IN and ¢ € [0,1), a function
Ens=E:Rt' >R

such that, for all v > 0,
[ (fra= £ < BG)

with confidence 1 — 0. There is a unique minimizer of E(vy) which is found by an
easy algorithm to yield the “best” regularization parameter v = v*.

The bound E(v) found is a natural one, a bound which flows from the hypotheses
and thus yields a * which could be useful in the algorithmics for f,,. Of course,
v* depends on the number of examples m, confidence 1 — §, as well as the operator
A and a simple invariant of p.

2 RKHS and Regularization Parameters

Let X be a compact domain or a manifold in Euclidean space and Y = R (one
can extend all what follows to Y = R* with & € IN). Let p be a Borel probability
measure on 4 =X X Y.

For every =z € X, let p(y|z) be the conditional (w.r.t. z) probability measure on
Y and px be the marginal probability measure on X, i.e. the measure on X defined
by px(S) = p(r 1(S)) where 7 : X x Y — X is the projection. Notice that p,
p(y|z) and px are related as follows. For every integrable function ¢ : X x Y — R
a version of Fubini’s Theorem states that

/Xxyw(x,y)dpzfX </Y(,0((E,y)dp(y|x)> dpx.

This “breaking” of p into the measures p(y|z) and px corresponds to looking at Z
as a product of an input domain X and an output set Y.
Define f,: X — Y by

mmzﬂg@wm

The function f, is called the regression function of p. For each z € X, f,(x) is the
average of the y coordinate of {z} x Y.



In what follows we assume f, € E%(X ) is bounded. We also assume that
M,=inf{M >0|{(z,y) € Z| |y — fy(z)| > M} has measure zero}
is finite. Note that this implies that
ly| < M = max{||flloc + M,,1}

almost surely.

Recall, || f|| denotes, unless otherwise specified, the norm of f in E%(X ). Let K
be a Mercer kernel. That is, K : X x X — IR is continuous, symmetric and K is
positive semidefinite, i.e. for all finite sets {z1,...,z;} C X the k x k matrix K[x]
whose (4, j) entry is K (x;,z;) is positive semidefinite. Then (cf. Chapter IIT of [CS])
K determines a linear operator L : E%(X ) = €(X) given by

(Licf)(x) = / K () (t)dt

which is well-defined, positive, and compact. In addition, there exists a Hilbert
space Hx of continuous functions on X (called reproducing kernel Hilbert space,
RKHS for short) associated to K and X and independent of p such that the linear

map L}(/2 is a Hilbert isomorphism between E%(X ) and H . Here L}(/2 denotes the

square root of L, i.e. the only linear operator satisfying L}(/Q o L}(/z = Lg. Thus,

we have the following diagram

1/2
K, ¢
L£3(X) 7(X)
L1/2 & IK

K
Hi
where we write L« to emphasize that the target is 4(X) and Ix denotes the

inclusion. If K is #°° then Ik is compact. In the sequel, K denotes a €°° Mercer
kernel, and || ||g the norm in H.

Let z = (z1,...,2m) with z; = (2;,9;) € X xY fori =1,...,m. We also write
x = (z1,...,Zm), ¥ = (Y1,-..,Ym). Note that since K is a Mercer kernel K[x] is

positive semidefinite.
For v > 0 let ®(-y) and ®,(y) be the problems respectively

min / (f(2) - o) +If 1%
X

st. feHK
and
L
min o Z(f(%) - yi)2 + W’Hf“%(
=1
s.t. f € Hk.



For z € X, let K, : X — IR be given by K,(t) = K(z,t).

Theorem 1 For ally > 0, the minimizers f, and f., , of ®(y) and ®,(v) respectively
exist and are unique. In addition

f7 = (Id + ')’L[i(l)ilfp

and f, , is given by

m

Fra(®) =) aiK (z, ;)
i=1
where a = (aq,...,an) is the unique solution of the well-posed linear system in R™

(ymld + K[x])a =y.
Finally, for f =Y, a;,K,, we have ||f||% = a"K[x]a.

PROOF.  See Propositions 7 and 8 and Theorem 2 in Chapter III of [CS] and its
references, and [5] and its references. O

3 Estimating the Confidence

Define, for f € L2(X), its error

E(f) = /Z (f(2) - y)?

and, given a sample z € Z™, its empirical error

m

> (f (@) — i)

=1

Note that from the equality £(f,..) = E(fy.2) — E(fy) + E(fy) we deduce

g(f%z) < |5(f7,z) - 5(f7)| +5(f7)

We will call the first term in the right-hand side the sample error (this use of the
expression slightly differs from the one in [CS]) and the second, the approzimation
error. Note that the sample error is a random variable on the space Z™. In this
section we will bound the confidence for the sample error to be small enough. The
main result is Theorem 2 below.

For r > 01let B, = {f € Hik | ||fllx < r} and H(r) = Ix(B,). Notice that this
is a compact subset of @ (X) so that, for every 7, the covering number

&a(f) =

1
m

N (H(r),n) = min{s € IN | 3 s closed balls of radius 1 in € (X) covering H(r)}



is finite. Also, let

Ck = max{l, sup |K(:Jc,t)|}

r,teX
and
poo VOl o VCEM
Y = f’ an Ty = Y .

Theorem 2 For all vy,e > 0,

2 4
ey S —
- o1 I 128M4 (y+C g )* |
ZPeré)EﬂS(ffy) E(frz)| <€} >1-4 [m+N (7‘[(7“7), 32M (v + CK)>] ¢ )

The idea towards the proof of Theorem 2 is to write

5(f7) - g(f%z) = 5(f7) - gz(fv) + gz(fv) - gz(f%z) "‘gz(f%z) - 5(f7,z)

from which it follows that

E(fy) = E(fr )l SIE(fy) = Ealf DN +[Ea(fy) = Ealfra)| + €a(fr.a) = E(Fr2)l -

We first, see Proposition 1 below, bound (with high confidence) the first and last
terms in the sum above. Towards this end we give bounds on || f+ ||, || fy.z ||k [| fy]l 00>

and ||f7,z||oo-

Lemma 1 For ally >0
“fv“K < R,y

PrOOF.  Let f, =3 c¢i$;. Then

) -1 %) >\7,
=Y (1 + %) cigi = (’Y+>\‘> cidi

i=1 i=1 ¢

and therefore

o0

2 _
Il = X ashe i

=1

o0
< maxii 02
Tzl (7+>\i)2izz1 '
1

< = \i 2
< 72m35< 1fll

2
< —72 ||fp|| .



Lemma 2 For all y >0
[frzlle <7y

PROOF.  Since f,, = a;K,, we have | f,,||% = o’ K[x]a.
Also, since a = (ymId + K[x]) 'y it follows that

1 M
al| < |lyllll(ymlId + K[x]) | < vVmM — = —
lall < Iyl ) < Vi =

where ||a|| and ||y|| refer to the Euclidean norm in R™. Therefore

M? M?
2 2
£allf < lalPIKB < S50 Creom = =5 Cx

where || K[x]|| denotes the operator norm of K[x]: R™ — IR™ with respect to the
Euclidean norm in both domain and target space and we have used that, since each
entry of K[x] is bounded in absolute value by Cg, ||K[x]|| < Cgm. O

Corollary 1 For all v > 0, || f;]/cc < % and || fyz||lo0 < C{(YM.

ProoF. By Theorem 2 in Chapter III of [CS], ||Ik|| < V/Ck. O

Remark 1 Note that for all v >0, r, > R,.

Proposition 1 For alle,y > 0,

(i)
Prob {|€(f,) = &x(f)| < e} > 1-N (’H(Ry), m) 9 SMAGTORT
(i)
Prob {1E (/) — Ea(fr)] < £} > 1N (H(r)s =) 2™ et
seg (Tl = 5 S " 8M {3y + Cr) '

PrROOF.  We use Theorem B of [CS] but proved with Hoeffding’s inequality instead
of Bernstein’s. This yields, for a compact subset H of (X)) such that |f(z)—y| < M
a.e. for all f € H, the uniform estimate

2

Prob{sup|€(f) —&(f) < 5} >1 —N(H,%) e T,

zZeZm feH M

For (i) use this estimate applied to # = H(R,), and

Cllfplle , ;< My +Cre)

M = [fylloc + Mp+ | folloo <
vlloo Iz plloo ~ ~



and note that

fergg{lﬁ(fq)—fz(fw)lSs}zProb{ sup |5(f)—5z(f)|§6}.

ZEZ™ | FEH(Ry)
A similar proof, now with % = H(r,), and

M M
Ck LM = ('7+CK).
Y

yields (ii). O

We now proceed with the middle term |E,(f,) — E2(fy.2)]-
In what follows, for f : X — IR and x € X™, we denote by f[x] the point
(f(z1),..., f(zm)) € R™. Also, ifv € R™, we denote ||v||max = max{|vi],...,|vm|}

M= ||f7||oo +Mp + “fp“oo <

Proposition 2 For all v, > 0,

me2~%

Prob {1 6] = foaf s < 26} > 1= dme CRNTEIORT,
Y ASYALL

PROOF OF THEOREM 2.  Recall,

E(f3) = E(fr )l SNE(fy) = Ealf )N +[Ea(fy) = Ealfra)| + [Ea(fr.a) = E(Fr2)l -

The first and last terms are each bounded by € with probabilities at least

2 4
&y R T,
1— _ V) 9 mMiGrcg)
N (H(”)’sM(ch)) ¢ ‘

by Proposition 1 and the fact that r, > R,. For the middle term note that

m m

> (@) =) = > (Fralz) — vi)

=1 =1

< =31~ Fralw)]

i=1
< ||f7[X] _f’y,z[x]Hmax'

|‘SZ(f7) - 5Z(f%Z)| =

Now apply Proposition 2 to bound this term by 2e with probability at least

eyt

T 302 M2 (G2
1 — 4me 2CxM“0+Ck)

and the conclusion follows by noting that 2C% M?(y + Cg)? < 8M*(y+ Ck)* and
by replacing € by /4. O



It only remains to prove Proposition 2. Towards this end, recall, Hoeffding’s
inequality states that if £ is a random variable on a probability space Z bounded
almost everywhere by M with mean p then

ms2
gp>1—2e 2n,

1 m
P — ) —
Prob {‘m Zs(zn
=1
TT’LE2‘Y2
5} >1—2e 2CxMp)?,

Lemma 3 For all y,e >0 and allt € X,

zeZm

1 m
Prob ¢ |[— Kz, t)(folz;) —yi)| <
{ED ST E AR
PROOF. Consider the random variable
1
20 K (e 1)(f(@) - ).

It is almost everywhere bounded by %CKM,,. Its mean is 0 since, by Fubini’s
Theorem

/Kwt (folo /Kwt(/fp ydpylw))dpx

and the inner integral is 0 by definition of f,. Now apply Hoeffding’s inequality.
O

Lemma 4 For all y,e >0 and allt € X,

Prob {
VASYALL
Proor. By Theorem 1,

f’y:(Id‘i"YL[_(l)_lfp = f7+'YL}_(1f7:fp
= Lkfy+vfy=Lkf,

= fy= %LK(fp - fv)

1) = — 3 K (i, ) (o 1) — 1 (22))

m
7i:1

me? 'y
< 5} > 1-2¢ 2CkIfollse+V/CiRY)>

= 10 = [ (K@ - 1)) dox.

The function inside the last integral can be thus considered a random variable on X
with mean f,(¢). It is bounded by C—f(“proo ++v/CkR,). Again, apply Hoeffding’s
inequality. O



Lemma 5 For all y,e > 0,

{52 - 820

zeZm ym

me2qd

< 25} > 1 — 4me 2CkM’>0+CK)?
max

ProoOF.  From Lemmas 3 and 4 it follows that, with a probability at least

mEZ'yZ 272
1-2(e 2©€xM)7 4 263 (pr“oo+\/ Ky )2

for every t € X,
1 m

F(t) + — > K (@i, 0)(f5(2:) — 3)

m
v =1

< 2e.

Note that, since

/Cr /Cr v+ Ck
maX{Mp, “fp”oo + R’Y} <M+ KTy = f)

the confidence above is at least
_ ’VYLE2’Y4
1 —de 2CKMPGHCK)*

Applying thisto t = z1, ..., z,, and writing the m resulting inequalities in matrix
form we obtain that, with confidence at least the one in the statement,

Lemma 6 For all y,e > 0,
Kx Kx|y
a4 K 0y K
ym ym
PrOOF.  In Proposition 8, Chapter III of [CS] it is shown that

< 2¢.

)+ 2K - K [y]\

max

m

IOEDY M%Z(xi)[((xi’ o)
i=1 ym
= ymfya(t) = (i — fral) K (zi,t)
=1

m
= ymfya(t) + Z fra(@i) K (it Z yiK (i, t
=1



Applying this equality for ¢ = z1,...,x,, and writing the resulting m equalities in
matrix form we obtain

vy alX] + fra XK [x] = Kxly

from which the statement follows. O

PROOF OF PROPOSITION 2. From Lemmas 5 and 6 it follows that

K[x
H(Id+ []>f7[] (Id+L>f%[] <2
’y ’y max
ie. K[
x
Id—l——)fx—f’zx < 2
(108 (- |
with the stated confidence. The result now follows since % is positive definite and
K[x]) 7!
therefore || (Id+ 7—m> | > 1. O

4 Estimating the Sample Error

The expression | |E(fy) — £(fy,2)| is called the sample error (of f, ;). In the previous
section we estimated the confidence of obtaining a small sample error when the
sample size m and an error bound ¢ are given. In this section we will fix a confidence
1 — § and a sample size m and obtain bounds for the sample error.

Lemma 7 Let ci,c5 >0 and s > q > 0. Then the equation
2’ —cig?—cy =0
has a unique positive zero x*. In addition
1 1
z* < max {(201)5—‘1, (202)5} .

PrOOF.  Let ¢(z) = 2 — c127 — co. Then, taking the derivative with respect to
z, o' (z) = 525" — qeywp?™! = 297 Y (52579 — qcy). Thus

i

O(z)=0 & 2°71=
s

and this derivative has a unique positive zero. The first statement follows since
©(0) <0, ¢'(07) <0 and p(z) — +00 when x — +o0.

10



8

The second statement is a well-known bound (see [10, Theorem 4.2 (iv)]). O
Remark 2 Note that, given c;,c2,s and ¢ one can efficiently compute (a good
approximation of) z* using algorithms such as Newton’s method.

By Theorem 2, the sample error ¢ satisfies, with confidence 1 — 4,

2.4
ey e
4 128M* (v+C ) >5
mN <’H(7’7), 32M(’)’+CK)> e Y >

i.e.

m52’74 4m ey
B8M(y + Gt (7) ~N (”(”)’ m) <0

Now we recall (cf. Section 6 in Chapter I of [CS]) that, for every ¢ < 2 there exists
a constant C} independent of € and ~y, such that

t
ey ryCi32M (v + Ck)\' _ (32C:M?*(y + Ck)?
| < <

(a different bound appears in [15]). Note, in the last inequality we replaced r, by
its definition and used that VCg < (Ck + 7). Using this bound for the covering
number, inequality (1) becomes

me’y* (A (3207 (+ CR)*\'
128M4(y 4+ Cg)* § ey? -
Write
v = er’
© 32M2(y + Ck)?’
Then the inequality above takes the form
cov? — e — et <0 (2)

11



where cg = ¢, ¢; = In (4Tm), ca = C}, the tth power of C;. Note that one could fix,
for example, t = 1.
Now take the equality in (2) to obtain the equation

C1 C2
t+2——’l)t——:0

p(v) =v o o

and note that this equation has only one positive zero by Lemma 7. Let v*(m, )
be this solution. Then, also by Lemma 7,

v*(m,8) < {(81n(4m73[ ln(6)>m’ (%W} 3)

2M? Cx)?
€ = 3 (?;;_ K) v*(m, d)

and we can conclude stating the following result.

and

Theorem 3 Given m > 1 and 0 < 0 < 1, for all ¥ > 0, the expression

2M2 2

bounds the sample error with confidence at least 1 — §. O

Z(7)

5 Choosing the optimal ~

We now focus on the approximation error £(f,). To do so we first apply part (1) of

Theorem 3, Chapter II in [CS] with H = E%(X), s=1, A= L}(/Z, and a = f,, and

use that ||L[_(1/2f|| = ||fllx to obtain that, for 0 < 0 < 1 (e.g. for 6 = 1/2),

i 2 2 07 —0/2 ¢ 2
fggg?x)(llf—fpll £ 1%) <AL foll>

Since the minimum above is attained at f, we deduce

—0/2
1y = Foll> + A% <APNLR2 )12

A basic result in [CS] (Proposition 1, Chapter I) states that, for all f € £3(X),

E(f) = /X (f = £,)% + o (4)

2

where o7 is a non-negative quantity depending only on p. Therefore the approxi-

mation error £(f,) is bounded by #(v) + o3 where
—0/2
(1) =1L o

12



PROOF OF THE MAIN RESULT. Let
E(y) =4 (y) + L (v)-

Recall
E(fra) SIE(fH) = E(fra)l + E(f5)-
Then the error £(f, ) satisfies the bound

E(fya) < E(y) + o2

and therefore, subtracting ag from both sides and using (4) for f = f, 5,

/ (Fra — £2)? < B().
X

This proves the first part of the Main Result. Note that this is actually a family of
bounds parameterized by ¢ < 2 and 0 < # < 1 and depends on m,d, K and f,,.
For a point v > 0 to be a minimum of E(y) = .7 (y) + /() it is necessary that
' (y) + o' () = 0. Taking derivatives, we get
C
S(7) = —64M20* (m, §)C LK
~

and o
') = 09" L 12

Thus the solutions of &’(y) + .’(y) = 0 are those of
69" L, — 64M>0" (m, 8)Cic (7 + Cc) = 0
i.e. those of

pr2  B4Mv* (m, 5)CK7 _ 64M20*(m, 0)C _ 0 (5)
—0 —0 )
OIL 2 £, )2 OIL f,12

Using again Lemma 7, we obtain a unique solution v* which is a minimizer of F
since E(y) — oo as 7 — 0 or v — oo. This finishes the proof of the Main Result.
O

Corollary 2 For every 0 < § < 1,

lim E(v*) =0.

m—»00

13



Proor.  The bound (3) shows that v*(m,d) — 0 when m — oco. Now, equation
(5) shows that v* is the only positive root of

F*T2 — Qu*(m,8)y — Quv*(m,8)Ck =0 (6)

where @) = %. Then, by Lemma, 7,
OllL " foll?

y* < max { (2Qu" (m, )75, (2Qu* (m, ) Cx )75 |
from which it follows that v* — 0 when m — oco. Note that this implies that

lim o/ (v*) = lim (v)?| L2 f,)2 = 0.

im
m—0o0 m—0o0

Finally, it follows from equation (6) that

v*(m, o
(v)? = (@ + QCk) [(fg)] =0
(v*)
and therefore, that [Uzﬂ%’f)] — 0 when m — oo. This, togheter with Theorem 3,
shows that lim,, ., .7 (v*) = 0. O

6 Final Remarks

(1) This report can be seen as a solution of one instance of the Bias-Variance
problem. Roughly speaking, the “bias” of a solution f coincides with our
approximation error, and its “variance” with the sample error. Quoting [3],

A model which is too simple, or too inflexible, will have a large bias,
while one which has too much flexibility in relation to the particular
data set will have a large variance. Bias and variance are comple-
mentary quantities, and the best generalization [i.e. the smallest
error| is obtained when we have the best compromise between the
conflicting requirements of small bias and small variance.

As described in Section 3, Chapter II in [CS], the bias-variance problem
amounts to the choice of a compact subspace H of € (X) over which &, is
minimized. A too small space H will yield a large bias while one too large will
yield a large variance. Several parameters (radius of balls, dimension, etc.)
determine the “size” of H and different instances of the bias-variance problem
are obtained by fixing all of them except one and minimizing the error over
this non-fixed parameter. Our solution considers the ball of radius r = || f5 ||k

in Hg and ‘H = Ix(B,) (a space over which f, , minimizes £,). The number

14



r is our replacement of the VC-dimension. Since <y is inversely proportional
to r, large v corresponds to large bias or approximation error and small vy to
large variance or sample error.

Failing to find a good compromise between bias and variance leads to what is
called underfitting (large bias) or overfitting (large variance). As an example,
consider the curve % in the figure below with the set of sample points and
assume we want to approximate that curve with a polynomial of degree d (the
parameter d determines in our case the dimension of ). If d is too small, say
d = 2, we obtain a curve as in (a) in the figure, wich necessarilly “underfits”
the data points. If d is too large, we can tightly fit the data points but this
“overfitting” yields a curve as in (b).

(a) (b)

For more on the bias-variance problem see [3], the above mentioned section in
[CS], [6], and the references in these papers. Note, however, that the literature
on this problem is vast and we have only touched on it.

(2) One could interpret the main estimates in this paper in terms of algorithms
for approximating solutions of integral equations by Monte Carlo methods.
But for most algorithms in the theory of integral equations the points z;,
i = 1,...,m, are not randomly choosen but taken for example as a set of
lattice points of a domain X C IR"™ (this would correspond to active learning
in the learning theory literature). Now one might take py as Lebesgue measure
and the z; from a uniform grid of points. The theory in our previous paper
[CS] should permit modifications to deal with this situation and our main
result here as well.

(3) Our work can be interpreted in the area of statistics known as regularized
nonparametric least squares regression. A general reference for this area is
the book by Sara van de Geer [14]. Besides the references in this book, the
papers [2, 1, 8, 9] are also related to our work. A result somewhat similar
in spirit to our main result appears in [11, 12]. Here a function E(m,n) is
exhibited bounding the error in terms of the number m of examples and the
number n of basis functions in a space of Gaussian radial basis functions and
it is shown that, for each m € IN, E(m,n) has a unique minimizer n*.

15
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Addenda. Corrections to [CS].

(1)

(2)

A regularity hypothesis on measure px on X requiring every open set on X to
have positive measure is needed for our extension of Mercer Theorem and its
applications. This is a mild hypothesis since open sets with zero measure can
be deleted from X with no harm.

In connection with the matrices associated to a Mercer kernel, the “positive
definite” condition should be relaxed to “positive semidefinite.”
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