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1 Introduction

Partial differential equations and the Laplacian operator on domains in Euclidean spaces

have played a central role in understanding natural phenomena. However this avenue has

been limited in many areas where calculus is obstructed as in singular spaces, and function

spaces of functions on a space X where X itself is a function space. Examples of the last

occur in vision and quantum field theory. In vision it would be useful to do analysis on the

space of images and an image is a function on a patch. Moreover in analysis and geometry,

the Lebesgue measure and its counterpart on manifolds are central. These measures are

unavailable in the vision example and even in learning theory in general.

There is one situation where in the last several decades, the problem has been studied

with some success. That is when the underlying space is finite (or even discrete). The

introduction of the graph Laplacian has been a major development in algorithm research
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and is certainly useful for unsupervised learning theory.

The point of view taken here is to benefit from both the classical research and the newer

graph theoretic ideas to develop geometry on probability spaces. This starts with a space X

equipped with a kernel (like a Mercer kernel) which gives a topology and geometry; X is to

be equipped as well with a probability measure. The main focus is on a construction of a

(normalized) Laplacian, an associated heat equation, diffusion distance, etc. In this setting

the point estimates of calculus are replaced by integral quantities. One thinks of secants

rather than tangents. Our main result, Theorem 1 below, bounds the error of an empirical

approximation to this Laplacian on X.

2 Kernels and Metric Spaces

Let X be a set and K : X×X → R be a reproducing kernel, that is, K is symmetric and for

any finite set of points {x1, · · · , x`} ⊂ X, the matrix (K(xi, xj))
`
i,j=1 is positive semidefinite.

The Reproducing Kernel Hilbert Space (RKHS) HK associated with the kernel K is defined

to be the completion of the linear span of the set of functions {Kx = K(x, ·) : x ∈ X} with

the inner product denoted as 〈·, ·〉K satisfying 〈Kx, Ky〉K = K(x, y). See [1, 10, 11].

We assume that the feature map F : X → HK mapping x ∈ X to Kx ∈ HK is injective.

Definition 1. Define a metric d = dK induced by K on X as d(x, y) = ‖Kx −Ky‖K. We

assume that (X, d) is complete and separable (if it is not complete, we may complete it).

The feature map is an isometry. Observe that

K(x, y) = 〈Kx, Ky〉K =
1

2

{
〈Kx, Kx〉K + 〈Ky, Ky〉K − (d(x, y))2} .

Then K is continuous on X ×X, and hence is a Mercer kernel.

Let ρX be a Borel probability measure on the metric space X.

Example 1. Let X = Rn and K be the reproducing kernel K(x, y) = 〈x, y〉Rn. Then

dK(x, y) = ‖x− y‖Rn and HK is the space of linear functions.

Example 2. Let X be a closed subset of Rn and K be the kernel given in the above example

restricted to X×X. Then X is complete and separable, and K is a Mercer kernel. Moreover,

one may take ρX to be any Borel probability measure on X.
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Remark 1. In Examples 1 and 2, one can replace Rn by a separable Hilbert space.

Example 3. In Example 2, let x = {xi}m
i=1 be a finite subset of X drawn from ρX . Then

the restriction K|x is a Mercer kernel on x and it is natural to take ρx to be the uniform

measure on x.

3 Approximation of Integral Operators

The integral operator LK : L2
ρX
→ HK associated with the pair (K, ρX) is defined by

LK(f)(x) :=

∫
X

K(x, y)f(y)dρX(y), x ∈ X. (3.1)

It may be considered as a self-adjoint operator on L2
ρX

or HK . See [10, 11]. We shall use the

same notion LK for these operators defined on different domains.

Assume that x := {xi}m
i=1 is a sample independently drawn according to ρX .

Recall the sampling operator Sx : HK → `2(x) associated with x defined [17, 18] by

Sx(f) =
(
f(xi)

)m
i=1

.

By the reproducing property of HK taking the form 〈Kx, f〉K = f(x) with x ∈ X, f ∈ HK ,

the adjoint of the sampling operator, ST
x : `2(x) → HK , is given by

ST
x c =

m∑
i=1

ciKxi
, c ∈ `2(x).

As the sample size m tends to infinity, the operator 1
m

ST
x Sx converges to the integral

operator LK̃ . We prove the following convergence rate.

Proposition 1. Assume

κ :=
√

sup
x∈X

K(x, x) < ∞. (3.2)

Let x be a sample independently drawn from (X, ρX). With confidence 1− δ, we have∥∥∥∥ 1

m
ST

x Sx − LK

∥∥∥∥
HK→HK

≤
4κ2 log

(
2/δ
)

√
m

. (3.3)
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Proof. The proof follows [18]. We need a probability inequality [15, 18] for a random variable

ξ on (X, ρX) with values in a Hilbert space (H, ‖ · ‖). It says that if ‖ξ‖ ≤ M̃ < ∞ almost

surely, then with confidence 1− δ,∥∥∥∥∥ 1

m

m∑
i=1

[
ξ(xi)− E(ξ)

]∥∥∥∥∥ ≤ 4M̃ log
(
2/δ
)

√
m

. (3.4)

We apply this probability inequality to the separable Hilbert space H of Hilbert-Schmidt

operators on HK , denoted as HS(HK). The inner product for A1, A2 ∈ HS(HK) is defined

as 〈A1, A2〉HS =
∑

j≥1〈A1ej, A2ej〉K where {ej}j≥1 is an orthonormal basis of HK . The

space HS(HK) is the subspace of the space of bounded linear operators on HK with the

norm ‖A‖HS < ∞.

The random variable ξ on (X, ρX) in (3.4) is given by

ξ(x) = Kx〈·, Kx〉K , x ∈ X.

The values of ξ are rank-one operators in HS(HK). For each x ∈ X, if we choose an orthonor-

mal basis {ej}j≥1 of HK with e1 = Kx/
√

K(x, x), we see that ‖ξ(x)‖2
HS =

∑
j≥1 ‖ξ(x)ej‖2

K =

(K(x, x))2 ≤ κ4. Observe that 1
m

ST
x Sx = 1

m

∑m
i=1 Kxi

〈·, Kxi
〉K = 1

m

∑m
i=1 ξ(xi) and E(ξ) =

LK . Then we observe that the desired bound (3.3) follows from (3.4) with M̃ = κ2 and the

norm relation

‖A‖HK→HK
≤ ‖A‖HS. (3.5)

This proves the proposition.

Some analysis related to Proposition 1 can be found in [19, 14, 5, 12].

Definition 2. Denote p =
∫

X
KxdρX ∈ HK. We assume that p is positive on X. The

normalized Mercer kernel on X associated with the pair (K, ρX) is defined by

K̃(x, y) =
K(x, y)√
p(x)

√
p(y)

, x, y ∈ X. (3.6)

This construction is in [19], except that we have replaced their positive weighting function

by a Mercer kernel.

In the following,

˜ means expressions wrt the normalized kernel K̃, in particular K̃x :=
(
K̃(xi, xj)

)m

i,j=1
.
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Consider the RKHS HK̃ , and the integral operator LK̃ : HK̃ → HK̃ associated with the

normalized Mercer kernel K̃.

Denote the sampling operator HK̃ → `2(x) associated with the pair (K̃,x) as S̃x. If

we denote HK̃,x = span{K̃xi
}m

i=1 in HK̃ and its orthogonal complement as H⊥
K̃,x

, then we

see that S̃x(f) = 0 for any f ∈ H⊥
K̃,x

. Hence S̃T
x S̃x|H⊥

K̃,x
= 0. Moreover, K̃x is the matrix

representation of the operator S̃T
x S̃x|H

K̃,x
.

Proposition 1 yields the following bound with K̃ replacing K in Proposition 1.

Theorem 1. Denote p0 = minx∈X p(x). For any 0 < δ < 1, with confidence 1− δ,∥∥∥∥LK̃ − 1

m
S̃T

x S̃x

∥∥∥∥
H

K̃
→H

K̃

≤
4κ2 log

(
2/δ
)

√
mp0

. (3.7)

Note that 1
m

S̃T
x S̃x is given from data x by a linear algorithm [16]. So Theorem 1 is an

error estimate for that algorithm.

The analysis in [19] deeply involves the constant minx,y∈X K(x, y). In the case of the

Gaussian kernel Kσ(x, y) = exp{− |x−y|2
2σ2 }, this constant decays exponentially fast as the

variance σ of the gaussian becomes small, while in Theorem 1 the constant p0 decays poly-

nomially fast, at least in the manifold setting [20].

4 Tame Heat Equation

Define a tame version of Laplacian as ∆K̃ = I−LK̃ . The tame heat equation takes the form

∂u

∂t
= −∆K̃u. (4.1)

One can see that the solution to (4.1) with the initial condition u(0) = u0 is given by

u(t) = exp
{
−t∆K̃

}
u0. (4.2)

5 Diffusion Distances

Let 1 = λ1 ≥ λ2 ≥ . . . ≥ 0 be the eigenvalues of LK̃ : L2
ρX

→ L2
ρX

and {ϕ(i)}i≥1 be

corresponding normalized eigenfunctions which form an orthonormal basis of L2
ρX

. The

5



Mercer Theorem asserts that

K̃(x, y) =
∞∑
i=1

λiϕ
(i)(x)ϕ(i)(y)

where the convergence holds in L2
ρX

and uniformly.

Definition 3. For t > 0 we define a reproducing kernel on X as

K̃t(x, y) =
∞∑
i=1

λt
iϕ

(i)(x)ϕ(i)(y). (5.1)

Then the tame diffusion distance Dt on X is defined as dK̃t by

Dt(x, y) = ‖K̃t
x − K̃t

y‖K̃t =

{
∞∑
i=1

λt
i

[
ϕ(i)(x)− ϕ(i)(y)

]2}1/2

. (5.2)

The kernel K̃t may be interpreted as a tame version of the heat kernel on a manifold.

The functions (K̃t)x are in HK̃ for t ≥ 1, but only in L2
ρX

for t ≥ 0.

The quantity corresponding to Dt for the classical heat kernel and other varieties has

been developed by Coifman et. al. [8, 9] where it is used in data analysis and more.

Note that K̃t is continuous for t ≥ 1, in contrast to the classical kernel (Greens function)

which is of course singular on the diagonal of X ×X.

The integral operator LK̃t associated with the reproducing kernel K̃t is the tth power of

the positive operator LK̃ .

Note that for t = 1, the distance D1 is the one induced by the kernel K̃. When t becomes

large, the effect of the eigenfunctions ϕ(i) with small eigenvalues λi is little. In particular,

when λ1 has multiplicity 1, since ϕ(1) =
√

p we have

lim
t→∞

Dt(x, y) =
∣∣∣√p(x)−

√
p(y)

∣∣∣ .
In the same way, since the tame Laplacian ∆K̃ has eigenpairs (1 − λi, ϕ

(i)), we know that

the solution (4.2) to the tame heat equation (4.1) with the initial condition u(0) = u0 ∈ L2
ρX

satisfies

lim
t→∞

u(t) = 〈u0,
√

p〉L2
ρX

√
p.
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6 Graph Laplacian

Consider the reproducing kernel K and the finite subset x = {xi}m
i=1 of X.

Definition 4. Let Kx be the symmetric matrix Kx = (K(xi, xj))
m
i,j=1 and Dx be the diagonal

matrix with (Dx)i,i =
∑m

j=1(Kx)i,j =
∑m

j=1 K(xi, xj). Define a discrete Laplacian matrix

L = Lx = Dx −Kx. The normalized discrete Laplacian is defined by

∆̂K,x = I −D
− 1

2
x KxD

− 1
2

x = I − 1

m
K̂x, (6.1)

where K̂x is the special case of the matrix K̃x when ρX is the uniform distribution of the

finite set x, that is,

K̂x :=

 K(xi, xj)√
1
m

∑m
`=1 K(xi, x`)

√
1
m

∑m
`=1 K(xj, x`)

m

i,j=1

. (6.2)

The above construction is the same as that for graph Laplacians [7]. See [2] for a discus-

sion in learning theory. But the setting here is different: the entries K(xi, xj) are induced

by a reproducing kernel, they might take negative values satisfying a positive definiteness

condition, and are different from weights of a graph or entries of an adjacency matrix.

In the following, ̂ means expressions with respect to an implicit sample x.

7 Approximation of Eigenfunctions

In this section we study the approximation of eigenfunctions from the bound for approx-

imation of linear operators. We need the following result which follows from the general

discussion on perturbation of eigenvalues and eigenvectors, see e.g. [4]. For completeness,

we give a detailed proof for the approximation of eigenvectors.

Proposition 2. Let A and Â be two compact positive self-adjoint operators on a Hilbert

space H, with nondecreasing eigenvalues {λj} and {λ̂j} with multiplicity. Then there holds

max
j≥1

|λj − λ̂j| ≤ ‖A− Â‖. (7.1)

Let wk be a normalized eigenvector of A associated with eigenvalue λk. If r > 0 satisfies

λk−1 − λk ≥ r, λk − λk+1 ≥ r, ‖A− Â‖ ≤ r

2
, (7.2)
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then

‖wk − ŵk‖ ≤
4

r
‖A− Â‖,

where ŵk is a normalized eigenvector of Â associated with eigenvalue λ̂k.

Proof. The eigenvalue estimate (7.1) follows from Weyl’s Perturbation Theorem (see e.g.

[4]).

Let {wj}j≥1 be an orthonormal basis of H consisting of eigenvectors of A associated with

eigenvalues {λj}. Then ŵk =
∑

j≥1 αjwj where αj = 〈ŵk, wj〉.

Consider Âŵk − Aŵk. It can be expressed as

Âŵk − Aŵk = λ̂kŵk −
∑
j≥1

αjAwj =
∑
j≥1

αj

(
λ̂k − λj

)
wj.

When j 6= k, we see from (7.2) and (7.1) that

|λ̂k − λj| ≥ |λk − λj| − |λ̂k − λk| ≥ min{λk−1 − λk, λk − λk+1} − ‖A− Â‖ ≥ r

2
.

Hence

‖Âŵk − Aŵk‖2 =
∑
j≥1

α2
j

(
λ̂k − λj

)2

≥
∑
j 6=k

α2
j

(
λ̂k − λj

)2

≥ r2

4

∑
j 6=k

α2
j .

But ‖Âŵk − Aŵk‖ ≤ ‖Â− A‖. It follows that{∑
j 6=k

α2
j

}1/2

≤ 2

r
‖Â− A‖.

From ‖ŵk‖2 =
∑

j≥1 α2
j = 1, we also have αk =

{
1−

∑
j 6=k α2

j

}1/2

≥ 1 −
{∑

j 6=k α2
j

}1/2

.

Therefore,

‖wk − ŵk‖ = ‖(1− αk)wk + αkwk − ŵk‖ = ‖(1− αk)wk −
∑
j 6=k

αjwj‖

≤ |1− αk|+ ‖
∑
j 6=k

αjwj‖ ≤ 2

{∑
j 6=k

α2
j

}1/2

≤ 4

r
‖Â− A‖.

This proves the desired bound.

An immediate easy corollary of Proposition 2 and Theorem 1 is about the approximation

of eigenfunctions of LK̃ by those of 1
m

S̃T
x S̃x.
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Recall the eigenpairs {λi, ϕ
(i)}i≥1 of the compact self-adjoint positive operator LK̃ on

L2
ρX

. Observe that ‖ϕ(k)‖L2
ρX

= 1, but ‖ϕ(k)‖2
K̃

= 〈 1
λk

LK̃ϕ(k), ϕ(k)〉K̃ = 1
λk
‖ϕ(k)‖2

L2
ρX

= 1
λk

. So
1√
λk

ϕ(k) is a normalized eigenfunction of LK̃ on HK̃ associated with eigenvalue λk.

Also, 1
m

S̃T
x S̃x|H⊥

K̃,x
= 0 and 1

m
K̃x is the matrix representation of 1

m
S̃T

x S̃x|H
K̃,x

.

Corollary 1. Let k ∈ {1, . . . ,m} such that r := min{λk−1−λk, λk−λk+1} > 0. If 0 < δ < 1

and m ∈ N satisfy
4κ2 log

(
4/δ
)

√
mp0

≤ r

2
,

then with confidence 1− δ, we have∥∥∥∥ ϕ(k)

√
λk

− Φ(k)

∥∥∥∥
K̃

≤
16κ2 log

(
4/δ
)

r
√

mp0

,

where Φ(k) is a normalized eigenfunction of 1
m

S̃T
x S̃x associated with its kth largest eigenvalue

λk,x. Moreover, λk,x is the kth largest eigenvalue of the matrix 1
m

K̃x, and with an associated

normalized eigenvector v, we have Φ(k) = 1√
λk,x

1√
m

S̃T
x v.

8 Algorithmic Issue for Approximating Eigenfunctions

Corollary 1 provides quantitative understanding of the approximation of eigenfunctions of

LK̃ by those of the operator 1
m

S̃T
x S̃x. The matrix representation 1

m
K̃x is given by the kernel

K̃ which involves K and the function p defined by ρX . Since ρX is unknown algorithmically,

we want to study the approximation of eigenfunctions by methods involving only K and the

sample x. This is done here.

We shall apply Proposition 2 to the operator A = LK̃ and Â defined by means of the

matrix K̂x given by (K,x) in (6.2), and derive estimates for the approximation of eigenfunc-

tions.

Let λ̂1,x ≥ λ̂2,x ≥ . . . ≥ λ̂m,x ≥ 0 be the eigenvalues of the matrix 1
m

K̂x.

Theorem 2. Let k ∈ {1, . . . ,m} such that r := min{λk−1−λk, λk−λk+1} > 0. If 0 < δ < 1

and m ∈ N satisfy
4κ2 log

(
4/δ
)

√
mp0

≤ r

8
, (8.1)

then with confidence 1− δ, we have∥∥∥∥ϕ(k) − 1√
m

S̃T
x v

∥∥∥∥
K̃

≤
72
√

λkκ
2 log

(
4/δ
)

r
√

mp0

, (8.2)
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where v ∈ `2(x) is a normalized eigenvector of the matrix 1
m

K̂x with eigenvalue λ̂k,x.

Remark 2. Since ∆K̃ = I − LK̃ and ∆̂K,x = I − D
− 1

2
x KxD

− 1
2

x = I − 1
m

K̂x, Theorem 2

provides error bounds for the approximation of eigenfunctions of the tame Laplacian ∆K̃ by

those of the normalized discrete Laplacian ∆̂K,x. Note that 1√
m

S̃T
x v = 1√

m

∑m
i=1 viK̃xi

.

We need some preliminary estimates for the approximation of linear operators.

Applying the probability inequality (3.4) for the random variable ξ on (X, ρX) with values

in the Hilbert space HK given by ξ(x) = Kx, we have

Lemma 1. Denote px = 1
m

∑m
j=1 Kxj

∈ HK. With confidence 1− δ/2, we have

‖px − p‖K ≤
4κ log

(
4/δ
)

√
m

. (8.3)

The error bound (8.3) implies

max
i=1,...,m

|px(xi)− p(xi)| ≤
4κ2 log

(
4/δ
)

√
m

. (8.4)

This yields the following error bounds between the matrices K̃x and K̂x.

Lemma 2. Let x ∈ Xm. When (8.3) holds, we have∥∥∥∥ 1

m
K̃x −

1

m
K̂x

∥∥∥∥ ≤
(

2 +
4κ2 log

(
4/δ
)

√
mp0

)
4κ2 log

(
4/δ
)

√
mp0

. (8.5)

Proof. Let Σ = diag {Σi}m
i=1 with Σi :=

√
px(xi)√
p(xi)

. Then 1
m

K̃x = Σ 1
m

K̂xΣ. Decompose

1

m
K̃x −

1

m
K̂x = Σ

1

m
K̂x (Σ− I) + (Σ− I)

1

m
K̂x.

We see that ∥∥∥∥ 1

m
K̃x −

1

m
K̂x

∥∥∥∥ ≤ ‖Σ‖
∥∥∥∥ 1

m
K̂x

∥∥∥∥ ‖Σ− I‖+ ‖Σ− I‖
∥∥∥∥ 1

m
K̂x

∥∥∥∥ .

Since 1
m

K̂x ≤ I, we have
∥∥∥ 1

m
K̂x

∥∥∥ ≤ 1. Also, for each i,∣∣∣∣∣
√

px(xi)√
p(xi)

− 1

∣∣∣∣∣ ≤ |px(xi)− p(xi)|
p(xi)

.

Hence

‖Σ− I‖ ≤ max
i=1,...,m

|px(xi)− p(xi)|
p(xi)

.

This in connection with (8.4) proves the statement.
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Now we can prove the estimates for the approximation of eigenfunctions.

Proof of Theorem 2. First, we define a linear operator which plays the role of Â in Proposition

2. This is an operator, denoted as L̂K,x, on HK̃ such that L̂K,x(f) = 0 for any f ∈ H⊥
K̃,x

, and

HK̃,x is an invariant subspace of L̂K,x with the matrix representation equal to the matrix
1
m

K̂x given by (6.2). That is, in HK̃,x

⊕
H⊥

K̃,x
, we have

L̂K,x

[
K̂x1 , . . . , K̂xm

]
=
[
K̂x1 , . . . , K̂xm

] 1

m
K̂x, L̂K,x|H

K̃,x
⊥ = 0.

Second, we consider the difference between the operator LK̃ and L̂K,x. By Theorem 1,

there exists a subset X1 of Xm of measure at least 1 − δ/2 such that (3.7) holds true for

x ∈ X1. By Lemmas 1 and 2, we know that there exists another subset X2 of Xm of measure

at least 1 − δ/2 such that (8.3) and (8.5) hold for x ∈ X2. Recall that S̃T
x S̃x|H⊥

K̃,x
= 0 and

K̃x is the matrix representation of the operator S̃T
x S̃x|H

K̃,x
. This in connection with (8.5)

and the definition of L̂K,x tells us that for x ∈ X2,∥∥∥∥ 1

m
S̃T

x S̃x − L̂K,x

∥∥∥∥ =

∥∥∥∥ 1

m
K̃x −

1

m
K̂x

∥∥∥∥ ≤
(

2 +
4κ2 log

(
4/δ
)

√
mp0

)
4κ2 log

(
4/δ
)

√
mp0

.

Together with (3.7), we have

∥∥∥LK̃ − L̂K,x

∥∥∥ ≤ (3 +
4κ2 log

(
4/δ
)

√
mp0

)
4κ2 log

(
4/δ
)

√
mp0

, ∀x ∈ X1 ∩X2. (8.6)

Third, we apply Proposition 2 to the operators A = LK̃ and Â = L̂K,x on the Hilbert

space HK̃ . Let x be in the subset X1 ∩X2 which has measure at least 1 − δ. Since r ≤ 1,

the estimate (8.6) together with the assumption (8.1) tells us that (7.2) holds. Then by

Proposition 2, we have∥∥∥∥ 1√
λk

ϕ(k) − ϕ̂(k)

∥∥∥∥
K̃

≤ 4

r

∥∥∥LK̃ − L̂K,x

∥∥∥ ≤ 50κ2 log
(
4/δ
)

r
√

mp0

, (8.7)

where ϕ̂(k) is a normalized eigenfunction of L̂K,x associated with eigenvalue λ̂k,x.

Finally, we specify ϕ̂(k). From the definition of the operator L̂K,x, we see that for u ∈
`2(x), we have

L̂K,x

(
m∑

i=1

uiK̃xi

)
=

m∑
i=1

(
1

m
K̂xu

)
i

K̃xi
.

11



Since ‖
∑m

i=1 uiK̃xi
‖2

K̃
= uT K̃xu, we know that the normalized eigenfunction ϕ̂(k) of L̂K,x

associated with eigenvalue λ̂k,x can be taken as

ϕ̂(k) =
(
vT K̃xv

)−1/2
m∑

i=1

viK̃xi
=

(
1

m
vT K̃xv

)−1/2
1√
m

S̃T
x v

where v ∈ `2(x) is a normalized eigenvector of the matrix 1
m

K̂x with eigenvalue λ̂k,x.

Since (8.5) holds, we see that∣∣∣∣ 1

m
vT K̃xv − λ̂k,x

∣∣∣∣ =

∣∣∣∣ 1

m
vT K̃xv −

1

m
vT K̂xv

∣∣∣∣ =

∣∣∣∣vT (
1

m
K̃x −

1

m
K̂x)v

∣∣∣∣ ≤ 9κ2 log
(
4/δ
)

√
mp0

.

Hence ∣∣∣∣ 1

m
vT K̃xv − λk

∣∣∣∣ ≤ ∣∣∣∣ 1

m
vT K̃xv − λ̂k,x

∣∣∣∣+ |λ̂k,x − λk| ≤
22κ2 log

(
4/δ
)

√
mp0

.

Since
(

1
m

vT K̃xv
)−1/2 ∥∥∥ 1√

m
S̃T

x v
∥∥∥

K̃
= 1, we have

∥∥∥∥ 1√
λk

1√
m

S̃T
x v − ϕ̂(k)

∥∥∥∥
K̃

=

∥∥∥∥∥∥
 1√

λk

− 1√
1
m

vT K̃xv

 1√
m

S̃T
x v

∥∥∥∥∥∥
K̃

=

∣∣∣ 1
m

vT K̃xv − λk

∣∣∣
√

λk +
√

1
m

vT K̃xv

1
√

λk

√
1
m

vT K̃xv

∥∥∥∥ 1√
m

S̃T
x v

∥∥∥∥
K̃

≤
22κ2 log

(
4/δ
)

√
mp0λk

.

This in connection with (8.7) tells us that for x ∈ X1 ∩X2 we have∥∥∥∥ 1√
λk

ϕ(k) − 1√
λk

1√
m

S̃T
x v

∥∥∥∥
K̃

≤
50κ2 log

(
4/δ
)

r
√

mp0

+
22κ2 log

(
4/δ
)

√
mp0λk

.

Since r ≤ λk − λk+1 ≤ λk, this proves the stated error bound in Theorem 2.
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