
RISK BOUNDS FOR RANDOM REGRESSION GRAPHS

A. CAPONNETTO AND S. SMALE

Abstract. We consider the regression problem and describe an algorithm
approximating the regression function by estimators piecewise constant on the
elements of an adaptive partition. The partitions are iteratively constructed
by suitable random merges and splits, using cuts of arbitrary geometry. We
give a risk bound under the assumption that a “weak learning hypothesis”
holds, and characterize this hypothesis in terms of a suitable RKHS.

1. Introduction

Many algorithms based on adaptive partitions have been proposed in the learning
theory literature. Different algorithms adopt different strategies for the construction
of the adaptive partitions. For example, probably the best known such an algorithm,
CART [2], realizes a series of dyadic cuts by coordinate planes. In this case, the
orientations of the cuts are chosen runtime and it is not set in advance how a
particular cell will be split. On the contrary, other algorithms are based on a
predetermined set of cuts [1], which constraints the geometry of the resulting cells,
e.g. hypercubes. The aim of this paper is devising an algorithm which allows
maximum freedom to the geometrical properties of the partitions.

The algorithm is based on an iterative procedure to construct a partition P of
the input space X. It is defined in terms of a set C of allowed cuts of X, endowed
with a probability measure π. At every iteration t a set of cuts are drawn i.i.d.
from C according to π, and one of them is used to perform a split on the current
partition. We have in mind (see Example 1) the case of cuts induced by arbitrary
half-spaces in the Euclidean space Ed, randomly drawn according to an isotropic
measure. In order to control the number of elements of the partition, the splits are
followed by the merging of a class of (not necessarily connected) elements. The use
of merges in the construction of adaptive partitions has been first proposed in the
context of classification [14] and recently in the context of regression [12] [11]. But
we are not aware of any previous thorough error analysis for adaptive algorithms
involving both merges and splits by such general cuts.

A connection between this class of algorithms and boosting theory is also well
established in the literature [13], and in fact our main error estimate (Theorem 1 in
Subsection 2.3) relies on an assumption on the regression function fρ (Hypothesis
3), which can be described as a “weak learning hypothesis”. It establishes a lower
bound for the average squared covariance of fρ and the characteristic function
of a randomly drawn half-space. Indeed, this quantity can be linked to the risk
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reduction, due to a random split, of the optimal piecewise constant estimators on
the partitions (see Proposition A2). Therefore, Hypothesis 3 describes a guaranteed
average risk reduction as effect of a random split.

The second main result of the paper (Theorem 2 in Section 3) shows that the
functions belonging to the RKHS induced by the Mercer kernel

K(x, y) = 1− 2C ‖x− y‖ ,

satisfy Hypothesis 3.
From Theorem 1, Theorem 2, and the expression (4) for the constant C, we get

the following Corollary.

Corollary 1. Let the input space X be a ball of radius R in the d-dimensional
Euclidean space, and consider the class of cuts C determined by general hyperplanes,
endowed with the uniform measure π (see Example 1 in Subsection 2.1 for details).
Assume that the regression function fρ fulfills

‖fρ‖2H ≤ V 2,(1)

where H is the RKHS on X induced by the kernel

K(x, y) = 1− 2Γ(d−1
2 )√

πRΓ(d
2 )
‖x− y‖ .

Then, for every m ≥ ( V
4M )2 + e, with probability greater than 1− 2δ, the following

estimate for the expected risk of the estimator f̂ returned by the Algorithm, holds
∥∥∥f̂ − fρ

∥∥∥
2

ρ
= E [f̂ ]− E [fρ] ≤ 48max(M2, V 2)

(
M2

V 2

log(m/δ)√
m

) 1
3

.

By Theorem B2 in Appendix B (see also Example 1′ in Appendix B and the
discussion in Example 1, Section 3), assumption (1) in the Corollary above can be
replaced by the following condition

π

2
R|Sd−1|

〈
f∗ρ , (−4)

d+1
2 f∗ρ

〉
L2(Ed,µ)

≤ V 2,(2)

where f∗ρ ∈ L2(Ed) is an extension of fρ from X to the whole Ed, belonging to the
smoothness space H

d+1
2 (Ed, µ) defined in eq. (60) (here µ is the Lebesgue measure

over the Euclidean space Ed). An asset of this result with respect to previous
similar approaches (e.g. [12] and [11]) is that the space H

d+1
2 (Ed, µ) is a dense

subspace of L2(Ed, µ). However, the relation between the norm of the extension f∗ρ
in H

d+1
2 (Ed, µ), which appears in eq. (2), and the original function fρ over X is

not straightforward. Some estimates for the norm of f∗ρ can be found for example
in [3].

The paper is organized as follows. In Section 2, first, we define the setting of
the learning problem, then we introduce the cuts (C, π) (Subsection 2.1), hence we
describe the Algorithm (Subsection 2.2), and finally we give the main error estimate
Theorem 1 (Subsection 2.3). In Section 3, Theorem 2 shows how the “weak learning
hypothesis” (Hypothesis 3) can be characterized in terms of a suitable RKHS.

Throughout the paper Examples 1 and 2 illustrate the general results for two
particularly interesting cases. In Example 1, the input space X is a ball in the
Euclidean space Ed, and the cuts are induced by hyperplanes randomly drawn
according to the uniform probability measure. Instead, Example 2 deals with the
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hypersphere X = Sd−1, and considers cuts by isotropically distributed hyperplanes
passing through the center of X.

Appendix A collects the preliminary results required for the proof of Theorem 1.
Finally, Appendices B and C contain the results used in the analysis of Examples
1 and 2, respectively.

2. The learning problem

Let us first introduce the regression problem that we want to address. We assume
the samples zi = (xi, yi) ∈ X × Y , i = 1, . . . , m, to be drawn i.i.d according to a
probability measure ρ. Here Y ⊂ [−M, M ], for some known positive M .

The goal is determining, by means of the empirical samples z = (z1, . . . , zm), an
estimator f̂ := fz : X → Y with low expected error

E [f̂ ] =
∫

X×Y

(f̂(x)− y)2dρ(x, y).

In our context the empirical estimator f̂ is defined by a partition of the input space
X

P = {`1, . . . , `k}.
The estimator f̂P induced by such a partition is given by

f̂P(x) =
1

ρ̂X(`(x))

∫

`(x)×Y

y dρ̂,

where `(x) is uniquely defined by the condition x ∈ `(x) ∈ P, and the empirical
distribution ρ̂ is defined in terms of the empirical samples by

ρ̂ =
1
m

m∑

i=1

δxiδyi ,

and ρ̂X is the corresponding marginal distribution over X.
In Subsection 2.2 we will describe the algorithmic construction of f̂ . Hence, in

Subsection 2.3 we will state the main result of this section: an upper bound on the
expected error E [f̂ ]. But before we have to introduce the main concept involved in
the construction of the partitions of X. That is, the set of allowed splits of X. This
is the topic of the next subsection.

2.1. Splits. As it will be thoroughly explained in the next subsection, the main
elementary procedure in the construction of the partitions, is the splitting of subsets
of X by cuts randomly drawn from a class. An allowed split of ` ⊂ X generates
the two parts ` ∩ c and ` ∩ c̄, where the subset of X, c, is drawn from the class of
subsets C (here c̄ is the complement of c in X). Since the Algorithm will implement
random splits we must also endow the class C with a probability measure π.

More formally, let C be a set of subsets of X and (C, π,F) a probability space
on it. It is useful assuming that the following hypothesis holds

Hypothesis 1. ∀x ∈ X, Cx := {c ∈ C| x ∈ c} ∈ F .

For the following developments it is also useful showing how the probability space
(C, π) induces a natural metric structure over the input space X.

In particular we study the properties of the kernel D : X ×X → R defined by
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Definition 1.
D(x, y) := π(Cx ∩ C̄y) + π(Cy ∩ C̄x),

where, by S̄ we denoted the complement of S in C. Clearly D(x, y) represents
the probability that a random cut separates the point x from y. Moreover, as shown
by the following proposition, D is a distance function over X.

Proposition 1. For all x, y ∈ X, D(x, y) fulfills the following properties
(1) D(x, y) ≥ 0,
(2) D(x, y) = D(y, x),
(3) D(x, y) ≤ D(x, z) + D(z, y) ∀z ∈ X.

Proof. Non-negativity and symmetry are obvious by the definition of D. Triangle
inequality can be derived noticing that

Cx ∩ C̄y = (Cx ∩ C̄y) ∩ (Cz ∪ C̄z) ⊂ (Cz ∩ C̄y) ∪ (Cx ∩ C̄z).

Hence by union bound

π(Cx ∩ C̄y) ≤ π(Cx ∩ C̄z) + π(Cz ∩ C̄y),

which added to the analogous inequality obtained by switching x and y gives the
desired result. ¤

In a strict sense, Proposition 1 shows that (X, D) is a pseudo-metric space, since
D(x, y) = 0 does not imply x = y. But also in the general case, it is possible to
recover the familiar metric structure working with suitable equivalence classes of
points in X. However, in all the examples that we will consider, D is already a
metric on X. Hence, hereafter we assume that indeed (X, D) is a metric space.

For the further developments we also assume that the the metric space (X,D)
fulfills the additional technical hypothesis

Hypothesis 2.
(1) (X, D) is separable,
(2) the elements of C are Borel sets of (X,D).

Now, let us illustrate two instances of the structure (C, π).
Example 1 Let X be the closed ball with center o and radius R in the d-

dimensional Euclidean space. Define

C := {c(ω, p)| (ω, p) ∈ Sd−1 × (−R, R)},
where

c(ω, p) := {x ∈ X| ω · (o− x) > p}.
Endow C with the σ-field F and the measure π induced by the natural product

measure over Sd−1 × (−R, R), that is dπ = dpdω/(2R|Sd−1|). Clearly Hypothesis
1 is fulfilled.

The kernel D can be obtained by direct computation as follows

D(x, y) = 2π(Cx ∩ C̄y)(3)

=
1

R|Sd−1|
∫

Sd−1×(−R,R)

χ{ω·(o−x)>p}χ{ω·(o−y)≤p} =
1

R|Sd−1|
∫

Sd−1
| ω · (x− y)|dω

=
|Sd−2|

R|Sd−1| ‖x− y‖
∫ π

0

(cos θ)d−2 sin θdθ = C(d,R) ‖x− y‖ ,
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where

C(d,R) =
Γ(d−1

2 )√
πRΓ(d

2 )
=

√
2

πR2d
+ O(d−

3
2 ).(4)

Clearly, since D(x, y) is proportional to the Euclidean distance between x and
y, Hypothesis 2 is fulfilled.

Example 2 Let X be the (d−1)-dimensional sphere of unit radius Sd−1. Define

C := {c(ω)| ω ∈ X},
where

c(ω) := {x ∈ X| d(ω, x) < π/2},
with d(·, ·) the geodesic distance over Sd−1.

Endow C with the σ-field F and the measure π induced by the natural normalized
measure over Sd−1. Clearly Hypothesis 1 is fulfilled.

In order to compute D(x, y), identify X with the sphere of unit radius and
center o in Ed. In general, o, x and y single out a two-dimensional linear manifold.
Name ` = `(x, y) the circle obtained intersecting this plane with the sphere. Now,
consider a general ω ∈ X and the corresponding hemisphere c(ω). Its border ∂c(ω)
is given by the points z on the sphere such that ω · z = 0. Reasoning on the
three-dimensional linear manifold singled out by o, x, y and ω it is easy to verify
that, generally, ∂c(ω)∩ ` is a set of two antipodal points {±p(ω, `)}. Now, observe
that c(ω) ∈ (Cx ∩ C̄y) ∪ (Cy ∩ C̄x) if and only if x and y belong to the two different
hemispheres of border ∂c(ω). In this case any continuous line connecting x and y
(and hence also, `<, the smallest arc on ` with these end points) must intersect
∂c(ω). Hence

D(x, y) = π((Cx ∩ C̄y) ∪ (Cy ∩ C̄x)) = π(c(ω)| ± p(ω, `) ∈ `<).
Finally we observe that the random variable p(ω, `) is uniformly distributed over

the circle `. In fact, by symmetry, its measure must be invariant with respect to
any subgroup of rotations of the circle `. Only the Lebesgue measure over S1,
µ, has such property (modulo normalization). Normalizing (for antipodal points
D(x, y) = 1) we obtain

D(x, y) = 2
µ(`<)

2π
=

1
π

d(x, y).

Clearly, since D(x, y) is proportional to the geodesic distance between x and y,
Hypothesis 2 is fulfilled.

2.2. Description of the algorithm. The algorithm that we consider works iter-
atively. The partition at time t is obtained by a suitable transformation Ât := Az,t

of the partition at time t− 1, that is

Pt = ÂtPt−1,

with the initial condition P0 = {X}. At time T = T (m) (defined in eq. (8)), the
algorithm stops and outputs the final estimator f̂ = f̂PT .

The transformation Ât is designed with the aim of reducing the empirical error
associated with the new partition

Ê [P] := Ê [f̂P ] :=
1
m

m∑

i=1

(f̂P(xi)− yi)2.
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The elementary transformations we start from, are simple merge-split steps which
we denote by ÂB

h,c. Here, c ∈ C, B is a positive integer, and h is an integer in
{1, . . . , 2B}. The parameter B induces a new partition B = {bh}h=1,...,2B , with
elements defined by

bh = {x ∈ X| M(h− 1) < Bf̂P(x) + MB ≤ Mh}, h = 2, . . . , 2B.

Since f̂P is piecewise constant on the elements of P, B is clearly coarser that P.
Action of ÂB

h,c on P.

· merge: replace {` ∈ P| ` ⊂ bh} with {bh}.
· split: replace {bh} with {bh ∩ c, bh ∩ c̄}.

The transformation Ât is realized choosing, among a suitably constructed set of
elementary transformations, the one leading to the largest empirical error reduction.
The elementary transformations at time t are induced by the set Ωt ∈ Cst of ele-
ments in C drawn i.i.d. according to the probability distribution π (in practice this
procedure is realized by a suitable parametrization of C, e.g. (ω, p) ∈ Sd−1×(−R,R)
in Example 1), and st is the increasing function,

st =

⌈
4ψ

− 1
2

t log
6ψ

− 5
2

t

5δ

⌉
, with 0 < δ ≤ 1,(5)

where dxe is the smallest integer greater or equal to x, and

ψt =
1

2t + 5
.(6)

The allowed elementary transformations considered at iteration t are the ÂBt

h,c,
where c ∈ Ωt and h ∈ {1, . . . , 2Bt} with,

Bt =
⌈
ψ
−1/2
t

⌉
.(7)

At every iteration t between 1 and T , the new partition Pt is chosen, among the
candidates ÂBt

h,cPt−1, in order to minimize the empirical error Ê [Pt]. The Algorithm
is illustrated by the pseudo-code below.

Algorithm.

· P0 = {X}.
· for t from 1 to T = T (m).
· (h∗, c∗) = argmin(h,c)∈{1,...,2Bt}×Ωt

Ê [ÂBt

h,cPt−1].
· Pt = ÂBt

h∗,c∗Pt−1.
· output f̂ = f̂PT

.

The stopping time T = T (m) is defined by

T (m) =

⌊
1
32

(
V 4

M4

m

log2(m/δ)

) 1
3

− 5
2

⌋
,(8)

where bxc is the largest integer smaller or equal to x.
It is worth noticing that the actual value of V appears in the definition of the

algorithm, only through the expression of the stopping time T (m). Even if an
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estimate of V is usually not available, in practice the stopping time can be chosen
using a cross-validation technique, without any relevant reduction of performance
[7] [4].

2.3. Error analysis. The error analysis that we propose is based on the following
assumption on the distribution ρ. We will discuss a possible characterization of this
hypothesis in Section 3.

Hypothesis 3. We assume, with reference to the framework of the previous sub-
sections, that there exists a positive constant V , such that for every probability
measure ν over (X,D), it holds

var2ν(fρ) ≤ 4V 2

∫

C
cov2

ν(fρ, χc)dπ(c),

where fρ(x) = Eρ(y|x)y.

The main error estimate of this section is given in the Theorem below.

Theorem 1. Let us assume that the probability measure ρ fulfills Hypothesis 3.
Then, for every m > ( V

4M )2 + e, with probability greater than 1 − 2δ the expected
risk of the estimator f̂ returned by the Algorithm, fulfills

∥∥∥f̂ − fρ

∥∥∥
2

ρ
= E [f̂ ]− E [fρ] ≤ 48max(M2, V 2)

(
M2

V 2

log(m/δ)√
m

) 1
3

.

We now prove Theorem 1, we use Propositions 2, 3, 4 and 5, whose proofs are
given in Appendix A.

Proof. First let us establish a concentration result of empirical risks to expected
risks. We will reason conditionally with respect to the sequence Ω = (Ω1, Ω2, . . . , ΩT ).

We need some more notation. Let Θ0 be the trivial partition {P0}, and Θt

(for t ≥ 1) the class of partitions obtained from the elements of Θt−1, by arbitrary
merges of some subsets of leaves, followed by a single split {b} → {b ∩ c, b ∩ c̄}, with
c ∈ Ωt. Moreover, let Θ′t (for t ≥ 1) be the class of partitions obtained from the
elements P ∈ Θt−1, by merges of arbitrary subsets of leaves P → B, and subsequent
splits {bi} → {bi ∩ ci, bi ∩ c̄i} (again with cuts ci ∈ Ωt) of an arbitrary subset of
elements bi ∈ B.

Finally, for every partition P of X, let F [P] be the class of functions from
X to [−M, M ] piecewise constant on the elements of P. We have the following
concentration result.

Proposition 2. Let Θ̃T :=
⋃T

t=1 Θ′t. For every m ∈ N and 0 < δ ≤ 1,

Pr
z∼ρm

(
sup

f∈F [Θ̃T ]

|Ê [f ]− E [f ]| > q(m, δ)

)
≤ δ,(9)

where

q(m, δ) = 4M2

√
2T log(8mTsT ) + log(2/δ)

m
+

4M2

m
.(10)

Since z and θ are independent, from Eq. (9), and the relation Prz,Ω A = EΩ Prz∼ρm A,
it follows straightforwardly,

Pr
z,Ω

(
sup

f∈F [Θ̃T ]

|Ê [f ]− E [f ]| > q(m, δ)

)
≤ δ.
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Now, it is clear that Pt ∈ Θt for every t = 0, . . . , T , hence fPt and f̂Pt belong to
F [Θ̃T ]. Hence, from Proposition 2, we get

Pr
z,Ω

(
E [f̂ ] > Ê [f̂ ] + q(m, δ)

)
≤ δ.(11)

The following step is to control the decrease of empirical error Ê [Pt] at every t.
This is accomplished by the following Proposition.

Proposition 3. Let us use the notation introduced in the previous subsections, and
assume that the samples z ∈ (X×Y )m are drawn i.i.d. according to a distribution ρ

fulfilling Hypothesis 3. Moreover let ξ̂t := Ê [Pt]−E [fρ], and wt := (π2t2Bt/3δ)1/st−
1. Then, with probability greater than 1− 2δ, for every t = 1, . . . , T , it holds

Ê [Pt−1]− min
(h,c)∈{1,...,2Bt}×Ωt

Ê [ÂBt

h,cPt−1](12)

≥ 2C
(2)
t ξ̂2

t−1 −
1
2
C

(1)
t ξ̂t−1 − 1

2
C

(0)
t ,

where,

C
(0)
t = B−1

t

(
(1 + wt)M2B−2

t + (2 + wt + 3V −2q(m, δ))q(m, δ)
)
,

C
(1)
t = B−1

t

(
wt + 2q(m, δ)V −2

)
,

C
(2)
t = (4 max(V 2,M2)Bt)−1.

By the definition of the Algorithm, we have that Ê [Pt] = min(h,c)∈{1,...,2Bt}×Ωt
Ê [ÂBt

h,cPt−1].
Therefore inequality (12) becomes

ξ̂t ≤ ξ̂t−1 − 2C
(2)
t ξ̂2

t−1 +
1
2
C

(1)
t ξ̂t−1 +

1
2
C

(0)
t .

The inequality above gives a lower bound for the reduction of ξ̂t at every iteration
t. In order to pass from this incremental result to an upper bound on ξ̂t itself, we
will apply Proposition 4 below. But we first have to transform the inequality above
into the form of (16). This is achieved by multiplying both sides by C

(2)
t , using the

fact that Bt increases with t, and using the identifications

et−1 := C
(2)
t ξ̂t−1,(13)

ψ1(2(t + 2)) := C
(1)
t ,(14)

ψ2(2(t + 2))2 := C
(2)
t C

(0)
t .(15)

Proposition 4. Let e0 ≤ e/(1+3e) for some e ≥ 0. Assume that for every integer
t ≥ 1,

et ≤ et−1 − 2e2
t−1 +

1
2
et−1 ψ1(2(t + 2)) +

1
2
ψ2(2(t + 2))2,(16)

with,

0 ≤ ψi(t) ≤ ψ(t) :=
e

1 + et
, i = 1, 2.(17)

Then, for all t ≥ 1,
et ≤ ψ(t + 3).



RISK BOUNDS FOR RANDOM REGRESSION GRAPHS 9

In order to apply Proposition 4, we must verify the initial condition e0 ≤ e/(1 +
3e) and the validity of the bounds (17).

The initial condition can be easily verified observing that et−1 = C
(2)
t ξ̂t−1 ≤

Ê [Pt−1]/(4M2) ≤ 1/4, which is consistent with the choice e = 1.
Indeed, Proposition 5 below shows that conditions (17) are verified.

Proposition 5. For every t ≥ 0, the expressions (5) and (7) for st and Bt, and
the constraint (q(m, δ) is defined in (10)),

q(m, δ) ≤ 1
4
V 2ψT ,(18)

imply,

C
(1)
t ≤ ψt,(19)

C
(2)
t C

(0)
t ≤ ψ2

t .(20)

Moreover for m ≥ ( V
4M )2 + e, the constraint (18) is enforced by the choice of

T (m) given in (8).

Hence, from Proposition 4 it follows

et−1 ≤ ψ(t + 2) =
1

t + 3
, ∀t = 1, . . . , T,(21)

and recalling eq. (13), eq. (11) and eq. (18), we get

E [f̂ ]− E [fρ] ≤ ξ̂T + q(m, δ) ≤ 4max(V 2,M2)BT

T + 4
+

V 2

4
ψT

≤ max(V 2,M2)
(

8ψT+1(ψ
− 1

2
T+1 + 1) +

3
10

ψT+1

)

≤ 12max(V 2,M2)ψ
1
2
T+1

≤ 48max(V 2,M2)
(

M2

V 2

log(m/δ)√
m

) 1
3

,

which concludes the proof. ¤

3. Covariance estimate on RKHS

In this section we show a connection between Hypothesis 3 and a suitable RKHS.
We begin by showing how to construct a RKHS of continuous functions over the
metric space (X, D), from the probability space (C, π) fulfilling Hypotheses 1 and
2.

Proposition 6. The kernel K defined by

K(x, y) = 1− 2D(x, y),

is a Mercer kernel over the metric space (X, D).

Proof. Symmetry and continuity relative to the topology induced by D are obvious.
Positive-definiteness follows by the representation

K(x, y) =
∫

C
φxφydπ,(22)



10 A. CAPONNETTO AND S. SMALE

where

φx(c) := χc(x)− χc̄(x) ∀c ∈ C,(23)

and χc is the characteristic function of the set c. The representation above can be
verified noticing that by the definition of φx

∫

C
φxφydπ = π((Cx ∩ Cy) ∪ (C̄x ∩ ¯Cy))− π((Cx ∩ C̄y) ∪ (C̄x ∩ Cy))

= π(C)− 2π((Cx ∩ C̄y) ∪ (C̄x ∩ Cy)) = 1− 2D(x, y).

¤

The uniformly bounded Mercer kernel K induces a RKHS of continuous functions
over the separable (by Hypothesis 2) metric space (X,D), which we name H ([5],
[6]).

Let us now consider an arbitrary non-degenerate probability measure ν on (X, D).
We will consider the bounded self-adjoint linear operator
LK : L2(X, ν) → L2(X, ν) defined by

(LKf)(x) =
∫

X

K(x, y)f(y)dν(y).

It is a well-known fact that L
−1/2
K defines an isometry from H to L2(X, ν) ([5], [6]),

that is

‖f‖H =
∥∥∥L

−1/2
K f

∥∥∥
ν
, ∀f ∈ H.(24)

This property is useful in the proof of the following proposition which establishes
a lower bound for the average squared covariance of a function f in H and the
characteristic function of a random element in C.
Theorem 2. For every f ∈ H, defining V 2(f) := ‖f‖2H, the estimate below holds

var2ν(f) ≤ 4V 2(f)
∫

C
cov2

ν(f, χc)dπ(c),(25)

where the variance and covariance are relative to an arbitrary probability measure
ν over (X, D).

Proof. Let P0 be the orthogonal projector in L2(X, ν) over the linear subspace of
zero mean functions, that is

P0f = f − 1 〈f,1〉ν .

Clearly, due to the properties of orthogonal projectors, we can write

cov(f, g) = 〈P0f, P0g〉ν =
〈
f, P 2

0 g
〉

ν
= 〈f, P0g〉ν .(26)

Hence using Cauchy-Schwartz inequality and equation (24) we obtain

var2(f) = 〈f, P0f〉2ν =
〈
L

1/2
K L

−1/2
K f, P0f

〉2

ν

=
〈
L
−1/2
K f, L

1/2
K P0f

〉2

ν
≤ ‖f‖2H 〈LKP0f, P0f〉ν .(27)
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Now we use definition (1) and equation (26) to estimate the term 〈LKP0f, P0f〉ν ,
we obtain

〈LKP0f, P0f〉ν = 〈1, P0f〉2ν − 2
∫

X×X

(P0f)(x)D(x, y)(P0f)(y)dν2(x, y)

= −2
∫

X×X

(P0f)(x)
(∫

C
χc(x)χc̄(y) + χc̄(x)χc(y) dπ(c)

)
(P0f)(y)dν2(x, y)

= −4
∫

C
〈P0f, χc〉ν 〈P0f, χc̄〉ν dπ(c) = −4

∫

C
〈P0f, χc〉ν 〈P0f,1− χc〉ν dπ(c)

= 4
∫

C
〈P0f, χc〉2ν dπ(c) = 4

∫

C
cov2(f, χc) dπ(c),(28)

where all scalar products are well defined since, by Hypothesis 2, the characteristic
functions χc are integrable.

The proposition follows from (27) and (28). ¤

We conclude this part analyzing the nature of the RKHS norm ‖·‖H for the
examples we described in the previous section.

Example 1 From Theorem 2 it is clear that Hypothesis 3 holds for fρ ∈ H, with

V 2 = ‖fρ‖2H ,

where H is the RKHS induced by the kernel K(x, y) = 1 − 2C(d,R) ‖x− y‖ over
the ball of radius R in the d-dimensional Euclidean space.

It is also possible to obtain a more explicit estimate for V 2 in terms of the
smoothness properties of fρ. In fact (see Appendix B, Thm. B2), for odd d, V 2

can be characterized in terms of the minimal norm in H
d+1
2 (Ed) (see definition (60))

attained by extensions of fρ to the whole Ed. Indeed, it is possible to prove that, if
fρ can be extended to a function in H

d+1
2 (Ed), then the minimum norm extension

f∗ρ exists and is unique. Now, since ν has support over the ball of radius R,
cov2

ν(f∗ρ , χc) = 0 for c = c(ω, p) with |p| > R. Therefore, from the estimate (62),
normalizing, we obtain that Hypothesis 3 holds with

V 2 =
π

2
R|Sd−1|

〈
f∗ρ , (−4)

d+1
2 f∗ρ

〉
L2(Ed,µ)

.(29)

Example 2 The kernel K over the sphere Sd−1 has the form
K(x, y) = 1− 2

π d(x, y). It can be shown that the corresponding RKHS H is given,
for even d ≥ 4, by the antisymmetric functions in the Sobolev space Hd/2(Sd−1) ⊂
L2(Sd−1) (see Appendix C, Thm. C1). For fρ ∈ H, by Thm. 2 and Thm. C1, we
have that Hypothesis 3 is fulfilled with

V 2 = C
〈
fρ, Pd/2(−4)fρ

〉
L2(Sd−1)

,

where Pd/2 and C defined in (63) and (64).

Appendix A. Proofs of Propositions 2, 3, 4, and 5

Proof of Proposition 2. For every f : X → [−M,M ] let ḟ be the function
obtained rounding f to the values

vi =
M

2m
(2i− 2m− 1), i = 1, . . . , 2m
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clearly, since 2|f(x)− ḟ(x)| ≤ M/m, and,

|(ḟ(x)− fρ(x))2 − (f(x)− fρ(x))2|(30)

≤ |(f(x)− ḟ(x))(f(x) + ḟ(x)− 2fρ(x))| ≤ 2M2/m,

one has,

|Ê [f ]− E [f ]| ≤ |Ê [f ]− Ê [ḟ ]|+ |Ê [ḟ ]− E [ḟ ]|+ |E [ḟ ]− E [f ]|(31)

≤ 4M2/m + |Ê [ḟ ]− E [ḟ ]|.
Denote by Ḟ(P) the functions piecewise constant on the elements of P and taking

values over {vi}2m
i=1. Since #Ḟ(P) = (2m)#P and #P ≤ 2T for every P ∈ Θ̃T ,

from Proposition A1 it follows

#Ḟ(Θ̃T ) ≤ (8mTsT )2T .(32)

Finally, applying Eqn. (31) and Hoeffding inequality [10],

Pr
z∼ρm

(
sup

f∈F [Θ̃T ]

|Ê [f ]− E [f ]| > 4M2

√
log(2/δ′)

m
+ 4M2/m

)

≤ Pr
z∼ρm

(
sup

f∈Ḟ [Θ̃T ]

|Ê [f ]− E [f ]| > 4M2

√
log(2/δ′)

m

)

≤
∑

f∈Ḟ [Θ̃T ]

Pr
z∼ρm

(
|Ê [f ]− E [f ]| > 4M2

√
log(2/δ′)

m

)

≤ #Ḟ(Θ̃T )δ′,

which, letting δ = δ′(8mTsT )2T , by Eqn. (32) proves the Proposition. ¤

Proposition A1. It holds

#
T⋃

t=1

Θ′t ≤ (4TsT )2T .

Proof. We represent the partitions by directed acyclic graphs with root node. The
nodes with outgoing edges are annotated with a set c ∈ C. Every annotated graph
has two outgoing edges labeled with the two truth values. Each x ∈ X is mapped
to a leaf of the graph, by beginning at the root, and following, at every annotated
node, the outgoing edge labeled by the truth value of the binary predicate {x ∈ c}.
It is clear that this mapping induces a partition of X. We want to show that any
partition in Θt can be represented by a graph with exactly t annotated nodes (with
annotations ci ∈ Ωi, i = 1, . . . , t) and t + 1 leaves.

Let us reason by induction. P0 is represented by the root node alone, which
proves the thesis for Θ0. Now, assume the thesis is true for Θt−1. Beginning with
a graph representing a partition in Θt−1, the merges are achieved by rearranging
the incoming edges of the leaves, which keeps unchanged the number of nodes and
leaves. The split is achieved by annotating one of the leaves with ct ∈ Ωt and
adding two new leaves. Hence the new graph, representing an arbitrary partition
in Θt, has exactly t annotated nodes and t + 1 leaves, as claimed.

Now, from the definition of Θ′t, it is clear that any partition in Θ′t can be
represented by a graph with t − 1 annotated nodes (with annotations ci ∈ Ωi,
i = 1, . . . , t−1), plus at most t others annotated nodes with annotations in Ωt, and
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at most 2t leaves. Therefore, we can show that the number of partitions in Θ′t is
less than (4t)2t−1(st)tΠt−1

i=1si by counting the number of graphs with these proper-
ties. This is easily done since there are (st)tΠt−1

i=1si different ways to annotate the
annotated nodes (#Ωt = st), and (4t)2t−1 ways (for each of the two truth values)
to dispose the edges outgoing from 2t−1 annotated nodes and ingoing to 4t nodes.

Finally, since st increase for increasing t, we can write,

#
T⋃

t=1

Θ′t ≤ (T + 1)Θ′T ≤ (4TsT )2T ,

which completes the proof. ¤

Proof of Proposition 3. Throughout the proof we will assume that

sup
f∈F [Θ̃T ]

|Ê [f ]− E [f ]| ≤ q(m, δ),

by Proposition 2, relaxing this assumption will just reduce by δ the confidence level
of the final result.

For simplicity, let us fix an arbitrary t between 1 and T , and let us use the
simplified notations B := Bt, w := wt, P := Pt−1 and ξ̂ := ξ̂t−1.

Recall that the transformation ÂB
h,c, is a merge-split step. The parameter B

defines the partition B = {bh}h=1,...,2B ≺ P, with elements defined by

bh = {x ∈ X| M(h− 1) < Bf̂P(x) + MB ≤ Mh}, h = 2, . . . , 2B,(33)

the merge P → PM is achieved replacing {` ∈ P| ` ⊂ bh} with the element {bh}.
The split PM → PMS := ÂB

h,cP is achieved replacing {bh} with {bh ∩ c, bh ∩ c̄}.
For the following analysis, it is useful observing that, for every c = (c1, c2, . . . , c2B) ∈

(Ωt)2B , it holds
2B∑

h=1

Ê [P]− Ê [ÂB
h,ch

P] = Ê [P]− Ê [Bc] = ∆̂M + ∆̂S
c ,(34)

where,
∆̂M := Ê [P]− Ê [B], ∆̂S

c := Ê [B]− Ê [Bc],
and we introduced the partition Bc, obtained from B by the 2B splits, {bh} →
{bh ∩ ch, bh ∩ c̄h}, h = 1, . . . , 2B. It is also important noticing that, since P ∈ Θt−1,
it follows that Bc ∈ Θ′t ⊂ Θ̃T .

Now, we want to express the empirical split contribution ∆̂S
c in terms of ideal

estimators fP , defined by

fP(x) =
1

ρX(`(x))

∫

`(x)

fρ dρX ,

with x ∈ `(x) ∈ P, and ρX the marginal distribution of ρ over X.
In fact, observing that Ê [Bc] := Ê [f̂Bc ] ≤ Ê [fBc ] and E [B] := E [fB] ≤ E [f̂B], we

get

∆̂S
c = Ê [B]− Ê [Bc] ≥ Ê [B]− Ê [fBc ](35)

≥ E [f̂B]− E [Bc]− 2q(m, δ)

≥ E [B]− E [Bc]− 2q(m, δ) =: ∆S
c − 2q(m, δ).
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We also need the following estimates which follow from Propositions A3 and A2
. Since, by Eq. (33), the excursion of f̂P over bh is not larger than M/B,

∆̂M = Ê [P]− Ê [B] ≥ −
2B∑

h=1

ρ̂X(bh)M2B−2 = −M2B−2,(36)

and,

∆S
c = E [B]− E [Bc] =

2B∑

h=1

ρX(bh)
cov2

bh
(fρ, χch

)
varbh

(χch
)

(37)

≥ 4
2B∑

h=1

ρX(bh)cov2
bh

(fρ, χch
),

where the var`(·) and cov`(·) are variance and covariance with respect to the prob-
ability measure over `, ρ`(·) = ρX(·)/ρX(`).

Using Equations (34), (35), (36), we obtain,

Ê [P]− min
(h,c)∈{1,...,2B}×Ωt

Ê [ÂB
h,cP](38)

≥ Ê [P]− 1
2B

2B∑

h=1

min
c∈Ωt

Ê [ÂB
h,cP]

=
1

2B
max
c∈Ω2B

t

[
Ê [P]− Ê [Bc]

]
=

1
2B

(
∆̂M + max

c∈Ω2B
t

∆̂S
c

)

≥ 1
2B

(
max
c∈Ω2B

t

∆S
c −M2B−2 − 2q(m, δ)

)
.

We now want to prove that, letting δt := 6δ
π2t2 , with probability greater than

1− δt, the inequality

max
c∈Ω2B

t

∆S
c(39)

≥ V −2ξ̂2 − (w + 2q(m, δ)V −2)ξ̂ − (M2B−2 + q(m, δ))w − 3V −2q2(m, δ),

holds. This result together with equation (38), observing that
∑

t δt ≤ δ , will
complete the proof.

In order to prove eq. (39), first notice that by eq. (37),

max
c∈Ω2B

t

∆S
c =

2B∑

h=1

max
c∈Ωt

∆S
h(c),(40)

with,

∆S
h(c) :=

ρX(bh)cov2
bh

(fρ, χc)
varbh

(χc)
.

Since,

0 ≤ ∆S
h(c) ≤ ρX(bh)varbh

(fρ), for all c ∈ C



RISK BOUNDS FOR RANDOM REGRESSION GRAPHS 15

applying Markov inequality to the positive random variable ρX(bh)varbh
(fρ)−∆S

h ,
after a simple algebraic computation we obtain

Pr
c∼π

(
∆S

h(c) ≤ ρX(bh)varbh
(fρ)− (ρX(bh)varbh

(fρ)− E∆S
h(c))(1 + w)

)

≤
(

δt

2B

) 1
st

,(41)

which implies,

Pr
Ωt∼πst

(
∀h ∈ {1, . . . , 2B} max

c∈Ωt

∆S
h(c) ≥ −wρX(bh)varbh

(fρ) + E∆S
h(c)(1 + w)

)

≥ 1− δt.(42)

Hence, from eq. (40), eq. (37), eq. (42), Proposition 25, Hypothesis 3 and the
convexity of x2, with probability greater than 1− δt, it holds

max
c∈Ω2B

t

∆S
c ≥

2B∑

h=1

(−wρX(bh)varbh
(fρ) + E∆S

h(c)(1 + w)
)

(43)

= w(E [fρ]− E [B]) + (1 + w)E∆S
c

≥ w(E [fρ]− Ê [B]− q(m, δ)) + V −2
2B∑

h=1

ρX(bh)var2bh
(fρ)

≥ w(E [fρ]− Ê [P]−M2B−2 − q(m, δ)) + V −2(E [P]− E [fρ])2

≥ w(−ξ̂ −M2B−2 − q(m, δ)) + V −2(ξ̂2 − 2q(m, δ)ξ̂ − 3q2(m, δ)),

where the last inequality is obtained observing that

(E [P]− E [fρ])2 ≥ (ξ̂ + q(m, δ)− 2q(m, δ))(E [P]− E [fρ])(44)

≥ ξ̂2 − q2(m, δ)− 2q(m, δ)(E [P]− E [fρ])

≥ ξ̂2 − 2q(m, δ)ξ̂ − 3q2(m, δ).

As claimed, eq. (43) implies eq. (39), which completes the proof. ¤

Proposition A2. Let P ′ be a partition of X, and P the partition obtained from
P ′ by the split {b} → {`, ¯̀}, with ` = b∩ c and ¯̀= b∩ c̄, for some b ∈ P ′ and subset
c. Then, for every ρ,it holds

E [P ′]− E [P] = ρX(b)
cov2

b(fρ, χc)
varb(χc)

,

where varb(·) and covb(·) are relative to the probability measure on b obtained by
restricting ρX .

Proof. The Proposition follows by direct computation. In fact it is easy to verify
that
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E [P ′]− E [P] =
ρX(`)ρX(¯̀)(fP(`)− fP(¯̀))2

ρX(b)
,

covb(fρ, χc) =
ρX(`)ρX(¯̀)(fP(`)− fP(¯̀))

ρ2
X(b)

,

varb(χc) =
ρX(`)ρX(¯̀)

ρ2
X(b)

,

where fP(`) is the value of fP(x) for x ∈ `.
¤

Proposition A3. Let P be a partition of X, and P ′ the partition obtained from
P by the merge {`1, . . . , `k} → {b}, with b = `1 ∪ · · · ∪ `k, for some `1, . . . , `k ∈ P.
Then, for every ρ,it holds

E [P ′]− E [P] ≤ ρX(b)
(

max
x∈b

fP(x)−min
x∈b

fP(x)
)2

.

Proof. From the proof of Proposition A2 we get

E [P ′]− E [P] =
ρX(`)ρX(¯̀)(fP(`)− fP(¯̀))2

ρX(b)
≤ ρX(¯̀)(fP(`)− fP(¯̀))2.

The Proposition can be proved by induction on k, letting ` = `1 ∪ · · · ∪ `k−1 and
¯̀= `k.

¤

Proof of Proposition 4. It is convenient introducing the sequence of functions
φt : R+ → R, for t ≥ 0, defined by

φt(x) =
{

x− x2 if x ≥ ψ(2t),
x + ψ(2t)2 if x < ψ(2t).

We want to prove that, if e2 ≤ e/(1 + 3e), and for every t ≥ 3, it is true that
et+1 ≤ et− 2e2

t + 1/2etψ1(2t) + 1/2ψ2(2t)2 and 0 ≤ ψi(t) ≤ ψ(t), then et ≤ ψ(t) :=
at. Hence, the Proposition will follow by the renaming et+3 → et.

We proceed by proving that for every t ≥ 3, the following three statements hold,

et+1 ≤ φt(et),(45)
et ≤ at ⇒ φt(et) ≤ φt(at),(46)

φt(at) ≤ at+1.(47)

The claimed result will follow from the three relations above, by induction on t.
In fact, by assumption e3 ≤ e/(1 + 3e) = a3, and if et ≤ at for t ≥ 3, chaining the
relations above, we get et+1 ≤ φt(et) ≤ φt(et) ≤ φt(at) ≤ φt(at) ≤ at+1.

Inequality (45) can be proved observing that, since 0 ≤ ψi ≤ ψ,

et+1 ≤ et − 2e2
t +

1
2
etψ1(2t) +

1
2
ψ2(2t)2 ≤

{
et − e2

t if et ≥ ψ(2t),
et + ψ(2t)2 if et < ψ(2t).

In order to prove relation (46), we treat separately the two cases, et ≥ ψ(2t) and
et < ψ(2t).

Case et ≥ ψ(2t). Since at = ψ(t) ≥ ψ(2t), by the definition of φt, we have to
prove

et − e2
t ≤ at − a2

t .
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The inequality above is true, since the function x − x2 is monotonic increasing in
for x ≤ 1/2, and et ≤ at ≤ e/(1 + 3e) < 1/2.

Case et < ψ(2t). Recalling again that at = ψ(t), by the definition of φt, we get

φt(at)− φt(et) = at − a2
t − et − ψ(2t)2 ≥ ψ(t)− ψ(2t)− ψ(t)2 − ψ(2t)2

= e4t2(2t− 5) + e2(3et + 1)(t− 2).

This proves the statement φt(at)− φt(et) ≥ 0, since by assumption t ≥ 3.
Finally, inequality (47) can be proved observing that, since at ≥ ψ(2t), it holds

φt(at) = at − a2
t , and one can write,

φ(at) =
e(1 + et− e)

(1 + et)2

= at+1
(1 + et− e)(1 + et + e)

(1 + et)2
= at+1

(1 + et)2 − e2

(1 + et)2
≤ at+1.

¤

Proof of Proposition 5. First, observe that the constraints (19) are straightfor-
wardly implied by the set of inequalities

wt ≤ 1
2
Btψt,(48)

q(m, δ) ≤ 1
4
V 2Btψt,(49)

(1 + wt)M2B−4
t ≤ 2max(M2, V 2)ψ2

t ,(50)
(2 + wt + 3V −2q(m, δ))q(m, δ) ≤ 2max(M2, V 2)B2

t ψ2
t .(51)

We now proceed to the proof of the inequalities above.
Step 1. Proof of (48).First, observe that

st ≥ 4ψ
− 1

2
t log

6ψ
− 5

2
t

5δ
(52)

(
6
5
≥ π2(1 + 1/

√
5)

12

)
≥ 4ψ

− 1
2

t log
π2(1 + 1/

√
5)ψ−

5
2

t

12δ

(
ψ
− 1

2
t ≥

√
5
)

≥ 4ψ
− 1

2
t log

π2(1 + ψ
− 1

2
t )ψ−2

t

12δ(
ψ
− 1

2
t ≤ Bt ≤ ψ

− 1
2

t + 1
)

≥ 4B−1
t ψ−1

t log
π2t2Bt

3δ
.

Second, wt ≤ 1/2, since by eq. (52),

log(1 + wt) =
1
st

log
π2t2Bt

3δ
≤ 1

4
Btψt ≤ 1

4
.(53)

Hence,

(x ≤ (1 + x̄) log(1 + x) for x ≤ x̄) wt ≤ 3
2

log(1 + wt) =
3
2

1
st

log
π2t2Bt

3δ

(eq. (52)) ≤ 1
2
Btψt.



18 A. CAPONNETTO AND S. SMALE

Step 2. Proof of (49). It follows directly from eq. (18) and Bt ≥ 1.

Step 3. Proof of (50). Using eq. (53) and Bt ≥ ψ
− 1

2
t , we get

(1 + wt)M2B−4
t ≤ 2M2B−4

t ≤ 2max(M2, V 2)ψ2
t .

Step 4. Proof of (51). From eq. (52) and eq. (18) we get,

wt + 3V −2q(m, δ) ≤ 1
2

+
3
20
≤ 1.

Therefore, using again ψ
− 1

2
t ≤ Bt,

(2wt + 3V −2q(m, δ))q(m, δ) ≤ 3q(m, δ) ≤ 3
4
V 2ψt ≤ 2max(M2, V 2)B2

t ψ2
t ,

which concludes the proof of eq. (51).
We complete the proof of the Proposition showing that, for m ≥ (

V
4M

)2
+e, eq. (8)

implies eq. (18). First, observe that introducing the constant β := ( V
4M )4 m

δ log m , we
get

(eq. (8))
4

δψ3
T

≤ β
log m

4 log2(m/δ)
≤ β log−1(m4/δ4)(54)

(
m ≥

(
V

4M

)2

+ e

)
≤ β log−1(m3/δ + e) ≤ β log−1(β + e).

Second, using the inequality ψ−1
T ≥ 5, we obtain

sT =

⌈
4ψ

− 1
2

T log
6ψ

− 5
2

T

5δ

⌉

(
log x ≤ log x̄

x̄
x for x ≥ x̄ ≥ 0.

6ψ
− 5

2
T

5δ
≥ 64

)
≤

⌈
1

2δψ3
T

⌉
≤ 1

2δψ3
T

+ 1

(
x + 1 ≤ (1 +

1
x̄

)x for x ≥ x̄ ≥ 0.
1

2δψ3
T

≥ 5
)

≤ 3
5δψ3

T

.(55)

Finally, introducing the constant α := 2T log(8mTsT ) + log(2/δ), we conclude
the proof,
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(
4q(m, δ)
V 2ψT

)2

(eq. (10)) ≤
(

16M2

V 2ψT
√

m
(
√

α +
√

m−1)
)2

(√
x +

√
y ≤

√
2(x + y)

)
≤

(
4M

V

)4 2
ψ2

T m
(α + m−1)

(m ≥ e) ≤
(

4M

V

)4 2 log m

ψ2
T m

(2T log(8TsT ) + log(2e/δ))

≤
(

4M

V

)4 2 log m

ψ3
T m

log
8esT

δψT

(eq. (55)) ≤
(

4M

V

)4 2 log m

ψ3
T m

log
16

δ2ψ4
T

≤ 1
β

4
δψ3

T

log
4

δψ3
T

(eq. (54)) ≤ log β − log log(β + e)
log(β + e)

≤ 1.

¤

Appendix B. Estimates over Euclidean spaces

In this Appendix we determine covariance estimates similar to those given in
Theorem 2 while relaxing the assumption that the measure π over C is finite. In
fact, while in the previous sections we assumed that π is a probability measure (i.e.
π(C) = 1), here we allow π(C) = +∞. The main estimate is given in Theorem B2.
The obvious application of this result is an extension of Example 1 from functions
over balls in Ed to functions over Ed. We will prove Theorem B2, then we will
apply it to that Example.

We first observe that the distance D, defined in (1), is negative ([9] Sec.6.2).
Recall that a kernel D : X × X → R is said to be negative when it is symmetric
and for arbitrary x1, . . . , xn in X, and r1, . . . , rn in R with

n∑

i=1

ri = 0,

fulfills
n∑

i,j=1

riD(xi, xj)rj ≤ 0.

Proposition B1. D(x,y) is a negative kernel on X.
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Proof. Symmetry was proved in Proposition 1. Assume x1, . . . , xn and r1, . . . , rn

as in the definition above. By Definition 1
n∑

i,j=1

riD(xi, xj)rj =
∫

C

n∑

i,j=1

ri (χc(xi)(1− χc(xj)) + (1− χc(xi))χc(xj)) rjdπ(c)

= −2
∫

C

(
n∑

i=1

riφ(xi)(c)

)2

dπ(c) ≤ 0,

which proves the proposition. ¤

The importance of negativity follows from the theorem by Schönberg, below ([9]
Th.4).

Theorem B1. D(x, y) is a negative kernel iff Ka(x, y) = e−aD(x,y) is symmetric
and positive-definite for every a > 0.

From Schönberg theorem and Proposition B1 it follows that the kernels Ka are
positive-definite.

Proposition B2. For all a > 0, the kernel

Ka(x, y) = e−aD(x,y)

is a Mercer kernel over the metric space (X, D).

We will denote Ha the RKHS induced by Ka over X.
It is possible to establish a variance estimate for functions f belonging to the

RKHSs Ha, analogous to the result stated in Theorem 2.

Theorem B2. Let ε > 0 and f ∈ Ha for all a < ε, moreover assume

V 2(f) :=
1
2

lim sup
a→0

a ‖f‖2Ha
< +∞,

then the following inequality holds

var2ν(f) ≤ 4V 2(f)
∫

C
cov2

ν(f, χc)dπ(c).(56)

Proof. We first prove that for every a > 0 and f ∈ Ha it holds

var2(f) ≤ a ‖f‖2Ha

∫

C
cov2(f, χc)dπ(c) + O(a2 ‖f‖2Ha

),(57)

hence the Theorem will follow letting a going to zero in (57).
Reasoning as in the proof of Theorem 2 we get

var2(f) ≤ ‖f‖2Ha
〈LKaP0f, P0f〉ν .(58)

Now, using definition (22) and reasoning again as in Theorem 2, we obtain

〈LKaP0f, P0f〉ν(59)

= 〈1, P0f〉2ν − a

∫

X×X

(P0f)(x)D(x, y)(P0f)(y)dν2(x, y) + O(a2)

= 2a

∫

C
cov2(f, χc) dπ(c) + O(a2).

Equation (57) follows from (58) and (59). ¤
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The estimate (62) obtained in Example 1′ below, is used in Section 3 to give an
alternate analysis of Example 1.

Example 1′ Let X = Ed. Define

C := {c(ω, p)| (ω, p) ∈ Sd−1 × R},
where

c(ω, p) := {x ∈ X| ω · (o− x) > p},
for some fixed point o.

Endow C with the σ-field F and the measure π induced by the natural product
measure over Sd−1 × R. Clearly Hypothesis 1 is fulfilled but, π(C) = +∞.

As in Example 1, the kernel D is given by

D(x, y) = C(d) ‖x− y‖ ,

where

C(d) :=
4|Sd−2|
d− 1

.

We now want to compute explicitly the RKHS norm ‖f‖Ha
and the complexity

function V 2(f). Since equation (24) holds for every non-degenerate measure ν
over X, we can identify it with the Lebesgue measure µ. The operator LKa :
L2(Ed, µ) → L2(Ed, µ) is the convolution operator with kernel

Ka(x) = e−aC(d)‖x‖.

Recalling the relation between convolution product and Fourier transform

L̂Kaf = K̂a f̂ ,

where

f̂(ξ) =
∫

f(x)e−ξ·xdµ(x),

and Parseval’s theorem, that is

〈f, g〉µ =
1

(2π)d

〈
f̂ , ĝ

〉
µ

, ∀f, g ∈ L2(Ed, µ),

we obtain ∥∥∥L
− 1

2
Ka

f
∥∥∥

2

µ
=

〈
f, L−1

Ka
f
〉

µ
=

1
(2π)d

〈
f̂ , (K̂a)−1f̂

〉
µ

.

Since the expression for the Fourier transform of Ka is [8]

K̂a(ξ) =
2aC(d)(2π)d

|Sd| (a2C(d)2 + ‖ξ‖2)− d+1
2 ,

we obtain

a ‖f‖2Ha
=

π

2(2π)d

∫
(a2C(d)2 + ‖ξ‖2) d+1

2 |f̂(ξ)|2dµ(ξ)

=
π

2

〈
f,

(
a2C(d)2 + (−4)

d+1
2

)
f
〉

µ
.

From the relation above it is clear that for all a > 0, the space Ha is equal to

H
d+1
2 (Ed) := {f ∈ L2(Ed, µ)|

〈
f, (−4)

d+1
2 f

〉
µ

< +∞},(60)

and for every f ∈ H the function φ(a) = a ‖f‖2Ha
is non-decreasing.
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From the above observations it follows that the complexity function V 2(f) ap-
pearing in the text of Theorem B2 is given by

V 2(f) =
π

4

〈
f, (−4)

d+1
2 f

〉
L2(Ed,µ)

,(61)

for every f ∈ H
d+1
2 (Ed).

Therefore by Theorem B2 we obtain
∫

C
cov2(f, χc)dπ(c) ≥ var2(f)

π
〈
f, (−4)

d+1
2 f

〉
L2(Ed,µ)

.(62)

Appendix C. Estimates over spheres

Let L2(Sd−1) be the space of square-integrable functions on the (d−1)-dimensional
sphere endowed with the natural measure dSd−1. We consider the kernel K on
L2(Sd−1) obtained by equalities (22) and (23) starting from the set C of hemi-
spheres of Sd−1 endowed with uniform measure (see Example 1 in the text). The
following result characterizes the RKHS induced by K. It is a direct corollary of
Proposition C4. Here, 4 is the Laplace-Beltrami operator on Sd−1 (see for example
[15] §14.18).

Theorem C1. The RKHS H induced by the kernel K(x, y) = 1− 2
π d(x, y) on the

sphere Sd−1 for even d ≥ 4 is characterized as follows

H = {f ∈ PAL2(Sd−1)| 〈
f, Pd/2(−4)f

〉
L2(Sd−1)

< +∞},
where PA is the orthogonal projector over the subspace of antisymmetric functions
in L2(Sd−1) and Pd/2 is the polynomial

Pd/2(z) :=
d/2∏

i=1

(z + (d− 2i)(2i− 2)).(63)

Moreover for every f ∈ H,

‖f‖2H = C
〈
f, Pd/2(−4)f

〉
L2(Sd−1)

,

where

C :=
π2

2

(
(4π)d/2Γ(d/2)

)−1

.(64)

We now proceed to the proof of Proposition C4. We first need some preliminary
technical results.

Proposition C1. For any positive odd integer l and d > 2, it holds

dl−1

dtl−1
(1− t2)l+ d−3

2

∣∣∣
t=0

= (−1)
l−1
2

Γ(l)Γ(l + d−1
2 )

Γ( l+1
2 )Γ( l+d

2 )
.

Proof. The proposition follows from the identity
(

d

dt

)l

(1− t2)l+ d−3
2 = l!Γ(l +

d− 1
2

)
[ l
2 ]∑

i=0

(−1)i(1− t2)i+ d−3
2 (−2t)l−2i

i!(l − 2i)!Γ(i + d−1
2 )

,

where [x] stands for the integer part of x. The expression above can be verified
substituting the explicit form of Legendre harmonics ([15] §2.32) into the Rodrigues
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representation ([15] §2 Lemma 4). The proof is completed substituting d, l and t
with d + 2, l − 1 and 0 respectively. ¤

Proposition C2. For any positive integer l and even positive integer d, it holds
(

(l + d− 2)!!
(l − 2)!!

)2

= Pd/2(l(l + d− 2)),

where Pd/2 is the polynomial defined in (63).

Proof. Since

(l + d− 2)!!
(l − 2)!!

=
d/2∏

i=1

(l + 2i− 2) =
d/2∏

i=1

(l − 2i + d),

it holds (
(l + d− 2)!!

(l − 2)!!

)2

=
d/2∏

i=1

(l + 2i− 2)(l − 2i + d).

The proposition follows from the identity above observing that

(l + 2i− 2)(l − 2i + d) = l(l + d− 2) + (d− 2i)(2i− 2).

¤

In the following we denote by Yl(d), l = 0, 1, . . . , the space of spherical harmonics
of degree l on Sd−1. Moreover we fix its orthonormal basis

{Y m
l |m = 0, . . . , N(d, l)},

with the constraint that Y 0
l be the zonal spherical harmonic relative to the subgroup

SO(d − 1) of rotations around the axis defined by an arbitrarily fixed point o on
Sd−1 ([16], Chapter IX, §3.1). It is known that there is exactly one such normalized
function in Yl(d). It can be expressed in terms of the Gegenbauer polynomials
Cm

l (t) ([16], Chapter IX, §3.5, eq.(7))

Y 0
l (x) =

2l + d− 2
(d− 2)

√
|Sd−1|N(d, l)

C
(d−2)/2
l (x · o),(65)

where the eigenspace dimension N(d, l) is given by([16], Chapter IX, §2.5, eq.(11))

N(d, l) =
Γ(d + l − 2)(2l + d− 2)

Γ(d− 1)l!
.

Proposition C3. If f ∈ Yl(d), with l=0,1,. . . and d > 2 then

LKf = λlf,

where

λl = (1− (−1)l) 2−d−1Γ(d/2)−2C−1 B(l/2, d/2)2,(66)

with C the constant introduced in the text of Theorem C1.

Proof. By equalities (22) and (23), the kernel K is given by

K(x, y) =
1

|Sd−1|
∫

Sd−1
σ(x · p)σ(y · p)dSd−1(p),

where we identified the points of the sphere with vectors in the Euclidean d-
dimensional space Ed, and σ is the sign function.
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Now, let us consider the group of rotations of Ed, G := SO(d). Let dg be
its normalized invariant measure. By the factorization of SO(d) in Sd−1 times
SO(d − 1) (see [16], Chapter IX, §1.4), the expression above can be rewritten as
follows

K(x, y) =
∫

G

h(g−1x)h(g−1y)dg,

where

h(x) := σ(x · o).

Since h is zonal spherical relative to the pole o, it admits the expansion

h =
+∞∑

l=0

clY
0
l .

We want to evaluate the eigensystem of the integral operator LK : L2(Sd−1) →
L2(Sd−1) defined by the kernel K and the measure dSd−1. It is clear that Yl(d)
are the eigenspaces of LK , therefore we are left with computing the corresponding
eigenvalues λl.

Recalling the transformation properties of the harmonics in Yl(d) under the
action of the group SO(d) ([16], Chapter IX, §4.2, eq.(1) and §4.1, eq.(5)), we can
write

λl =
〈
Y 0

l , LKY 0
l

〉
L2(Sd−1)

= |cl|2
∫

G

∣∣∣∣
∫

Sd−1
Y 0

l (x)Y 0
l (g−1x)dSd−1

∣∣∣∣
2

dg

= |cl|2
∫

G

|td,l
0,0(g)|2dg =

|Sd−1||cl|2
N(d, l)

.(67)

The coefficients cl can be computed using equation (65)

cl =
〈
h, Y 0

l

〉
L2(Sd−1)

(68)

=
2l + d− 2

(d− 2)
√
|Sd−1|N(d, l)

∫

Sd−1
σ(x · o)C(d−2)/2

l (x · o)dSd−1

=
(2l + d− 2)|Sd−2|

(d− 2)
√
|Sd−1|N(d, l)

∫ π

0

(sin θ)d−2σ(cos θ)C(d−2)/2
l (cos θ)dθ

=
(2l + d− 2)|Sd−2|

(d− 2)
√
|Sd−1|N(d, l)

∫ +1

−1

σ(t)C(d−2)/2
l (t)(1− t2)(d−3)/2dt.
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Using identity in [16], Chapter IX, §4.8, eq.(8), integrating by parts l − 1 times,
and using Proposition C1 we get

∫ +1

−1

σ(t)C(d−2)/2
l (t)(1− t2)(d−3)/2dt(69)

=
Γ(d + l − 2)Γ(d−1

2 )
2(−2)l−1l!Γ(d− 2)Γ(l + d−1

2 )

∫ +1

−1

d

dt
(σ(t))

dl−1

dtl−1

(
(1− t2)l+(d−3)/2

)
dt

=
Γ(d + l − 2)Γ(d−1

2 )
(−2)l−1l!Γ(d− 2)Γ(l + d−1

2 )
dl−1

dtl−1
(1− t2)l+(d−3)/2

∣∣∣
t=0

=
1− (−1)l

2
Γ(l)Γ(d + l − 2)Γ(d−1

2 )

(−4)
l−1
2 l!Γ(d− 2)Γ( l+1

2 )Γ( l+d
2 )

.

By equations (67), (68) and (69), finally, for odd l, we get
√

λl = N(d, l)−1/2|cl|

=
(2l + d− 2)|Sd−2|√
|Sd−1|(d− 2)N(d, l)

∣∣∣∣
∫ +1

−1

σ(t)C(d−2)/2
l (t)(1− t2)(d−3)/2dt

∣∣∣∣

=
|Sd−2|Γ(d−1

2 )Γ(l)√
|Sd−1|2l−1Γ( l+1

2 )Γ( l+d
2 )

=
|Sd−2|Γ(d−1

2 )Γ( l
2 )√

π|Sd−1|Γ( l+d
2 )

=

√
|Sd−1|
π

B(
l

2
,
d

2
, ),

where we also used the duplication formula for the gamma function Γ(l/2) ([16],
Chapter V, §1.7, eq.(4)). The proposition follows recalling definition (64) of the
constant C. ¤

Proposition C4. For any positive integer l and even d ≥ 4, it holds

LK = C−1 (Pd/2(−4))−1 PA,

where C is the positive constant introduced in the text of Theorem C1, PA is the
orthogonal projector in L2(Sd−1) over the subspace of antisymmetric functions, and
Pd/2 is the polynomial defined in equation (63).

Proof. The proposition can be proved comparing the eigensystems of the operators
PA and 4 and those of LK given by Proposition C3. Due to rotational invariance,
the eigenspaces of these operators are the homogenous harmonics Yl(d).

The eigenvalues λ′l of PA are clearly determined by the degree of the harmonics,
in fact

λ′l = (1− (−1)l)/2.

The eigenvalues λ′′l of the Laplacian 4 are (see for example [15] §15 Lemma 1)

λ′′l = −l(l + d− 2).

Comparing these expressions with the eigenvalues of LK , given by Proposition C3,
it is clear that we are left with proving that, for odd l and even d,

2dΓ(d/2)2B(l/2, d/2)−2 = Pd/2(l(l + d− 2)).(70)

The last equation follows from Proposition C2 and observing that, we can write

B(l/2, d/2)−1 =
Γ( l+d

2 )
Γ(d

2 )Γ( l
2 )

=
1

2d/2Γ(d
2 )

(l + d− 2)!!
(l − 2)!!

,



26 A. CAPONNETTO AND S. SMALE

where we used the identity

Γ(k + 1/2) =
√

π2−k(2k − 1)!!,

holding for positive integers k. ¤
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