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Preamble

I first met René at the 1956 well-known meeting in Topology at Mexico City. He then

came to the University of Chicago where I was starting my job as instructor for the fall

of 1956. He, Suzanne, Clara and I became good friends and saw much of each other for

many decades, especially at IHES in Paris.

Thom’s encouragement and support were important for me especially in my first years

after my Ph.D. I studied his work in cobordism, singularities of maps, and transversality,

gaining many insights. I also enjoyed listening to his provocations, for example his dis-

paraging remarks on complex analysis, 19th century mathematics, and Bourbaki. There

was also a stormy side in our relationship. Neither of us could hide the pain that our

public conflicts over ”catastrophe theory” caused.

René Thom was a great mathematician, leaving his impact on a wide part of mathe-

matics. I will always treasure my memories of him.

Steve Smale

† The first author is partially supported by NSF grant 0325113. The second author is
supported partially by the Research Grants Council of Hong Kong [Project No. CityU
103303] and by City University of Hong Kong [Project No. 7001442].
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§1. Introduction

This paper gives an account of sampling theory and interpolation, with some focus on

the Shannon theorem. One goal is to deal with noise in the sampling data, from the point

of view of exponential probability estimates. Our quantitative estimates give some guide

as to how much resampling or regularization is required to balance noise in the form of a

variance. A measure of the richness of the data is key in this development.

The theory evolves in a universe which is a Hilbert space of real valued functions

on a (an ”input”) space X. In the Shannon case X is the space of real numbers. Other

examples forX include a rectangle in the plane (image processing), a graph as in theoretical

computer science, or a high dimensional space as in learning theory.

Our first generalization of the Shannon theorem centers around the case of rich data

and the use of a Hilbert space and a kernel function, reminiscent of reproducing kernel

Hilbert spaces derived from a Mercer kernel. Subsequently we see how poor data and

general Hilbert function spaces fit into our analysis.

An objective is to integrate the theory with fast algorithms which work well in the

presence of noise. Our main results are new general error estimates.

We have been inspired by the disciplines of learning theory, regression analysis, ap-

proximation theory, inverse problems, signal processing, and hope that in return this work

can give some new insights to these subjects.

§2. Motivating Examples

To describe the general reconstruction of functions from their point values, we give

some simple motivating examples.

Example 1 (exact polynomial interpolation) (a baby example). Consider polyno-

mials pt : IR→ IR, for t ∈ t := {0, 1, . . . , d} with pt(x) = xt. The polynomial interpolation

problem is to find a polynomial f =
∑
t∈t atpt of degree d such that f(xi) = yi for

i = 1, . . . , d + 1. Here (xi, yi)d+1
i=1 is the data. The situation yields a system of equations:

L(at)t∈t = (yi)d+1
i=1 with L = (pt(xi))i=1,...,d+1,t∈t being a (d+ 1)× (d+ 1) matrix. When

{xi} are distinct, this system has a unique solution a0, a1, . . . , ad, which solves the problem.
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If we denote x = {xi}d+1
i=1 , then the ”data” is given by the function on x. Here |x| = |t|.

Certainly the choice of pt is quite naive. In Section 10 this kind of problem is studied.

The next two examples are from image processing. The first is borrowed from [7].

Example 2 (inpainting). Consider a black white photograph as a function g from t to

[0, 1] where t is a square of pixels (e.g. 512 by 512) and g(t) represents a shade of grey

of pixel t. Now suppose that the photograph has been partly masked as by some spilled

ink or writing over it destroying g on the mask say t̂ and leaving our function intact on

x = t \ t̂. The problem is to recover an approximation to g from its restriction to x. Here

the input or data is (x, g(x)) for x ∈ x. Note that |x| < |t|. This is a case of what we call

later ”poor data”.

Example 3 (image compression). Here t is a coarse pixel set and x is a fine pixel set.

The original picture is represented by a function from x to the interval as in Example

2. The problem is to find a worse but reasonable representation (with small error) as a

function from t. The efficiency of a compression scheme is measured by the ratio |x|/|t| (as

large as possible, representing the richness of the data) and the error (within a threshold).

§3. Learning and Sampling

The classical Whittaker-Shannon-Nyquist Sampling Theorem or simply Shannon The-

orem gives conditions on a function on IR (band-limited with band π) so that it can be

reconstructed from its sampling values at integer points:

Theorem. Let φ(x) = sinπx
πx and φt(x) = φ(x−t). If a function f ∈ L2(IR) has its Fourier

transform supported on [−π, π], then

f =
∑
t∈ZZ

f(t)φt.

See [2, 31] for some background and some generalizations.

We proceed to state our own generalization.

Suppose X is a closed subset of IRn (a complete metric space is sufficient) and t ⊂ X

is a discrete subset. In the Shannon special case, X = IR, t = ZZ. Another important case

is when X is compact and (hence) t is finite.
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Next consider a continuous symmetric map (a ”kernel”) K : X ×X → IR and use it

to define a matrix (possibly infinite) Kt,t : `2(t)→ `2(t) as

(
Kt,ta

)
s

=
∑
t∈t

K(s, t)at, s ∈ t, a ∈ `2(t).

Here `2(t) is the set of sequences a = (at)t∈t : t → IR with < a, b >=
∑
t∈t atbt defining

an inner product. For t ∈ t, set Kt : X → IR to be the continuous function on X given by

Kt(x) = K(t, x). Unless said otherwise, we always assume the following.

Standing Hypothesis 1. Kt,t is well-defined, bounded, and positive with bounded in-

verse K−1
t,t

.

In the Shannon case K(t, s) = φ(t−s), and it is seen that Kt,t is the identity, because

φ(j) = 0 for j ∈ ZZ \ {0} and φ(0) = limx→0 φ(x) = 1.

For Example 1, we can takeX = IR, t = {0, 1, . . . , d}, andK(t, s) = (1+t·s)d. Then for

c ∈ `2(t), there holds < Kt,tc, c >`2(t)=
∑d
k=0

(
d
k

)(∑
t∈t ctt

k
)2. Since the Vandermonde

determinant det(tk)t∈t,k=0,1,...,d is nonzero, Standing Hypothesis 1 is satisfied.

Next define a Hilbert space HK,t as follows. Consider the linear space of finite linear

combinations of Kt, t ∈ t, i.e.,
∑
t∈t atKt where only a finite number of at are nonzero.

An inner product on this space is defined (from the positivity of Kt,t) by linear extension

from

< Kt,Ks >K= K(t, s). (3.1)

One takes the completion to obtain HK,t.

In the Shannon case, it can be shown (see Example 4 in Section 8) that HK,t is

the space described, i.e., f ∈ L2(IR) with suppf̂ ⊆ [−π, π]. Here f̂ denotes the Fourier

transform of f . It is defined for an integrable function on IRn as f̂(ξ) =
∫

IRn
f(x)e−iξ·xdx,

and can be extended naturally to the space L2(IRn).

In Example 1, with the kernel K(t, s) = (1 + t · s)d, we find that HK,t is exactly the

space of polynomials of degree d.

If we define `2K(t) as the Hilbert space consisting of sequences in `2(t) with the inner

product < a, b >`2
K

(t):=< Kt,ta, b >`2(t), then the natural map from `2K(t) to HK,t, given
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by a→
∑
t∈t atKt, is an isomorphism. Note that `2K(t) does not depend on X, just t and

K restricted to t× t. Hence it discretizes the setting. Also, standing hypothesis 1 tells us

that `2K(t) is isomorphic to `2(t) under the isomorphism: a→ K
1/2

t,t
a.

If s ⊂ t replaces t, then the important invariants ‖Kt,t‖ and ‖K−1
t,t
‖ improve. That is,

‖Ks,s‖ ≤ ‖Kt,t‖ and ‖K−1
s,s ‖ ≤ ‖K

−1
t,t
‖. Thus, if K is restricted to X ′ ⊂ X and s = t∩X ′,

then standing hypothesis 1 remains true.

If K is a Mercer kernel and HK the corresponding reproducing kernel Hilbert space

[3], then HK,t is the closed subspace generated by {Kt, t ∈ t} (with the induced inner

product). This gives a class of spaces HK,t satisfying standing hypothesis 1 (besides the

space generated by φ in the Shannon theorem). One such example is a Gaussian kernel

K(x, y) = e−|x−y|
2/σ2

on any closed subset X of IRn. See Section 8, and more examples

and background in [8].

So far, we have a space HK,t which plays the role of a ”representation space” in the

Shannon theory. We now pass to the sampling side which we separate out. Moreover,

noise is introduced into our model in this sampling, represented by a Borel measure ρ on

X × IR.

Let ρX be the marginal measure induced by ρ on X, i.e., the measure on X defined

by ρX(S) = ρ(π−1(S)) where π : X × IR → X is the projection. It defines a space L2
ρX

on X with L2 norm ‖f‖ = ‖f‖L2
ρX

:=
(∫
X
|f(x)|2dρX

)1/2. It is not assumed that ρX is a

probability measure as in the special case of learning theory. In fact in the Shannon case

it is the Lebesgue measure.

The set for the sampling is a discrete set x ⊂ X. The set x may be determined as

in a net (Shannon, with x = ZZ) or have come from a random sample as in [8] or [4]. For

x ∈ X, we denote the variance of the conditional measures ρx of ρ as σ2
x. We assume that

the conditional measures ρx(x ∈ X) of ρ satisfy

Preliminary Version of Special Assumption. For each x ∈ X, ρx is a probability

measure with zero mean supported on [−Mx,Mx] with B :=
(∑

x∈xM
2
x

)1/2
<∞.

To study the relationship between the discrete sets t and x, we define the linear
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operator Kx,t : `2(t)→ `2(x) and its adjoint Kt,x : `2(x)→ `2(t) by the matrix

(
Kx,ta

)
x

=
∑
t∈t

K(x, t)at. (3.2)

Standing Hypothesis 2. Kx,t (and hence Kt,x) is well-defined and bounded.

The sampled values y ∈ `2(x) will have the form:

For f∗ ∈ HK,t, and each x ∈ x, yx = f∗(x) + ηx, where ηx is drawn from ρx. (3.3)

Special Assumption implies that {ηx} ∈ `2(x) and ‖{ηx}‖`2(x) ≤ B <∞.

Define the sampling operator Sx : HK,t → `2(x) by Sxf = (f(x))x∈x. That is, for

a function f from HK,t, Sxf is the restriction of f to x : f |x. Then for f =
∑
t∈t ctKt,

we have Sxf = Kx,tc. It follows that
∑
x∈x f

∗(x)2 = ‖Sxf∗‖2`2(x) can be bounded by

‖Kx,t‖2‖f∗‖2K/‖K
−1
t,t
‖, and is finite according to (3.3), hence y ∈ `2(x).

In the Shannon case, x = t, ρx is trivial, so ηx = 0 for all x ∈ ZZ.

Now our sampling problem is:

Reconstruct f∗ (or an approximation of f∗) from y ∈ `2(x).

Towards its study, consider the minimization problem

arg min
f∈H

K,t

∑
x∈x

(
f(x)− yx

)2
. (3.4)

The solution of (3.4) is expressed using Kt,x and Kx,t.

Definition 1. We say that x provides rich data (with respect to t) if

λx := inf
v∈`2(t)

‖Kx,tv‖`2(x)/‖v‖`2(t) (3.5)

is positive. It provides poor data if λx = 0.

One can easily see that x provides rich data if and only if the operator Kt,xKx,t has

a bounded inverse, that is, its smallest eigenvalue (λx)2 is positive.

Note that if x ⊂ x, then λx ≤ λx.
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Our generalized Shannon Sampling Theorem (for rich data) can be stated as follows

(the proof will be given in Section 7). Define the variance of the system (ρ, x, t,K) as

σ2 :=
∑
x∈x

σ2
x

∑
t∈t

K(t, x)2 =
∑
x∈x

σ2
x‖Kt,xex‖

2
`2(t)

, (3.6)

where ex is the delta sequence supported at x. It represents how the variance on x is

transferred to t by the operator Kt,x : `2(x) → `2(t). Standing hypothesis 2 and special

assumption tell us that σ2 is finite.

Theorem 1. Assume f∗ ∈ HK,t with X,K, t, ρ as above, y as in (3.3) together with the

special assumption, and that x provides rich data. Then the problem (3.4) can be solved:

fz =
∑
t∈t

atKt, a = Ly and L =
(
Kt,xKx,t

)−1
Kt,x,

and its solution approximately reconstructs f∗ from its values at x in the following sense.

For every ε > 0, ‖fz − f∗
∥∥2

K
≤ κσ2 + ε with probability 1− δ where

κ :=
‖Kt,t‖
λ4
x

, δ = exp
{
−

ελ2
x

2‖Kt,t‖B2
log
(
1 +

ε

κσ2

)}
.

Remark. Since x provides rich data, we see from Definition 1 that the operator Kx,t is

injective. The operator L defined in Theorem 1 is exactly the Moore-Penrose inverse of

Kx,t. See e.g. [11, 13].

When the richness of the data increases such that λx →∞ (see Proposition 1 below),

we have κ → 0. If moreover B2/λ2
x is kept bounded, then from Theorem 1 we see that

for the error bound κσ2 + ε with any ε > 0 the confidence tends to 1. This yields the

convergence with confidence if σ2/λ4
x → 0. Also, we find that for any λx when the variance

vanishes, fz = f∗ with probability one by taking σ2 → 0 in Theorem 1; thus we cover the

classical Shannon theorem.

When the data is resampled k times over x, the richness increases to
√
kλx, κσ2 is

reduced to κσ2/k, while the bound B2 of the system becomes kB2. Then c := ελ2
x

2‖K
t,t
‖B2 is

unchanged. We see from Theorem 1 that for the better error bound κσ2/k + ε with the

same ε, the confidence 1− (1 + ε/(κσ2))−c is improved to 1− (1 + kε/(κσ2))−c.
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Corollary 1. Under the assumption of Theorem 1, if the data is resampled k times over

x, then for every ε > 0, ‖fz − f∗
∥∥2

K
≤ κσ2/k + ε with probability 1 − (1 + kε/(κσ2))−c

while the probability given in Theorem 1 is 1− (1 + ε/(κσ2))−c.

Corollary 1 convinces us that resampling improves the error when one takes the same

probability as in Theorem 1. See also Proposition 3 in Section 6.

The constant κ is the infimum of error bounds for positive probability in Theorem

1. This threshold quantity relates the key variables. The case of exact interpolation

corresponds to |t| = |x|, λx > 0.

Note that error bounds less than κ may be studied by the introduction of a regular-

ization parameter γ > 0 (see below).

Theorem 1 will be extended to include the case of poor data.

The regularized version of the problem (3.4) takes the form

f̃z,γ := arg min
f∈H

K,t

∑
x∈x

(
f(x)− yx

)2 + γ‖f‖2K , (3.7)

where γ ≥ 0 and the case γ = 0 includes the setting of Theorem 1.

As in Theorem 1, the problem (3.7) can be solved by means of a linear operator:

f̃z,γ =
∑
t∈t atKt, where a = Ly and L =

(
Kt,xKx,t + γKt,t

)−1
Kt,x.

We expand the setting a bit by introducing a weighting w on x. A weighting is

necessary to expand beyond the special case of x defined by a uniform grid on X.

So we let w := {wx}x∈x be a weighting with wx > 0. One example is to take w as

the ρX -volume of the Voronoi [28] associated with x. Another example is w ≡ 1 or if

|x| = m <∞, w ≡ 1
m .

We require ‖w‖∞ = supx∈x wx < ∞. Denote Dw : `2(x) → `2(x) as the diago-

nal matrix (multiplication operator on `2(x)) with main diagonal entries {wx}x∈x. Then

‖Dw‖ ≤ ‖w‖∞. The square root D
1
2
w is the diagonal matrix with main diagonal entries

{√wx}x∈x.

Definition 2. The regularization scheme for the sampling problem in the space HK,t
takes the form:

fz,γ := arg min
f∈H

K,t

{∑
x∈x

wx
(
f(x)− yx

)2 + γ‖f‖2K
}
. (3.8)
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Theorem 2. Assume f∗ ∈ HK,t and the standing hypotheses with X,K, t, ρ as above, y

as in (3.3). Suppose Kt,xDwKx,t + γKt,t is invertible. Define L to be the linear operator

L =
(
Kt,xDwKx,t + γKt,t

)−1
Kt,xDw. Then the problem (3.8) has a unique solution:

fz,γ =
∑
t∈t

(
Ly
)
t
Kt. (3.9)

The corresponding errors will be analyzed in the next sections (Theorems 4 and 5).

The error analysis will generalize Theorem 1 with general boundM , weighting w and γ ≥ 0.

It also extends to the poor data setting. Observe that under the standing hypotheses,

Kt,xDwKx,t + γKt,t is invertible, if γ > 0 or λx > 0.

Consider the case when K is a ”convolution kernel” K(s, u) = ψ(s − u). Let ψ ∈

L2(IRn) whose Fourier transform ψ̂ satisfies

ψ̂(ξ) ≥ c0 > 0, ∀ξ ∈ [−π, π]n (3.10)

and the following decay condition for some C0 > 0, α > n:

0 ≤ ψ̂(ξ) ≤ C0(1 + |ξ|)−α ∀ξ ∈ IRn. (3.11)

Definition 3. We say that x is ∆-dense in X if for each y ∈ X there is some x ∈ x

satisfying ‖x− y‖`∞(IRn) ≤ ∆.

Proposition 1. Let X = IRn, t = ZZn, K(s, u) = ψ(s − u) with an even function ψ (i.e.

ψ(u) = ψ(−u)) satisfying (3.10) and (3.11). If 0 < L < 1/4 and x is ∆-dense for some

0 < ∆ ≤ τ , then

λx ≥
(cosLπ − sinLπ)nc0

21+n/2
Ln/2∆−n/2.

Here τ is a constant independent of ∆ and Proposition 1 is a consequence of Corollary 6

below where an explicit expression for τ (depending on L) will be given.

Recall that the Shannon case corresponds to the choice ψ = φ with n = 1, c0 = 1, C0 =

(1 + π)6, α = 6, and ‖ · ‖K = ‖ · ‖L2(IR). Then
∑
t∈tK(t, x)2 ≡ 1 and σ2 =

∑
x∈x σ

2
x.

Combining Theorem 1 with Proposition 1 for L = 1/5 (and the constant τ given in

Corollary 6) yields the following.
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Corollary 2. Let X = IR, t = ZZ, K(s, u) = φ(s − u) where φ is the sinc function given

in the Shannon Theorem. If x is ∆-dense for some 0 < ∆ ≤ 1/500 and ρ satisfies special

assumption, then for any ε > 0, the function fz given in Theorem 1 satisfies

Prob

{
‖fz − f∗

∥∥2

L2(IR)
≤ 204∆2σ2 + ε

}
≥ 1− exp

{
− ε

800∆B2
log
(
1 +

ε

204∆2σ2

)}
.

If the data becomes dense such that ∆ → 0 but ∆B2 is kept bounded (e.g. x is

quasi-uniform), then ∆2σ2 → 0 and Corollary 2 yields the convergence of fz to f∗ with

confidence.

Notice that x 6= t in general: f∗ ∈ HK,t, while x stands for the sampling points which

can be much denser than t.

In the above discussion, where f∗ ∈ HK,t, one may take either of two points of view.

Start with ρ and let f∗ = fρ be the regression function as done in learning theory [27, 29,

14, 8, 18], or take a primary f∗ as in sampling theory [2, 15] and hypothesize ρ as above.

Our learning process in Definition 2 is an example of a regularization scheme. Reg-

ularization schemes are often used for solving problems with ill-posed coefficient matrices

or operators such as numerical solutions of integral and differential equations, stochastic

ill-posed problems with operator equations, and empirical risk minimization problem for

traditional learning. See e.g. [25, 16, 13].

Some preliminary estimates on λx will be provided in Sections 8 and 9. But we hope

to give more satisfactory results in a subsequent work.

The authors would like to thank Akram Aldroubi for his conversations on the question

of relating learning theory to sampling.

§4. The Algorithm

We give the proof of Theorem 2.

For f : X → IR, it is natural to introduce an “error function”

E(f) =
∫
Z

(
f(x)− y

)2
dρ. (4.1)

For the empirical counterpart of E , let z = (x, yx)x∈x be a sample, so that x is defined

by x and yx is drawn at random from f∗(x) +ρx as in (3.3). Then the empirical error is

Ez(f) =
∑
x∈x

wx
(
f(x)− yx

)2
. (4.2)
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With the empirical error Ez(f), our learning scheme (3.8) can be written as

fz,γ := arg min
f∈H

K,t

{
Ez(f) + γ‖f‖2K

}
. (4.3)

We show how to solve the minimization problem (4.3) or (3.8) by a linear algorithm.

Proof of Theorem 2. Consider the quadratic form

Q(c) := Ez(
∑
t∈t

ctKt) + γ‖
∑
t∈t

ctKt‖2K , c ∈ `2(t).

A simple computation yields

Q(c) =<
(
Kt,xDwKx,t + γKt,t

)
c, c >`2(t) −2 < DwKx,tc, y >`2(x) + < Dwy, y >`2(x) .

Taking the functional derivative as in [19] tells us that if c is a minimizer of Q in `2(t)

then it satisfies (
Kt,xDwKx,t + γKt,t

)
c = Kt,xDwy, c ∈ `2(t). (4.4)

By our assumption, Kt,xDwKx,t + γKt,t is invertible, the system (4.4) has a unique

solution: c =
(
Kt,xDwKx,t+γKt,t

)−1
Kt,xDwy. It yields the unique minimizer of Q which

represents the unique minimizer fz,γ of the functional Ez(f) + γ‖f‖2K in HK,t.

Remark. Standing hypothesis 1 can be weakened for the purpose of Theorem 2: the first

case is γ > 0; the second case is t = x and γ = 0. In both cases, the scheme (4.3) has a

solution fz,γ lying in

Ho
K,t

:= {
∑
t∈t

ctKt : c ∈ `2(t)} ⊆ HK,t

if and only if the system (4.4) is solvable. When the solvability of (4.4) holds, the solution

in Ho
K,t

is unique and given by fz,γ =
∑
t∈t ctKt, independent of the choice of the solution

c to (4.4). In fact, if c and d are both solutions to (4.4), then
∑
t∈t ctKt =

∑
t∈t dtKt :

Kt,t(c− d) = 0 for either γ > 0 or t = x.

In the following three sections we shall estimate the error ‖fz,γ − f∗‖.
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§5. Probability Inequalities

In the following theorem, m ∈ IN or m =∞. When m =∞, the product probability

measure on the product space IRm can be defined in any sense such as the one defined by

means of the Tikhonov topology, see e.g. [21].

Theorem 3. Let {ξj}mj=1 be independent random variables on IR with variances {σ2
j }j ,

and wj ≥ 0 with ‖w‖∞ < ∞. If σ2
w :=

∑m
j=1 wjσ

2
j < ∞, and for each j there holds

|ξj − E(ξj)| ≤ M almost everywhere, then for every ε > 0 the probability in the product

space IRm satisfies

Prob

{∣∣∣∣ m∑
j=1

wj
[
ξj − E(ξj)

]∣∣∣∣ > ε

}
≤ 2 exp

{
− ε

2‖w‖∞M
log
(

1 +
Mε

σ2
w

)}
.

Corollary 3. If m <∞ and ξ1, ξ2, . . . , ξm are i.i.d. random variables with expected value

µ, variance σ2 satisfying |ξ − µ| ≤M , then

Prob

{∣∣∣∣ 1
m

m∑
j=1

ξj − µ
∣∣∣∣ > ε

}
≤ 2 exp

{
−mε

2M
log
(

1 +
Mε

σ2

)}
. (5.1)

Proof of Theorem 3. Without loss of generality, we assume E(ξj) = 0. Then the

variance of ξj is σ2
j = E

(
ξ2
j

)
.

First we assume m <∞. It is sufficient for us to prove the one-side inequality:

I := Prob
{ m∑
j=1

wjξj > ε

}
≤ exp

{
− ε

2‖w‖∞M
log
(

1 +
Mε

σ2
w

)}
. (5.2)

Let c be an arbitrary positive constant which will be determined later. Then by the

independence,

I = Prob
{

exp
{ m∑
j=1

cwjξj

}
> ecε

}

≤ e−cεE
(

exp
{ m∑
j=1

cwjξj

})
= e−cεΠm

j=1E

(
exp
{
cwjξj

})
.

Since |ξj | ≤M almost everywhere, we have

E

(
exp
{
cwjξj

})
= 1 +

+∞∑
`=2

c`w`jE
(
ξ`j
)

`!
≤ 1 +

+∞∑
`=2

c`w`jM
`−2σ2

j

`!
.

12



As wj ≤ ‖w‖∞ and 1 + t ≤ et, there holds

E

(
exp
{
cwjξj

})
≤ exp

{+∞∑
`=2

c`‖w‖`−1
∞ M `−2wjσ

2
j

`!

}

= exp
{
ec‖w‖∞M − 1− c‖w‖∞M

‖w‖∞M2
wjσ

2
j

}
.

It follows that

I ≤ exp
{
−cε+

ec‖w‖∞M − 1− c‖w‖∞M
‖w‖∞M2

m∑
j=1

wjσ
2
j

}
.

Now choose the constant c to be the minimizer of the bound on the above right hand

side:

c =
1

‖w‖∞M
log
(

1 +
Mε∑m
i=1 wiσ

2
i

)
.

That is, ec‖w‖∞M − 1 = Mε
σ2
w

. With this choice,

I ≤ exp
{
− ε

‖w‖∞M

{(
1 +

σ2
w

Mε

)
log
(

1 +
Mε

σ2
w

)
− 1
}}

. (5.3)

If we set a function g(λ) as

g(λ) := (1 + λ) log(1 + λ)− λ, λ ≥ 0,

then

I ≤ exp
{
− σ2

w

‖w‖∞M2
g

(
Mε

σ2
w

)}
. (5.4)

We claim that

g(λ) ≥ λ

2
log(1 + λ), ∀λ ≥ 0.

To see this, define a C2 function on IR+ as

f(λ) := 2 log(1 + λ)− 2λ+ λ log(1 + λ), λ ≥ 0.

We can see that f(0) = 0, f ′(0) = 0, and f ′′(λ) = λ(1 + λ)−2 ≥ 0 for λ ≥ 0. Hence

f(λ) ≥ 0 and

log(1 + λ)− λ ≥ −1
2
λ log(1 + λ), ∀λ ≥ 0.

13



It follows that

g(λ) = λ log(1 + λ) + log(1 + λ)− λ ≥ λ

2
log(1 + λ), ∀λ > 0.

This verifies our claim.

The desired one-side inequality (5.2) follows from this claim and the bound for I in

terms of g.

When m = ∞, the independence and the convergence of the series
∑∞
j=1 wjσ

2
j tells

us that{Sk :=
∑k
j=1 wjξj}∞k=1 is a Cauchy sequence in L2:

‖Sk − S`‖L2 =
(
E(Sk − S`)2

)1/2 =
(∑̀
j=k

w2
jσ

2
j

)1/2 ≤ (‖w‖∞∑̀
j=k

wjσ
2
j

)1/2 → 0

as k, ` → ∞. Then by the Cauchy Test in L2 (see e.g. [21, p. 258]), the sequence {Sk}

converges in L2 to a random variable. Since the convergence in L2 implies the almost sure

convergence, we write the limit random variable as
∑∞
j=1 wjξj and can understand the

convergence of the series as in L2 or almost surely. Thus, for every ε > 0, we have almost

surely {∣∣∣∣ ∞∑
j=1

wjξj

∣∣∣∣ > ε

}
⊆ ∪∞`=1 ∩∞r=`

{∣∣∣∣ r∑
j=1

wjξj

∣∣∣∣ > ε

}
.

Then the inequality (5.2) for ` <∞ implies

Prob
{∣∣∣∣ ∞∑

j=1

wjξj

∣∣∣∣ > ε

}
≤ lim inf

`→∞
Prob

{∣∣∣∣∑̀
j=1

wjξj

∣∣∣∣ > ε

}

≤ lim inf
`→∞

2 exp
{
− ε

2M maxi=1,...,` wi
log
(

1 +
Mε∑`
i=1 wiσ

2
i

)}
= 2 exp

{
− ε

2‖w‖∞M
log
(

1 +
Mε∑∞
i=1 wiσ

2
i

)}
.

This proves our inequality.

Remark. (a) From (5.4), Bennett’s inequality [5, 20] follows.

(b) Corollary 3 always implies the Bernstein inequality up to a constant of 2/3 which

states for i.i.d. random variables ξ1, . . . , ξm with mean µ and variance σ2 that

Prob

{∣∣∣∣ 1
m

m∑
j=1

ξj − µ
∣∣∣∣ > ε

}
≤ 2 exp

{
− mε2

2(σ2 + 1
3Mε)

}
.

14



To see this, notice that

log(1 + λ) ≥ λ

1 + 1
2λ
, ∀λ ≥ 0. (5.5)

Then (5.1) implies

Prob

{∣∣∣∣ 1
m

m∑
j=1

ξj − µ
∣∣∣∣ > ε

}
≤ 2 exp

{
− mε2

2(σ2 + 1
2Mε)

}
.

This is the Bernstein inequality except for a loss of two-thirds. The Bernstein inequality

can also be derived from (5.4) using the lower bound: g(λ) ≥ 3λ2/(6 + 2λ).

(c) When the variance is small, the estimate in Corollary 3 (with ξ1, . . . , ξm identical)

is much better than the Bernstein inequality. In particular, when the variance vanishes,

i.e., σ2
j = 0 for each j, then Corollary 3 yields 1

m

∑m
j=1

[
ξj − E(ξj)

]
= 0 in probability

1 while the Bernstein inequality only gives the estimate 1
m

∣∣∑m
j=1

[
ξj − E(ξj)

]∣∣ < ε with

confidence 1− 2e−mε/M .

Because of its importance for function reconstruction, Theorem 3 has been developed

in greater generality than needed for our immediate use in Theorem 4 below.

Bennett [5] has an early version of our Theorem 3. One may see Devroye, Györfi

and Lugosi [12, p. 124] for an account which sketches a proof of (5.3) but with these

differences: they have no weighting, there is an extra factor 2, and they use an average of

the non-identical random variables. Also, Colin McDiarmid ”concentration” Theorem 2.7

[17] is along the same line. The last two references were given to us by David McAllester.

§6. Sample Error

Define

Ex(f) :=
∑
x∈x

wx(f(x)− f∗(x))2.

This is the empirical error (4.2) with yx = f∗(x). Then the corresponding minimizer for

(4.3) becomes

fx,γ := arg min
f∈H

K,t

{
Ex(f) + γ‖f‖2K

}
. (6.1)

We see from Theorem 2 that fx,γ exists and is unique whenKt,xDwKx,t+γKt,t is invertible.
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Even when the variance vanishes, fx,γ is not f∗ in general. But the error ‖fx,γ − f∗‖2

is not caused by noise. It is a deterministic quantity. We shall bound this error in Section

7.

With the weighting, our assumption takes the following general form.

Special Assumption. For each x ∈ X, ρx is a probability measure with zero mean

supported on [−Mx,Mx] with Bw :=
(∑

x∈x wxM
2
x

)1/2
<∞.

The weighted richness is defined as

λx,w := inf
v∈`2(t)

‖D
1
2
wKx,tv‖`2(x)/‖v‖`2(t). (6.2)

When λx,w < ∞, we have ‖D
1
2
wSxf‖`2(x) = ‖D

1
2
wKx,tc‖`2(x) ≥ λx,w‖c‖`2(t) for f =∑

t∈t ctKt. Hence the sampling operator Sx satisfies

‖D
1
2
wSxf‖`2(x) ≥

λx,w‖f‖K√
‖Kt,t‖

, ∀f ∈ HK,t. (6.3)

Corresponding to (3.6), the weighted variance of the system is defined as

σ2
w :=

∑
x∈x

wxσ
2
x

∑
t∈t

K(t, x)2wx (6.4)

which is bounded by ‖Kt,xD
1
2
w‖2

∑
x∈x wxσ

2
x ≤ ‖Kt,xD

1
2
w‖2B2

w.

The sample error in the form of ‖fz,γ − fx,γ‖2 involves samples y = (yx)x∈x, the

weighting w, the point sets x, t, and γ. We can apply Theorem 3 to estimate the sample

error. To do this, we use the expressions for fz,γ (and fx,γ) given in Theorem 2. But we

shall replace L by the linear operator Lw : `2(x)→ `2(t) defined by

Lw :=
(
Kt,xDwKx,t + γKt,t

)−1
Kt,xD

1
2
w. (6.5)

It improves our error estimate and is natural: for the rich data case with γ = 0, Lw is

exactly the Moore-Penrose inverse of the operator D
1
2
wKx,t.

Under the assumption that Kt,xDwKx,t +γKt,t is invertible, our error bound is given

by means of the quantity

κ := ‖Kt,t‖ ‖
(
Kt,xDwKx,t + γKt,t

)−1‖2. (6.6)
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Theorem 4 (Sample error). Suppose Kt,xDwKx,t + γKt,t is invertible. Under the

assumption (3.3), let fz,γ =
∑
t∈t ctKt be the solution of (4.3) given in Theorem 2 by

c = Ly. Set Lw and κ as in (6.5) and (6.6) respectively. Then for every ε > 0,

Prob

{
‖fz,γ − fx,γ‖2K ≤ κσ2

w + ε

}
≥ 1− exp

{
− ε

2‖Kt,tLw‖ ‖Lw‖B2
w

log
(
1 +

ε

κσ2
w

)}
.

Proof. Applying Theorem 2 to the sample f∗|x, we see that fx,γ =
∑
t∈t
(
L
(
f∗|x

))
t
Kt.

Hence

fz,γ − fx,γ =
∑
t∈t

(
L
(
y − f∗|x

))
t
Kt =

∑
t∈t

(
LwD

1
2
w

(
y − f∗|x

))
t
Kt

and

‖fz,γ − fx,γ‖2K =
〈
Kt,tLwD

1
2
w

(
y − f∗|x

)
, LwD

1
2
w

(
y − f∗|x

)〉
`2(t)

. (6.7)

The expression (6.7) yields the bound

‖fz,γ − fx,γ‖2K ≤ ‖Kt,tLw‖ ‖Lw‖ ‖D
1
2
w

(
y − f∗|x

)
‖2`2(x) ≤ ‖Kt,tLw‖ ‖Lw‖B

2
w.

From (6.7) we also find that

‖fz,γ − fx,γ‖2K ≤ κ‖Kt,xDw

(
y − f∗|x

)
‖2
`2(t)

.

But

‖Kt,xDw

(
y − f∗|x

)
‖2
`2(t)

=
∑
t∈t

{∑
x∈x

(yx − f∗(x))
〈
Kt,xDwex, et

〉
`2(t)

}2

.

Since the random variables {yx − f∗(x)}x∈x are independent and have zero means, we see

that E
(
(yx − f∗(x))(yx′ − f∗(x′))

)
= δx,x′σ

2
x. It follows that

E

(
‖fz,γ − fx,γ‖2K

)
≤ κ

∑
t∈t

∑
x∈x

w2
xσ

2
xK(t, x)2 = κσ2

w.

The one-side inequality of Corollary 3 with m = 1, w = 1 asserts that for a single

random variable ξ satisfying |ξ| ≤M , there holds for every ε > 0,

Prob
{
ξ − E(ξ) > ε

}
≤ exp

{
− ε

2M
log
(
1 +

Mε

σ2(ξ)
)}
.
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The random variable ξ := ‖fz,γ − fx,γ‖2K satisfies 0 ≤ ξ ≤M := ‖Kt,tLw‖ ‖Lw‖B2
w almost

everywhere, E(ξ) ≤ κσ2
w and σ2(ξ) ≤ ME(ξ) ≤ Mκσ2

w. Applying the above inequality,

we see that with confidence at least 1− exp
{
− ε

2‖K
t,t
Lw‖ ‖Lw‖B2

w
log
(
1+ ε

κσ2
w

)}
, there holds

ξ = ‖fz,γ − fx,γ‖2K ≤ E(ξ) + ε ≤ κσ2
w + ε.

Remark. Another sample error estimate can be given by the Markov inequality which

states for a nonnegative random variable ξ and t > 0 that Prob{ξ > t} ≤ E(ξ)/t. Applying

this to the random variable ξ = ‖fz,γ − fx,γ‖2K and t = E(ξ) + ε, we have

Prob

{
‖fz,γ − fx,γ‖2K ≤ κσ2

w + ε

}
≥ 1− κσ2

w

ε+ κσ2
w

.

This bound is better when κσ2
w is much smaller than ε.

Proposition 2. The operator Lw defined by (6.5) satisfies

‖Lw‖ ≤ min
{

1
λx,w

,
‖K−1

t,t
‖ ‖w‖1/2∞ ‖Kx,t‖

γ

}
.

Also,

‖
(
Kt,xDwKx,t + γKt,t

)−1‖ ≤ min
{

1
λ2
x,w

,
‖K−1

t,t
‖

γ

}
.

Proof. Let v ∈ `2(x) and u = Lwv. Then

(
Kt,xDwKx,t + γKt,t

)
u = Kt,xD

1
2
wv.

Bounding the inner product

〈(
Kt,xDwKx,t + γKt,t

)
u, u

〉
`2(t)

=< Kt,xD
1
2
wv, u >`2(t)=< v,D

1
2
wKx,tu >`2(x)

from below by inner products with the positive definite operators Kt,xDwKx,t and γKt,t

separately, we see that ‖D
1
2
wKx,tu‖`2(x)‖v‖`2(x) is bounded from below by γ

‖K−1
t,t
‖‖u‖

2
`2(x)

and by < D
1
2
wKx,tu,D

1
2
wKx,tu >`2(x)= ‖D

1
2
wKx,tu‖2`2(x) ≥ λx,w‖u‖`2(t)‖D

1
2
wKx,tu‖`2(x). It

follows that

‖u‖`2(t) ≤ min
{‖K−1

t,t
‖

γ
‖w‖1/2∞ ‖Kx,t‖,

1
λx,w

}
‖v‖`2(x).
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Thus the required estimate for ‖Lw‖ follows. The proof for the second statement is the

same.

Remark. When t = x, we do not require the standing hypothesis 1 for Theorem 2 and

Theorem 4. Take

L = Lt,t =
(
Kt,t + γD−1

w

)−1
. (6.8)

(the parameter γ can be zero when Kt,t is invertible) Moreover, we have

‖Lt,t‖ ≤
(
1/‖K−1

t,t
‖+ γ/‖w‖∞

)−1
.

Proposition 2 combining with Theorem 4 presents estimates for the sample errors

‖fz,γ − fx,γ‖2 (for both rich and poor data cases). Even in the rich data case, the intro-

duction of the parameter γ improves the well-posedness of the system in Theorem 1.

Proposition 3. Assume (3.3) and that Kt,xDwKx,t + γKt,t is invertible. Then for every

0 < δ < 1, with confidence 1− δ we have the sample error estimate

‖fz,γ − fx,γ‖2K ≤ Esamp := κσ2
w α
−1

(2‖Kt,tLw‖ ‖Lw‖B2
w

κσ2
w

log
1
δ

)
, (6.9)

where Lw and κ are given by (6.5) and (6.6) respectively, and α is the increasing function

defined for u > 1 as α(u) = (u − 1) log u. In particular, Esamp → 0 when γ tends to

infinity or σ2
w → 0.

Proof. Choose u = α−1
( 2‖K

t,t
Lw‖ ‖Lw‖B2

w

κσ2
w

log 1
δ

)
> 1. Then

κσ2
w

2‖Kt,tLw‖ ‖Lw‖B2
w

(u− 1) log u = log
1
δ
.

Set ε = κσ2
w(u− 1). We have ε > 0 since u > 1. Also, there holds

− ε

2‖Kt,tLw‖ ‖Lw‖B2
w

log
(
1 +

ε

κσ2
w

)
= − κσ2

w

2‖Kt,tLw‖ ‖Lw‖B2
w

(u− 1) log u = log δ.

It follows from Theorem 4 that ‖fz,γ − fx,γ‖2K ≤ κσ2
w + ε = κσ2

wu with confidence 1 − δ.

But κσ2
wu = Esamp. Then the stated sample error estimate follows.
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When γ tends to infinity, we see that γ2κ→ ‖Kt,t‖ ‖K
−1
t,t
‖2 and γ2‖Kt,tLw‖ ‖Lw‖ →

‖Kt,xD
1
2
w‖ ‖K−1

t,t
Kt,xD

1
2
w‖ while κσ2

w → 0, hence Esamp → 0.

When σ2
w → 0, we have κσ2

w → 0. The definition of the function α tells us that u→∞

and κσ2
w =

2‖K
t,t
Lw‖ ‖Lw‖B2

w log 1
δ

(u−1) log u . It follows that

Esamp = κσ2
wu =

u

u− 1
‖Kt,tLw‖ ‖Lw‖B

2
w

2 log 1
δ

log u

which converges to zero.

§7. Regularization Error and Integration Error

We finish the proof of Theorem 1 and give some estimates for the error ‖fx,γ − f∗‖2.

The first estimate depends (linearly) on the regularization parameter γ and we call it

regularization error. Recall that f∗ ∈ HK,t.

Proposition 4. Assume the standing hypotheses. If f∗ ∈ HK,t and λx,w > 0, then

‖fx,γ − f∗‖2K ≤
γ‖Kt,t‖‖f∗‖2K

λ2
x,w

.

Proof. According to the definition of fx,γ , since f∗ ∈ HK,t we have

Ex(fx,γ) + γ‖fx,γ‖2K ≤ Ex(f∗) + γ‖f∗‖2K .

It follows from the fact Ex(f∗) = 0 that

‖fx,γ‖2K ≤ ‖f∗‖2K (7.1)

and

Ex(fx,γ) ≤ γ‖f∗‖2K . (7.2)

But Ex(fx,γ) =
∑
x∈x wx

(
fx,γ(x)− f∗(x)

)2 = ‖D
1
2
wSx

(
fx,γ − f∗

)
‖2`2(x). Together with

(6.3) and (7.2) this implies

γ‖f∗‖2K ≥
λ2
x,w ‖fx,γ − f∗‖2K
‖Kt,t‖

.
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Then the desired estimate follows.

Proof of Theorem 1. Since γ = 0 and w ≡ 1 in Theorem 1, the expression for fz follows

from Theorem 2 and we see from Proposition 4 that f∗ = fx,0. Moreover, the operator

Lw = L in Theorem 4 becomes
(
Kt,xKx,t

)−1
Kt,x, the one given in Theorem 1. Also,

σ2
w = σ2.

Since λx,w = λx > 0, Proposition 2 yields ‖Lw‖ ≤ 1/λx and ‖
(
Kt,xKx,t

)−1‖ ≤ 1/λ2
x.

Putting all these into Theorem 4, we know that for every ε > 0,

Prob
{
‖fz − f∗‖2K ≤ κσ2 + ε

}
≥ 1− exp

{
−

ελ2
x

2‖Kt,t‖B2
log
(
1 +

ε

κσ2

)}
.

Here κ ≤ ‖Kt,t‖
λ4
x

. This proves Theorem 1.

For the general situation including the poor data case, our estimate will be given

under a Lipschitz continuity assumption involving the Voronoi of X. We call it integration

error because the estimate comes from bounding the integral over X by sample values at

x.

Let X = (Xx)x∈x be the Voronoi of X associated with x, and wx = ρX(Xx).

Define the Lipschitz norm on a subset X ′ ⊆ X as

‖f‖Lip(X′) := ‖f‖L∞(X′) + sup
s,u∈X

|f(s)− f(u)|
‖s− u‖`∞(IRn)

. (7.3)

We shall assume that the inclusion map of HK,t into the Lipschitz space satisfies

Cx := sup
f∈H

K,t

∑
x∈x wx‖f‖2Lip(Xx)

‖f‖2K
<∞. (7.4)

This assumption is true if X is compact and the inclusion map of HK,t into the space of

Lipschitz functions on X is bounded (This is the case when K is a C2 Mercer kernel, see

[33]). In fact, if ‖f‖Lip(X) ≤ C0‖f‖K for each f ∈ HK,t, then Cx ≤ C2
0ρX(X).

When K is a convolution kernel satisfying a mild decay condition, (7.4) also holds.

See Proposition 5 below and Example 5 in Section 8.
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Theorem 5. Assume the standing hypotheses. Let X = (Xx)x∈x be the Voronoi of X

associated with x, and wx = ρX(Xx). If x is ∆-dense, Cx <∞, and f∗ ∈ HK,t, then

‖fx,γ − f∗‖2 ≤ ‖f∗‖2K
(
γ + 8Cx∆

)
.

Proof. Let f ∈ HK,t. Then

Ex(f) =
∑
x∈x

wx(f(x)− f∗(x))2 =
∑
x∈x

(f(x)− f∗(x))2

∫
Xx

dρX .

It follows that

‖f − f∗‖2 ≤ Ex(f) + If ,

where If :=
∣∣∑

x∈x
∫
Xx

(f(x)− f∗(x))2 − (f(u)− f∗(u))2dρX(u)
∣∣.

For each x ∈ x and u ∈ Xx,

∣∣(f(x)− f∗(x))2 − (f(u)− f∗(u))2
∣∣ ≤ 2‖f − f∗‖2Lip(Xx)

‖x− u‖`∞(IRn).

Since x is ∆-dense, we must have ‖x− u‖`∞(IRn) ≤ ∆, otherwise u ∈ Xx′ for some x′ 6= x.

Moreover, ρX(Xx) = wx. Hence

If ≤ 2
{∑
x∈x

wx‖f − f∗‖2Lip(Xx)

}
∆ ≤ 2Cx‖f − f∗‖2K∆.

Take f to be fx,γ . Then

‖fx,γ − f∗‖2 ≤ Ex(fx,γ) + 2Cx‖fx,γ − f∗‖2K∆.

This in connection with (7.1) and (7.2) implies

‖fx,γ − f∗‖2 ≤ γ‖f∗‖2K + 8Cx‖f∗‖2K∆.

This proves Theorem 5.

From the proof of Theorem 5, we see that for f ∈ HK,t and x ∈ x,∫
Xx

|f(u)|2dρX ≤ ρX(Xx)‖f‖2L∞(Xx) ≤ wx‖f‖
2
Lip(Xx)

.

Then the following holds.
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Corollary 4. Under the assumption of Theorem 5, there holds

‖f‖2 ≤ Cx‖f‖2K , ∀f ∈ HK,t.

Theorem 5 and Theorem 4 (together with the bounds in Corollary 4 and Proposition

3) proves the following error estimate.

Corollary 5. Under the standing hypotheses and the assumption (3.3), let X = (Xx)x∈x

be the Voronoi associated with x and wx = ρX(Xx). If x is ∆-dense, Cx < ∞, and

f∗ ∈ HK,t, then for every 0 < δ < 1, with confidence 1− δ there holds

‖fz,γ − f∗
∥∥2 ≤ 2CxEsamp + 2γ‖f∗‖2K + 16Cx‖f∗‖2K∆

where Esamp is given by (6.9) in Proposition 3.

Let us verify the condition (7.4) under some decay condition for K.

Proposition 5. Assume standing hypothesis 1. Let X = (Xx)x∈x be the Voronoi associ-

ated with x, and wx = ρX(Xx). If each Kt is Lipschitz on Xx satisfying

Bt := sup
x∈x

∑
t∈t

‖Kt‖Lip(Xx) <∞, Bx := sup
t∈t

wx
∑
x∈x

‖Kt‖Lip(Xx) <∞,

then

Cx ≤ 4BtBx‖K
−1
t,t
‖.

Proof. Let f =
∑
t∈t ctKt ∈ HK,t and x ∈ x. Then for u1, u2 ∈ Xx,

|f(u1)− f(u2)| =
∣∣∑
t∈t

ct
(
Kt(u1)−Kt(u2)

)∣∣ ≤∑
t∈t

|ct|‖Kt‖Lip(Xx)‖u1 − u2‖`∞(IRn).

Also, ‖f‖L∞(Xx) ≤
∑
t∈t |ct|‖Kt‖L∞(Xx) ≤

∑
t∈t |ct|‖Kt‖Lip(Xx). These in connection

with the Schwartz inequality tell us that

‖f‖Lip(Xx) ≤ 2
{∑
t∈t

|ct|2‖Kt‖Lip(Xx)

}1/2{∑
t∈t

‖Kt‖Lip(Xx)

}1/2

can be bounded by 2
√
Bt
{∑

t∈t |ct|2‖Kt‖Lip(Xx)

}1/2. Therefore we have∑
x∈x

wx‖f‖2Lip(Xx)
≤ 4Bt

∑
t∈t

|ct|2
{∑
x∈x

wx‖Kt‖Lip(Xx)

}
≤ 4BtBx‖c‖

2
`2(t)

.
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But ‖c‖2
`2(t)
≤ ‖K−1

t,t
‖‖f‖2K . Then our conclusion follows.

For the poor data situation, the integration error can be bad. In fact, if Kx,tc = 0

for some c ∈ `2(t), set f∗ =
∑
t∈t ctKt ∈ HK,t. Then f∗(x) = 0 for each x ∈ x. Hence

fx,γ = 0 and ‖fx,γ − f∗‖ = ‖f∗‖ for any γ > 0.

Summarizing, our main goal of the error estimate is to bound the difference fz,γ − f∗

(either ‖fz,γ − f∗‖K or even ‖fz,γ − f∗‖L2
ρX

). But

‖fz,γ − f∗‖ ≤ ‖fz,γ − fx,γ‖+ ‖fx,γ − f∗‖

Each of the two summands on the right is estimated separately, the first via Theorem 4

and the second in two cases: λx,w > 0 by Proposition 4; in general by Theorem 5.

§8. Convolution Kernels

Some estimates for λx will be given for convolution kernels having ‖K−1
t,t
‖ < ∞. We

consider now the setting with X = IRn, w ≡ 1 and t = ZZn (The more general situation of

X ⊂ IRn can be analyzed as in the discussion in Section 3).

The convolution kernels take the form:

K(s, u) = ψ(s− u), s, u ∈ IRn with ψ ∈ L2(IRn) being continuous and even. (8.1)

For these kernels, K(s, s) = ψ(0) for any s. Then K is Mercer if and only if ψ has

nonnegative Fourier transform ψ̂(ξ) ≥ 0. See [6]. The Gaussian is an example of a

convolution kernel. More examples can be seen in [3, 8, 14, 27, 32].

Proposition 6. Let X = IRn, t = ZZn, and K be as in (8.1). Then both ‖Kt,t‖ and

‖K−1
t,t
‖ are finite if and only if for some 0 < a ≤ b <∞,

a ≤
∑
j∈ZZn

ψ̂(ξ + 2jπ) ≤ b, ∀ξ. (8.2)

Note that the function
∑
j∈ZZn ψ̂(ξ + 2jπ) is 2π-periodic. From Proposition 6, one

can easily find ”kernels” which satisfy our standing hypotheses but are not Mercer kernels

on X: take ψ whose Fourier transform is not nonnegative but satisfies (8.2) for positive

constants a, b.

The proof of Proposition 6 follows from the expressions for ‖Kt,t‖ and ‖K−1
t,t
‖ in

Lemma 1 which give the sharp bounds for a and b.
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Lemma 1. Let t = ZZn and K(s, u) = ψ(s − u) with some continuous even function

ψ ∈ L2(IRn) satisfying (8.2) for a, b > 0. Then standing hypothesis 1 holds. In particular,

(a) ‖Kt,t‖ =
∥∥∥∥∑j∈ZZn ψ̂(ξ + 2jπ)

∥∥∥∥
L∞
≤ b.

(b) ‖K−1
t,t
‖ =

∥∥∥∥(∑j∈ZZn ψ̂(ξ + 2jπ)
)−1
∥∥∥∥
L∞
≤ 1

a .

Proof. Note that

< Kt,tc, c >`2(t) =
∑
t,t′∈t

ψ(t− t′)ctct′ = (2π)−n
∫

IRn
ψ̂(ξ)

∣∣∣∣∑
t∈t

cte
iξ·t
∣∣∣∣2dξ

= (2π)−n
∫

[−π,π]n

(∑
`∈ZZn

ψ̂(ξ + 2`π)
)∣∣∣∣∑

t∈t

cte
iξ·t
∣∣∣∣2dξ ≥ 0.

Then Kt,t is positive. From the identity{
(2π)−n

∫
[−π,π]n

∣∣∑
t∈t

cte
−iξ·t∣∣2dξ}1/2

= ‖c‖`2(t), ∀c ∈ `2(t),

we see that the upper bounds for the norms hold. The lower bounds can be seen by

taking for each ε > 0, a sequence c ∈ `2(t) whose Fourier series is the characteristic

function of the set {ξ ∈ [π, π]n :
∣∣F (ξ)| ≥ ‖F‖L∞ − ε}. Here F (ξ) =

∑
j∈ZZn ψ̂(ξ + 2jπ) or(∑

j∈ZZn ψ̂(ξ + 2jπ)
)−1.

Remark. The same norm expressions hold when one scales the set ZZn by a constant

H > 0: if t = HZZn and Ψ(ξ) :=
∑
j∈ZZn ψ̂(ξ + 2jπ/H) ≥ 0, then ‖Kt,t‖ = H−n

∥∥Ψ
∥∥
L∞

and ‖K−1
t,t
‖ = Hn

∥∥Ψ−1
∥∥
L∞

.

Turn to the Shannon example. Here K is a convolution kernel generated by the sinc

function φ whose Fourier transform φ̂ is the characteristic function of the interval [−π, π].

Example 4. Let n = 1 and ψ(x) = φ(x) = sin(πx)/(πx) be the sinc function and K given

by (8.1). Then for t = ZZ, {Kj}j∈ZZ is an orthonormal basis of HK,t, ‖Kt,t‖ = ‖K−1
t,t
‖ = 1,

and

HK,t =
{∑
j∈ZZ

cj
sinπ(x− j)
π(x− j)

: c ∈ `2(ZZ)
}
.

Moreover, as subspaces of L2(IR), we have

HK = HK,t = V := {f ∈ L2(IR) : f̂(ξ) = 0 ∀ξ 6∈ [−π, π]}.
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Proof. Take the inner product on V to be the one inherited from L2(IR), we see from the

Plancheral formula and the fact ψ̂(ξ) = χ[−π,π] that

< Kt,Ks >L2= (2π)−1 < K̂t, K̂s >L2= (2π)−1

∫
IR

|ψ̂(ξ)|2eiξ(t−s)dξ = ψ(t− s) = K(t, s).

Thus, < Kt,Ks >L2=< Kt,Ks >K . Also, K̂t = e−itξψ̂(ξ) is supported on [−π, π], hence

Kt ∈ V for any t. Moreover, for each f ∈ V , we have f̂ supported on [−π, π] and given on

this interval by
∑
j∈ZZ cje

−ijξ for some c ∈ `2. Hence f̂ =
∑
j∈ZZ cjK̂j , and f =

∑
j∈ZZ cjKj .

Therefore, HK = HK,t = (V, ‖ · ‖L2(IR)).

Denote Cn,α := 2n
(
1 + nα/2/(α− n)

)
. For L ∈ (0, 1/4), we set in the following

C− :=
(
cosLπ − sinLπ

)n
, C+ :=

(
2− cosLπ + sinLπ

)n
.

We expand the setting now where we do not have a kernel. In this new setting, just

a continuous function ψ ∈ L2(IRn) (not necessarily even) is involved. Then the operator

Kx,t is replaced by Cx,t : `2(t)→ `2(x) defined as(
Cx,ta

)
x

=
∑
t∈t

ψ(x− t)at. (8.3)

The constant λx is also defined similarly by

λx := inf
v∈`2(t)

‖Cx,tv‖`2(x)/‖v‖`2(t). (8.4)

Theorem 6. Let 0 < L < 1/4, t = ZZn, h > 0 with 1/h ∈ IN, and u = {uj}j∈ZZn satisfy

‖uj − hj‖`∞(IRn) ≤ Lh for every j ∈ ZZn. Suppose ψ is an L2 function on IRn satisfying∣∣ψ̂(ξ)
∣∣ ≤ C0(1 + |ξ|)−α ∀ξ ∈ IRn (8.5)

for some C0 > 0, α > n. Define Cu,t by (8.3) and λu by (8.4) with x = u. Then

‖Cu,t‖ ≤ 2C+C0Cn,αh
−n/2. (8.6)

If moreover, for some 0 < c0 ≤ C0, h ≤
( C−c

2
0

5C+C2
0Cn,α

)2/(2α−n)
and∑

j∈ZZn

∣∣ψ̂(ξ + 2jπ)
∣∣2 ≥ c20 ∀ξ, (8.7)

then the constant λu can be bounded from below as

λu ≥
C−c0

2
h−n/2.

Note that C0 depends on α. For general x, we get the following consequences.
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Corollary 6. Let t = ZZn, and ψ be an L2 function on IRn satisfying (8.5) and (8.7) for

some α > n, 0 < c0 ≤ C0. If x is ∆-dense for some 0 < ∆ ≤ L2
( C−c

2
0

5C+C2
0Cn,α

)2/(2α−n)
and

0 < L < 1/4, then

λx ≥
C−c0

21+n/2
Ln2 ∆−

n
2 .

Proof. Since ∆/L ≤ 1, we can choose some h satisfying ∆ ≤ Lh ≤ 2∆ and 1/h ∈ IN.

Then x is Lh-dense. For each j ∈ ZZn, there is some uj ∈ x such that ‖hj−uj‖`∞(IRn) ≤ Lh.

It means that u := {uj}j∈ZZn satisfies the requirement in Theorem 6. As h ≤ 2∆/L ≤( C−c
2
0

5C+C2
0Cn,α

)2/(2α−n), we conclude by Theorem 6 that for each c ∈ `2(t),

‖Cx,tc‖`2(x) ≥ ‖Cu,tc‖`2(u) ≥
C−c0

2
h−

n
2 ‖c‖`2(t).

Hence λx ≥ C−c0
2 h−

n
2 ≥ C−c0

21+n/2L
n
2 ∆−

n
2 .

Now we can see that Proposition 1 follows from Corollary 6: (3.11) in connection with

(3.10) tells us that
∑
j∈ZZn |ψ̂(ξ + 2jπ)|2 ≥ |ψ̂(ξ)|2 ≥ c20 for ξ ∈ [−π, π]n, hence (8.7) holds.

Standing hypothesis 2 requires the norm ‖Kx,t‖. In the current general setting, we

can estimate the norm Cx,t which involves the separation of x, defined as

Sepx := inf
x6=y∈x

‖x− y‖`∞(IRn).

Corollary 7. Let t = ZZn and ψ be a function on IRn satisfying (8.5) for some C0 > 0, α >

n. For any discrete set x ⊂ X and 0 < L < 1/4, we have

‖Cx,t‖ ≤ 2C+C0Cn,α

(
max

{ 4
Sepx

,
2
L
})n/2

.

Proof. Let h be a positive constant with 1/h ∈ IN which will be determined later. Take a

set of multi-integers Σ :=
(
[− 1

4L −
1
2 ,

1
4L + 1

2 ]∩ZZ
)n. We separate the set x into {x(α)}α∈Σ

where x(α) = x∩ (hZZn + hΩα). Here for α ∈ Σ, Ωα =
(
(−L,L]n + 2Lα

)
∩ (− 1

2 ,
1
2 ]n. Then∥∥∑

t∈t

ctψ(x− t)
∥∥2

`2(x)
=
∑
α∈Σ

∥∥∑
t∈t

ctψ(x− t)
∥∥2

`2(x(α))
.

The definition of Sepx tells us that for each α ∈ Σ and j ∈ ZZn, the set x(α)∩(hj+hΩα)

contains at most S := ([(2Lh)/Sepx] + 1)n points. Thus we can divide the set x(α) into S

subsets {x(α)
k }Sk=1 such that x(α)

k ∩ (hj+hΩα) contains at most one point for each j ∈ ZZn.
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Fix α and k. Then there are J ⊆ ZZn and {θj} ⊂ [−L,L]n such that

x
(α)
k = 2Lαh+ {hj + hθj}j∈J .

Let u(α) = {hj + hθj}j∈ZZn where θj = 0 for j 6∈ J . Consider the linear operator Cu(α),t

defined by (8.3) with x replaced by u(α) and ψ by ψ(2Lαh + ·). As |ψ(2Lαh + ·)̂(ξ)| =

|ψ̂(ξ)|, we apply Theorem 6 and conclude that∥∥∑
t∈t

ctψ(x− t)
∥∥
`2(x

(α)
k

)
≤ ‖Cu(α),tc‖`2(u(α)) ≤ 2C+C0Cn,αh

−n/2‖c‖`2(t).

This is true for each α, k. Therefore,

‖Cx,tc‖
2
`2(x) =

∥∥∑
t∈t

ctψ(x− t)
∥∥2

`2(x)
=
∑
α∈Σ

S∑
k=1

∥∥∑
t∈t

ctψ(x− t)
∥∥2

`2(x
(α)
k

)

can be bounded by (2 + 1/(2L))nS
(
2C+C0Cn,αh

−n/2‖c‖`2(t)

)2. Hence

‖Cx,t‖ ≤ 2C+C0Cn,α
(L+ 1

Sepx
+

2 + 1/(2L)
h

)n/2 ≤ 2C+C0Cn,α
( 2

Sepx
+

1
Lh
)n/2

.

When Sepx ≥ 2L, we choose h = 1 and obtain ‖Cx,t‖ ≤ 2C+C0Cn,α
(
2/L

)n/2.

When Sepx < 2L, we choose some h satisfying 1/h ∈ IN and Sepx/(2L) ≤ h < Sepx/L

and obtain ‖Cx,t‖ ≤ 2C+C0Cn,α
(
4/Sepx

)n/2. This proves Corollary 7.

Remark. Note that λx ≤ ‖Cx,t‖. Then we see from the lower bound for λx given in

Corollary 6 and the upper bound for ‖Cx,t‖ stated in Corollary 7 that our estimates are

sharp up to a constant depending on the ratio ∆/Sepx.

Remark. The lower bound in Corollary 6 and the upper bound in Corollary 7 can be

established for general convolution kernels without the decay (8.5).

Remark. One may consider more general t. For example, choose t to be a subset of IRn

such that {e−iξ·t}t∈t is a Riesz system in L2([−π/H, π/H]n) for some H > 0. Then similar

upper and lower bounds hold with constants depending on H. Here for a Hilbert space H,

we say that a sequence of elements {φt : t ∈ t} ⊂ H is a Riesz system in H if there are two

positive constants C1, C2 > 0 such that

C1‖c‖`2(t) ≤
∥∥∑
t∈t

ctφt
∥∥
H ≤ C2‖c‖`2(t), ∀c ∈ `2(t).
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The Riesz system is called a Riesz basis of H if moreover, span{φt}t∈t is dense in H.

To prove Theorem 6, we need Kadec’s 1
4 -Theorem. See [30], and [24] for the multi-

variate version:

Let L < 1/4. If ‖xj − j‖`∞(IRn) ≤ L for each j ∈ ZZn, then

(2π)nC2
−‖f‖2L2([−π,π]n) ≤

∑
j∈ZZn

∣∣∣∣< f, e−iξ·xj >L2([−π,π]n)

∣∣∣∣2
≤ (2π)nC2

+‖f‖2L2([−π,π]n), ∀f ∈ L2([−π, π]n).

(8.8)

This is the frame property of the Riesz basis {e−iξ·xj}j∈ZZn of L2([−π, π]n).

Proof of Theorem 6. Notice that∑
j∈ZZn

(1 + |j|)−α ≤ Cn,α.

Let x, t ∈ IRn. Apply the inverse Fourier transform, we obtain for c ∈ `2(t),∑
t∈t

ctψ(x− t) = (2π)−n
∫

IRn

(
ψ̂(ξ)

∑
t∈t

cte
−iξ·t

)
eiξ·xdξ.

Denote c̃(ξ) :=
∑
t∈t cte

−iξ·t, g(ξ) := ψ̂(ξ)c̃(ξ). Then the above expression is

(2π)−n
∫

IRn
g(ξ)eiξ·xdξ =

∑
`∈ZZn

(2π)−n
∫

[−πh ,
π
h ]n

g(ξ +
2`π
h

)eiξ·xei
2`π
h ·xdξ.

If we denote for ` ∈ ZZn,

I`(g) :=
{∑
j∈ZZn

∣∣∣∣(2π)−n
∫

[−πh ,
π
h ]n

g(ξ + 2`π/h)eiξ·ujdξ
∣∣∣∣2}1/2

,

then ‖Cu,tc‖`2(u) = ‖
∑
t∈t ctψ(u− t)‖`2(u) can be bounded from above and below as

I0(g)−
∑

`∈ZZn\{0}

I`(g) ≤ ‖Cu,tc‖`2(u) ≤ I0(g) +
∑

`∈ZZn\{0}

I`(g).

Let us first derive upper bounds from (8.5) by means of Kadec’s 1
4 -Theorem (8.8).

The condition on u tells us that {uj/h}j∈ZZn satisfies the condition for (8.8). Applying the

upper bound of (8.8) to the functions g(ξ/h+ 2`π/h), we know that

I`(g) ≤ (
√

2πh)−nC+‖g
( ξ
h

+
2`π
h

)
‖L2([−π,π]n), ∀` ∈ ZZn.
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As c̃(ξ) is 2π-periodic, c̃(ξ + 2`π/h) = c̃(ξ) because of 1/h ∈ IN. Then we see that

h−n/2‖g(ξ/h+ 2`π/h)‖L2([−π,π]n) is∥∥∥∥g(ξ +
2`π
h

)
∥∥∥∥
L2([−πh ,

π
h ]n)

=
∥∥∥∥ψ̂(ξ +

2`π
h

)c̃(ξ)
∥∥∥∥
L2([−πh ,

π
h ]n)

≤
{ ∑
s∈[−1/(2h),1/(2h)]n

∥∥ψ̂(ξ + 2sπ +
2`π
h

)c̃(ξ)
∥∥2

L2([−π,π]n)

}1/2

.

If we set the quantity Aψ` as

Aψ` :=
{ ∑
s∈[−1/(2h),1/(2h)]n

∥∥ψ̂(ξ + 2sπ +
2`π
h

)
∥∥2

L∞([−π,π]n)

}1/2

,

we find that

I`(g) ≤
(√

2πh
)−n

C+A
ψ
` ‖c̃(ξ)

∥∥
L2([−π,π]n)

≤ h−n/2C+A
ψ
` ‖c‖`2(t).

By the decay condition (8.5), we have Aψ0 ≤ C0

√
Cn,α , and∑

`∈ZZn\{0}

Aψ` ≤
∑

`∈ZZn\{0}

(
1/h+ 1

)n/2
C0

(
1 +
|`|π
2h
)−α ≤ hα−n/2C0Cn,α

which yields ∑
`∈ZZn\{0}

I`(g) ≤ hα−nC+C0Cn,α‖c‖`2(t).

Thus, we have

‖Cu,tc‖`2(u) ≤ I0(g) +
∑

`∈ZZn\{0}

I`(g) ≤ 2C+C0Cn,αh
−n/2‖c‖`2(t).

This proves (8.6).

Next we provide a lower bound for I0(g). Apply the lower bound of (8.8) to the

functions g(ξ/h), we find

I0(g) ≥
(√

2πh
)−n

C−‖g‖L2([−π/h,π/h]n).

Observe that

‖g‖L2([−π/h,π/h]n) ≥
∫

[−π,π]n

∑
s∈[− 1

2h+ 1
2 ,

1
2h−

1
2 ]n

∣∣ψ̂(ξ + 2sπ)
∣∣2|c̃(ξ)|2dξ.
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But for ξ ∈ [−π, π]n,

∑
s 6∈[− 1

2h+ 1
2 ,

1
2h−

1
2 ]n

∣∣ψ̂(ξ + 2sπ)
∣∣2 ≤ ∑

|s|≥1/(2h)

C2
0 (1 + |ξ + 2sπ|)−2α ≤ C2

0Cn,αh
α.

This in connection with (8.7) implies

‖g‖2L2([−π/h,π/h]n) ≥
(
c20 − C2

0Cn,αh
α
)
‖c̃‖2L2([−π,π]n).

It follows that

I0(g) ≥ h−n/2C−
√
c20 − C2

0Cn,αh
α‖c‖`2(t).

When hα−n/2 ≤ C−c20/(5C+C
2
0Cn,α), we have c20 − C2

0Cn,αh
α ≥ c20/2, and

∑
`∈ZZn\{0}

I`(g) ≤ (1− 1/
√

2)I0(g), I0(g) ≥ c0√
2
C−h

−n/2‖c‖`2(t).

Therefore,

‖Cu,tc‖`2(u) ≥
1√
2
I0(g) ≥ C−c0

2
h−n/2‖c‖`2(t).

Hence λu ≥ C−c0
2 h−n/2 and the proof of Theorem 6 is complete.

We study for the convolution kernel the last quantity Cx required by (7.4). We shall

apply Proposition 5 involving the decay of the kernel.

Example 5. Let X = IRn, t = ZZn, X = (Xx)x∈x be the Voronoi associated with x and

wx = ρX(Xx). If ρX is the Lebesgue measure, x is ∆-dense, and ψ is a continuous even

function on IRn satisfying
∑
j∈ZZn ψ̂(ξ + 2jπ) ≥ c0 > 0 for every ξ and

|ψ(x)|+ |∇ψ(x)| ≤ C0(1 + |x|)−α

for some C0 > 0, α > n, then for the kernel K(s, u) = ψ(s− u) we have

Cx ≤ 8(1 + n)(4n)α
(
2αCn,α + 3n

)(
Cn,α + 1

)C2
0

c0
(∆ + 1)2α.

Proof. Let t ∈ t and x ∈ x. Then the decay condition gives

‖Kt‖Lip(Xx) ≤ C0(1+
√
n)
(
1+ inf

u∈Xx−t
|u|
)−α ≤ C0(1+

√
n)
(
1+max{0, |x−t|−

√
n∆}

)−α
.
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It follows immediately that

Bt ≤ C0(1 +
√
n) sup

y∈[0,1]n

∑
t∈ZZn

(
1 + max{0, |y − t| −

√
n∆}

)−α
is bounded by C0(1 +

√
n)
(√
n(∆ + 1)

)α(2αCn,α + 3n
)
.

Concerning Bx we fix t ∈ t, and see from wx = ρX(Xx) that

∑
x∈x

wx‖Kt‖Lip(Xx) ≤
∑
x∈x

C0(1 +
√
n)
∫
Xx

(
1 + max{0, |x− t| −

√
n∆}

)−α
dρX

can be bounded by C0(1 +
√
n)
∫
X

(
1 + max{0, |y − t| − 2

√
n∆}

)−α
dρX . As ρX is the

Lebesgue measure, the integral is bounded by∫
IRn

(
1 + max{0, |y| − 2

√
n∆}

)−α
dy ≤ (2 + 4

√
n∆)αCn,α + (4

√
n∆)n.

Therefore,

Bx ≤ C0(1 +
√
n)(2 + 4

√
n∆)α

(
Cn,α + 1

)
.

Then the estimate for Cx follows from Proposition 5 and Lemma 1.

More general decay conditions such as the Wiener amalgam spaces [15, 2] can be used

for the condition (8.5) on ψ or the decay of ρx.

§9. Estimating the Operator Norms for Compact Domains

When X is compact, the richness λx can be easily bounded from below. Moreover, it

will be shown that λx →∞ when x becomes dense. Denote

Nσ(x) := sup{d ∈ IN : for each x ∈ X, there are (xi)di=1 ⊂ x satisfying |xi − x| ≤ σ}.

Proposition 7. Let t = (ti)si=1 be finite. Then for sufficiently small σ > 0 there holds

∣∣K(u, t′)−K(t, t′)
∣∣ ≤ 1

2s‖K−1
t,t
‖
, ∀t ∈ t, u ∈ X with |u− t| ≤ σ (9.1)

for each t′ ∈ t. In this case,

λx ≥
√
Nσ(x)

2‖K−1
t,t
‖
.
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In particular, λx →∞ when Nσ(x)→∞.

Proof. The continuity of K tells us that for sufficiently small σ > 0, (9.1) holds for each

t′ ∈ t.

Let 0 < σ < 1
2Sept. By the definition of Nσ(x) =: N , for each t ∈ t there are

(u(j)
t )Nj=1 ⊂ x such that |u(j)

t −t| ≤ σ. As σ < 1
2Sept, we know that (u(j)

t )Nj=1∩(u(j)
t′ )Nj=1 = ∅

when t 6= t′.

Fix j ∈ {1, . . . , N}. The set u(j) = (u(j)
t )t∈t satisfies |u(j)

t − t| ≤ σ. By (9.1), we see

that ∣∣∣∣(Ku(j),tc
)
u

(j)
t

−
(
Kt,tc

)
t

∣∣∣∣ =
∣∣∣∣∑
t′∈t

ct′
(
K(u(j)

t , t′)−K(t, t′)
)∣∣∣∣ ≤ ‖c‖`2(t)

1
2‖K−1

t,t
‖
√
s
.

Therefore,

‖Ku(j),tc−Kt,tc‖`2(t) ≤
‖c‖`2(t)

2‖K−1
t,t
‖
, ∀c ∈ `2(t),

and

‖Ku(j),tc‖`2(u) ≥
1

‖K−1
t,t
‖
‖c‖`2(t) −

‖c‖`2(t)

2‖K−1
t,t
‖
.

It follows that

‖Kx,tc‖
2
`2(x) ≥

N∑
j=1

‖Ku(j),tc‖
2
`2(u(j))

≥ Nσ(x)
( ‖c‖`2(t)

2‖K−1
t,t
‖

)2

.

Then our conclusion follows.

§10. Extension to a Setting without a Kernel

Our study can be extended to a setting without a kernel K.

Let (H, ‖ · ‖H) be a Hilbert space of continuous function on X, finite or infinite

dimensional. Let {φt : t ∈ t} be an orthonormal basis. Then HK,t is replaced by H and

Kt,t by the identity operator on H, hence standing hypothesis 1 holds. Now the linear

operator Cx,t : `2(t) → `2(x) is given by the matrix
(
φt(x)

)
x∈x,t∈t, and only standing

hypothesis 2 is required, where Cx,t replaces Kx,t. The main results are still true. For

example, take σ2 :=
∑
x∈x σ

2
x

∑
t∈t(φt(x))2. Corresponding to Theorem 1, we have
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Theorem 7. Assume f∗ ∈ H with H, X, ρ, {φt}t∈t as above, y as in (3.3). If x provides

rich data, then the optimization problem arg minf∈H
∑
x∈x
(
f(x)− yx

)2
can be solved:

fz =
∑
t∈t

atφt, a = Ly and L =
(
CT
x,t
Cx,t
)−1CT

x,t
.

Moreover, for every ε > 0, there holds

Prob

{
‖fz − f∗

∥∥2

H ≤
σ2

λ4
x

+ ε

}
≥ 1− exp

{
−
ελ2
x

2B2
log
(
1 +

ελ4
x

σ2

)}
.

Examples of finite dimensional spaces H include polynomial spaces for the purpose of

interpolation. Examples of infinite dimensional spaces include the Fourier series (the most

classical!); function spaces on a 2-dimensional rectangle (with eigenfunctions of Laplacian

being the orthonormal basis); and wavelet spaces (with an orthonormal basis of wavelets

or shifts of refinable functions).

Next suppose that {φt : t ∈ t} is only a Riesz basis of H. Then the mapping K :

`2(t) → H given by Kc =
∑
t∈t ctφt is an isomorphism. This isomorphism plays the role

of Kt,t. The setting is now similar to the one with standing hypothesis 1 satisfied. One

example is generated by a (stable, but not necessarily orthogonal) scaling function ϕ of a

multiresolution analysis in wavelet analysis. Take k ∈ ZZ, t = ZZn, and φt = ϕ(2k · −t), the

scaled shifts of ϕ. Then estimates for λx can be given as in Section 8, which would lead

to sample error estimates like Theorem 1. The regularization error and integration error

estimates can be obtained from the approximation properties of multiresolution analysis

[10, 23].

Remark. In this paper we study the error ‖fx,γ−f∗‖2 (regularization error or integration

error estimates) under the assumption f∗ ∈ HK,t. It would be interesting to have some

estimates for the error without this assumption. One situation is when HK,t is a closed

subspace of a RKHS HK generated by a Mercer kernel K and f∗ ∈ HK . One may study

the error even for f∗ to be outside HK , as done for the approximation error in [22, 26].
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