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§1. Introduction

This paper gives an account of sampling theory and interpolation, with some focus on
the Shannon theorem. One goal is to deal with noise in the sampling data, from the point
of view of exponential probability estimates. Our quantitative estimates give some guide
as to how much resampling or regularization is required to balance noise in the form of a
variance. A measure of the richness of the data is key in this development.

The theory evolves in a universe which is a Hilbert space of real valued functions
on a (an ”input”) space X. In the Shannon case X is the space of real numbers. Other
examples for X include a rectangle in the plane (image processing), a graph as in theoretical
computer science, or a high dimensional space as in learning theory.

Our first generalization of the Shannon theorem centers around the case of rich data
and the use of a Hilbert space and a kernel function, reminiscent of reproducing kernel
Hilbert spaces derived from a Mercer kernel. Subsequently we see how poor data and
general Hilbert function spaces fit into our analysis.

An objective is to integrate the theory with fast algorithms which work well in the
presence of noise. Our main results are new general error estimates.

We have been inspired by the disciplines of learning theory, regression analysis, ap-
proximation theory, inverse problems, signal processing, and hope that in return this work

can give some new insights to these subjects.

§2. Motivating Examples

To describe the general reconstruction of functions from their point values, we give

some simple motivating examples.

Example 1 (exact polynomial interpolation) (a baby example). Consider polyno-
mials p; : IR — R, fort € t := {0,1,...,d} with p;(z) = 2. The polynomial interpolation
problem is to find a polynomial f = ), ;a:;p; of degree d such that f(x;) = y; for
i=1,...,d+ 1. Here (z;,y;)1} is the data. The situation yields a system of equations:
L(ay),e; = (yz)f;rll with L = (pt(xi)>i:17,..,d+1,tef being a (d+ 1) x (d + 1) matrix. When

{z;} are distinct, this system has a unique solution ag, a1, ... ,aq, which solves the problem.
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d+1

If we denote T = {z;};";, then the "data” is given by the function on T. Here |Z| = |t|.

Certainly the choice of p; is quite naive. In Section 10 this kind of problem is studied.
The next two examples are from image processing. The first is borrowed from [7].

Example 2 (inpainting). Consider a black white photograph as a function g from t to
[0,1] where t is a square of pixels (e.g. 512 by 512) and ¢(t) represents a shade of grey
of pixel t. Now suppose that the photograph has been partly masked as by some spilled
ink or writing over it destroying g on the mask say t and leaving our function intact on
T = f\f. The problem is to recover an approximation to g from its restriction to . Here
the input or data is (z, g(x)) for x € T. Note that |T| < |t|. This is a case of what we call

later "poor data”.

Example 3 (image compression). Here ¢ is a coarse pixel set and T is a fine pixel set.
The original picture is represented by a function from T to the interval as in Example
2. The problem is to find a worse but reasonable representation (with small error) as a
function from t. The efficiency of a compression scheme is measured by the ratio |Z|/|t| (as

large as possible, representing the richness of the data) and the error (within a threshold).

§3. Learning and Sampling

The classical Whittaker-Shannon-Nyquist Sampling Theorem or simply Shannon The-
orem gives conditions on a function on IR (band-limited with band 7) so that it can be

reconstructed from its sampling values at integer points:

Theorem. Let ¢(z) = S22 and ¢, (x) = ¢(z—t). If a function f € L*(IR) has its Fourier
transform supported on |—m, x|, then
f= Z f(t)¢r.
teZ

See [2, 31] for some background and some generalizations.

We proceed to state our own generalization.

Suppose X is a closed subset of IR" (a complete metric space is sufficient) and ¢ C X
is a discrete subset. In the Shannon special case, X = IR,t = Z. Another important case

is when X is compact and (hence) ¢ is finite.
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Next consider a continuous symmetric map (a "kernel”) K : X x X — IR and use it

to define a matrix (possibly infinite) Kyg : £2(f) — (*(f) as

(K7za), = Z K(s,t)ay, sel,ac ().
tet
Here ¢%(f) is the set of sequences a = (at);e7 : ¢ — R with < a,b >= >, 7 a;b; defining
an inner product. For t € ¢, set K; : X — IR to be the continuous function on X given by

Ki(x) = K(t,z). Unless said otherwise, we always assume the following.

Standing Hypothesis 1. K37 is well-defined, bounded, and positive with bounded in-

verse K1,
t,7

In the Shannon case K(t,s) = ¢(t — s), and it is seen that K77 is the identity, because
¢(j) =0 for j € Z\ {0} and ¢(0) = lim, o ¢(x) = 1.

For Example 1, we can take X = IR, 7 = {0,1,...,d}, and K(t,s) = (1+t-s)¢. Then for
c € (2(t), there holds < Kizc,c>pp= ZZ:O (Z) (e cttk)Q_ Since the Vandermonde
determinant det(tk)tez’ k=0.1,....a 18 nonzero, Standing Hypothesis 1 is satisfied.

Next define a Hilbert space H 7 as follows. Consider the linear space of finite linear
combinations of K;,t € t, i.e., Zte? a;K; where only a finite number of a; are nonzero.
An inner product on this space is defined (from the positivity of Kf,f) by linear extension

from

< Ky K, >x=K(t,s). (3.1)

One takes the completion to obtain H K

In the Shannon case, it can be shown (see Example 4 in Section 8) that Hy 7 is
the space described, i.e., f € L?(IR) with supp fc [—m,7|. Here f denotes the Fourier
transform of f. It is defined for an integrable function on IR™ as f (&) = f]R" f(x)e &2 dz,
and can be extended naturally to the space L?(IR"™).

In Example 1, with the kernel K(¢,s) = (1 +t-s)9, we find that Hy 7 is exactly the
space of polynomials of degree d.

If we define ¢% () as the Hilbert space consisting of sequences in ¢?(f) with the inner

product < a,b > (1) =< K33a,b >p23), then the natural map from 2.(1) to Hpy 7, given
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by a — >, 7 a¢ Ky, is an isomorphism. Note that (% (t) does not depend on X, just ¢ and
K restricted to t x t. Hence it discretizes the setting. Also, standing hypothesis 1 tells us
that ¢2-(%) is isomorphic to £2(f) under the isomorphism: a — Kzlfa.

If 3 C t replaces ¢, then the important invariants || K7 ;|| and HK{ zl || improve. That is,
| K55]| < |[Kzzll and HK;;H < HK{;H Thus, if K is restricted to X' € X and s =tN X',
then standing hypothesis 1 remains true.

If K is a Mercer kernel and H g the corresponding reproducing kernel Hilbert space
3], then H, 7 is the closed subspace generated by {/;,t € ¢} (with the induced inner
product). This gives a class of spaces H k7 satistying standing hypothesis 1 (besides the
space generated by ¢ in the Shannon theorem). One such example is a Gaussian kernel

K(z,y) = e~le=vl*/o* on any closed subset X of IR". See Section 8, and more examples

and background in [8].

So far, we have a space 'H; ; which plays the role of a "representation space” in the
Shannon theory. We now pass to the sampling side which we separate out. Moreover,
noise is introduced into our model in this sampling, represented by a Borel measure p on

X x IR.

Let px be the marginal measure induced by p on X, i.e., the measure on X defined
by px(S) = p(m~1(S)) where 7 : X x IR — X is the projection. It defines a space L2
on X with L? norm || f|| = ||f||L3X = (fx ]f(.r)\deX)l/z. It is not assumed that px is a
probability measure as in the special case of learning theory. In fact in the Shannon case

it is the Lebesgue measure.

The set for the sampling is a discrete set T C X. The set T may be determined as
in a net (Shannon, with T = Z) or have come from a random sample as in [8] or [4]. For
x € X, we denote the variance of the conditional measures p, of p as 02. We assume that

the conditional measures p,(x € X) of p satisfy

Preliminary Version of Special Assumption. For each x € X, p, is a probability

measure with zero mean supported on [—My, M,] with B := (3, .z Mgf)l/2 < 00

To study the relationship between the discrete sets ¢ and =, we define the linear
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operator Kz : (*(f) — £*(%) and its adjoint Kj : £*(T) — £*(f) by the matrix

(KE,EG)I = Z K(x,t)as. (3.2)

tet
Standing Hypothesis 2. K;; (and hence K3 ) is well-defined and bounded.

The sampled values y € £2(7) will have the form:
For f* € Hy 7, and each x € 7, y, = f*(z) + ny, where n, is drawn from p,. (3.3)

Special Assumption implies that {n,} € ¢2(Z) and |[{n}|e2E < B < oc.

Define the sampling operator Sz : Hy 7 — 02(z) by Szf = (f(x))zez. That is, for
a function f from Hy 3, Szf is the restriction of f to T : flz. Then for f =, ;¢ Ky,
we have Szf = Kgzzc. Tt follows that Y - f*(z)? = Hng*H%Q@) can be bounded by
HKEEHQHf*H%{/HK{;”» and is finite according to (3.3), hence y € ¢*(T).

In the Shannon case, T = t, p, is trivial, so i, = 0 for all z € Z.

Now our sampling problem is:

Reconstruct f* (or an approximation of f*) from y € £2(%).

Towards its study, consider the minimization problem
. 2
arg min (f(x) — ym) . (3.4)

The solution of (3.4) is expressed using K7 - and K 7.

Definition 1. We say that T provides rich data (with respect to t) if

Az = inf ||K= 0|2 /||V]] 207 3.5
wi= it Ko/ Ivleq (35
is positive. It provides poor data if Az = 0.

One can easily see that T provides rich data if and only if the operator K7 z K7 ; has
a bounded inverse, that is, its smallest eigenvalue (\z)? is positive.

Note that if Z C 7, then Az < A=.



Our generalized Shannon Sampling Theorem (for rich data) can be stated as follows

(the proof will be given in Section 7). Define the variance of the system (p, T, ¢, K) as
2 2 2 2 2
o = ZawZK(t7x) = ZUxHKE,EeOEng(z)a (3.6)
TET tet TET
where e, is the delta sequence supported at z. It represents how the variance on 7 is

transferred to # by the operator Kj : £*(Z) — (*(f). Standing hypothesis 2 and special

assumption tell us that o2 is finite.

Theorem 1. Assume f* € Hy 7 with X, K, t,p as above, y as in (3.3) together with the

special assumption, and that T provides rich data. Then the problem (3.4) can be solved:

fo=Y @k, a=Ly and L= (K K;;) K;

1,7
tet

and its solution approximately reconstructs f* from its values at T in the following sense.

For every e > 0, || f, — [*

| K33 e\ c
=k 5= expd — =2 __Jog(1+ —) L.
ST eXp{ K5 o8 *w)}

Remark. Since T provides rich data, we see from Definition 1 that the operator K ; is

i < ko? + ¢ with probability 1 — § where

injective. The operator L defined in Theorem 1 is exactly the Moore-Penrose inverse of

K. See eg. [11, 13].

When the richness of the data increases such that Az — oo (see Proposition 1 below),
we have k — 0. If moreover B2/ )\% is kept bounded, then from Theorem 1 we see that
for the error bound ko? + ¢ with any € > 0 the confidence tends to 1. This yields the
convergence with confidence if o2/ )\% — 0. Also, we find that for any Az when the variance
vanishes, f, = f* with probability one by taking ¢? — 0 in Theorem 1; thus we cover the
classical Shannon theorem.

When the data is resampled k times over Z, the richness increases to vVkAz, ko? is

eAZ

reduced to ko?/k, while the bound B? of the system becomes kB2. Then c := SR B2 is

unchanged. We see from Theorem 1 that for the better error bound xo?/k + ¢ with the
same ¢, the confidence 1 — (1 +¢/(ko?)) ¢ is improved to 1 — (1 + ke/(ko?)) €.
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Corollary 1. Under the assumption of Theorem 1, if the data is resampled k times over
Z, then for every € > 0, ||fz — f*Hi( < ko?/k + € with probability 1 — (1 + ke/(ko?))~¢

C

while the probability given in Theorem 1 is 1 — (1 +¢/(ko?))7¢.

Corollary 1 convinces us that resampling improves the error when one takes the same
probability as in Theorem 1. See also Proposition 3 in Section 6.

The constant x is the infimum of error bounds for positive probability in Theorem
1. This threshold quantity relates the key variables. The case of exact interpolation
corresponds to |t| = |Z|, Az > 0.

Note that error bounds less than x may be studied by the introduction of a regular-
ization parameter v > 0 (see below).

Theorem 1 will be extended to include the case of poor data.

The regularized version of the problem (3.4) takes the form
x . 2
Jon =arg min Y (f(2) —ya)” + 0/, (3.7)
S

where v > 0 and the case v = 0 includes the setting of Theorem 1.

As in Theorem 1, the problem (3.7) can be solved by means of a linear operator:

fz,'y = Zth ath, where a = Ly and L = (KE,EKE,E + ’)/Kz,g)_lK—

1T

We expand the setting a bit by introducing a weighting w on Z. A weighting is
necessary to expand beyond the special case of T defined by a uniform grid on X.

So we let w := {w, }.ez be a weighting with w, > 0. One example is to take w as

the px-volume of the Voronoi [28] associated with Z. Another example is w = 1 or if

Z| =m < oo,w= L.
We require |[w|jco = Supyezws < oo. Denote D, : (*(T) — ¢*(T) as the diago-
nal matrix (multiplication operator on ¢?(Z)) with main diagonal entries {w;, },cz. Then

1
| Dy < ||w]|so- The square root Dg is the diagonal matrix with main diagonal entries
{\/ wm}xef-

Definition 2. The regularization scheme for the sampling problem in the space H K

takes the form:

furr =g i {57 e (710) = 00)° 1115 (33)
Kt Nzex
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Theorem 2. Assume f* € Hy ; and the standing hypotheses with X, K, t,p as above, y
as in (3.3). Suppose K3 2Dy K5 7 + 7K 7 is invertible. Define L to be the linear operator
L= (K;zDuwKgz+ ’Yszz)_leyng- Then the problem (3.8) has a unique solution:

Joy = Z(Ly)th. (3.9)
tet
The corresponding errors will be analyzed in the next sections (Theorems 4 and 5).
The error analysis will generalize Theorem 1 with general bound M, weighting w and v > 0.
It also extends to the poor data setting. Observe that under the standing hypotheses,
K 7Dy K 7 +vKj 7 1s invertible, it v > 0 or Az > 0.
Consider the case when K is a ”convolution kernel” K(s,u) = ¥(s —u). Let ¢ €

L2(IR"™) whose Fourier transform 1 satisfies

~

V() =co>0, VEE[-m, 7" (3.10)
and the following decay condition for some Cy > 0, > n:
0<d(€) <Co(l+[¢)™  VEeR™ (3.11)

Definition 3. We say that T is A-dense in X if for each y € X there is some x € T

satisfying ||z — y|| ¢ (mrn) < A.
Proposition 1. Let X = R", t = Z", K(s,u) = 1(s — u) with an even function v (i.e.

Y(u) = ¥(—u)) satisfying (3.10) and (3.11). If 0 < L < 1/4 and T is A-dense for some
0 <A <, then

(cos L —sin L7)"Co /2 x —n/2
Az > YE=YE LM2A .
Here 7 is a constant independent of A and Proposition 1 is a consequence of Corollary 6
below where an explicit expression for 7 (depending on £) will be given.

Recall that the Shannon case corresponds to the choice ¥ = ¢ withn =1,¢g =1,Cy =

(14 m%a=6,and |||k = || lr2ar). Then Y}, K(t,2)*> =1 and 0 = Y, - 02
Combining Theorem 1 with Proposition 1 for £ = 1/5 (and the constant 7 given in

Corollary 6) yields the following.



Corollary 2. Let X =R, t = Z, K(s,u) = ¢(s — u) where ¢ is the sinc function given
in the Shannon Theorem. If T is A-dense for some 0 < A < 1/500 and p satisfies special

assumption, then for any € > 0, the function f, given in Theorem 1 satisfies

Prob{||fz — f*||2L2(IR) < 20*°A%0” + 5} >1- exp{—gooeTB2 log (1 + m)}.

If the data becomes dense such that A — 0 but AB? is kept bounded (e.g. 7T is
quasi-uniform), then A?0? — 0 and Corollary 2 yields the convergence of f, to f* with
confidence.

Notice that T # ¢ in general: f* € H k7 While T stands for the sampling points which
can be much denser than ¢.

In the above discussion, where f* € H 7, one may take either of two points of view.
Start with p and let f* = f, be the regression function as done in learning theory [27, 29,
14, 8, 18], or take a primary f* as in sampling theory [2, 15] and hypothesize p as above.

Our learning process in Definition 2 is an example of a regularization scheme. Reg-
ularization schemes are often used for solving problems with ill-posed coefficient matrices
or operators such as numerical solutions of integral and differential equations, stochastic
ill-posed problems with operator equations, and empirical risk minimization problem for
traditional learning. See e.g. [25, 16, 13].

Some preliminary estimates on Az will be provided in Sections 8 and 9. But we hope
to give more satisfactory results in a subsequent work.

The authors would like to thank Akram Aldroubi for his conversations on the question

of relating learning theory to sampling.

64. The Algorithm

We give the proof of Theorem 2.

For f: X — IR, it is natural to introduce an “error function”

2
&)= [ (ra)=v)’ap, (41)
For the empirical counterpart of £, let z = (x, ¥, ).cz be a sample, so that x is defined
by T and y, is drawn at random from f*(x)+ p, as in (3.3). Then the empirical error is
2
E(f) =D wa(f(x) —ya)”. (4.2)
TET
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With the empirical error £,(f), our learning scheme (3.8) can be written as

fuoy =g in {0+ . (1)
We show how to solve the minimization problem (4.3) or (3.8) by a linear algorithm.

Proof of Theorem 2. Consider the quadratic form

Q(e) =& ak) 71D akilz,  cel*().

tct tet

A simple computation yields
Q(C) =< (Kf,EDwKE,f + ’)/Kz,z)c, c >£2(E) —2< DwKE,chy >g2(5) + < Dwy,y >g2(5) .

Taking the functional derivative as in [19] tells us that if ¢ is a minimizer of Q in ¢2(¥)

then it satisfies

(KizDwhzz +7K;z)c = KizDuwy,  c€ (D). (4.4)

By our assumption, K7Dy, Kz 7+ v7Kiz is invertible, the system (4.4) has a unique
solution: ¢ = (sztiKE’; + VKE,E) _1Kg75Dwy. It yields the unique minimizer of ) which

represents the unique minimizer f, . of the functional &,(f) + 7| f||% in H K []

Remark. Standing hypothesis 1 can be weakened for the purpose of Theorem 2: the first
case is v > 0; the second case ist = T and v = 0. In both cases, the scheme (4.3) has a
solution f, . lying in
Hyer = {Z ctKy:ce?(1)} C Hy 7
tet

if and only if the system (4.4) is solvable. When the solvability of (4.4) holds, the solution
in H?{,E is unique and given by f, , = >, .7 ¢ K, independent of the choice of the solution
c to (4.4). In fact, if ¢ and d are both solutions to (4.4), then ), ;cilKi = ), 7 di Ky
K;7(c—d) =0 for either v > 0 or t = 7.

In the following three sections we shall estimate the error || f 4 — f*|.
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§5. Probability Inequalities

In the following theorem, m € IN or m = co. When m = oo, the product probability
measure on the product space IR” can be defined in any sense such as the one defined by

means of the Tikhonov topology, see e.g. [21].

Theorem 3. Let {£;}7", be independent random variables on R with variances {07},
and w; > 0 with [[w|e < oco. If of, := 37" w;of < oo, and for each j there holds
&, — E(&;)| < M almost everywhere, then for every ¢ > 0 the probability in the product

space IR™ satisfies

Prob{

3 M
>l -]} <2ef -yt w14 22))

w

Corollary 3. If m < oo and &1,&o,...,&,, are i.i.d. random variables with expected value

u, variance o2 satisfying |€ — pu| < M, then

1 me Me
- - < - —— ). ,
Prob{‘m jEZlfg u‘ > 5} < 2exp{ 7 10g<1 +— )} (5.1)

Proof of Theorem 3. Without loss of generality, we assume E(§;) = 0. Then the
variance of £; is 07 = E (7).
First we assume m < oo. It is sufficient for us to prove the one-side inequality:
m
€ Me
Let ¢ be an arbitrary positive constant which will be determined later. Then by the

independence,

I= Prob{exp{z cw]fj} > ecg}
j=1

<e “F (eXp{Z ijfj }) = €_CEH§n:1E (eXp{ijfj }) :
j=1

Since |£;| < M almost everywhere, we have

+oo 4.4 L +oo £, Larl—2_2
cw-E(ﬁﬂ) cw; M40
(eofene ) =14 5 EHEE) (B e
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As w; < |lw||s and 1+t < e, there holds

+oo # 0—17376—2 2
clw M~ 2w;o%
E<exp{cwj§j}) Sexp{z holfs 21", }

(=2

_ eXp{ eclwlloeM 1 C||w‘|oon.02}.
[[wl|oo M2 s

It follows that

=M 1 — oM
I< exp{—ce+ TE ijaj}.
j=1

Now choose the constant ¢ to be the minimizer of the bound on the above right hand

side:

LI (1 + o Me )
C= T 7108 —m 2 |
[|wl| oo M Zi:l wiaf

That is, eclwlleM _ 1 = % With this choice,

w

ISexp{—W{(l—i—;\}—i) log(l—k]f—g) —1}}. (5.3)

If we set a function g(\) as

gA) = (T4 XN)log(1+X) — A, A >0,

o2 Me
I < — w ) 4
—eXp{ kuwwg(aa)} (5:4)

A
g(\) > B log(1+ M), VA > 0.

then

We claim that

To see this, define a C? function on IR, as
f(A) :=2log(1 4+ A) —2X + Alog(1 + N), A>0.

We can see that f(0) = 0, f/(0) = 0, and f”(\) = AM(1 +A)"2 > 0 for A > 0. Hence
f(A) >0 and
1
log(14+ X)) —A> —5)\log(1—|—)\), VA > 0.

13



It follows that
A
g(A) = Alog(1+A) +log(1+A) — A > 510g(1+)\), VA > 0.

This verifies our claim.

The desired one-side inequality (5.2) follows from this claim and the bound for I in
terms of g.

When m = oo, the independence and the convergence of the series Z;’;l wja? tells

us that{Sy := Z?zl w;&; 152, is a Cauchy sequence in L*:

¢ J4
1k = Sellzx = (B(Sk = 50°)"" = (3 wio})"* < (Jwloe Y- w;03)"* =0
j=k J=k

as k,{ — oo. Then by the Cauchy Test in L? (see e.g. [21, p. 258]), the sequence {S}
converges in L? to a random variable. Since the convergence in L? implies the almost sure

convergence, we write the limit random variable as ) j=1 w;&; and can understand the

surely

>ep cuiniz, {

'S
> wig
7j=1

V4
> wig

=1

> 6} < ligm inf Prob{

{ > 5}.
Prob{ Z w;&;
(=00 2M max;—1,. s w; D i1 Wil

convergence of the series as in L? or almost surely. Thus, for every € > 0, we have almost
> wis
=1
Then the inequality (5.2) for ¢ < oo implies
> 5}
j=1
M
< limianeXp{— c log(1—|— 6752)}
€ Me
. zexp{_i 1og<1 " 7> }
2||wl|oo M sy wio}
This proves our inequality. []

Remark. (a) From (5.4), Bennett’s inequality [5, 20] follows.

(b) Corollary 3 always implies the Bernstein inequality up to a constant of 2/3 which

states for i.i.d. random variables &1, ... ,&,, with mean p and variance o that

2

1 — me
Prob< | — P— | > <2 —_— .
{‘ng “‘ 8}— exp{ 2<a2+%Me>}
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To see this, notice that

. VA>0. (5.5)

Then (5.1) implies

Prob L if >ecp <2e me?
T — - Xpy —————————— ¢
m i H = =% 2(02 + §$ Me)

This is the Bernstein inequality except for a loss of two-thirds. The Bernstein inequality
can also be derived from (5.4) using the lower bound: g(\) > 3)\2/(6 + 2)).

(c) When the variance is small, the estimate in Corollary 3 (with &1, ..., &, identical)
is much better than the Bernstein inequality. In particular, when the variance vanishes,
ie., 03 = 0 for each j, then Corollary 3 yields - > [&; — E(&)] = 0 in probability
1 while the Bernstein inequality only gives the estimate %|E;n:1 & — E(ﬁj)” < & with
confidence 1 — 2e~me/M

Because of its importance for function reconstruction, Theorem 3 has been developed
in greater generality than needed for our immediate use in Theorem 4 below.

Bennett [5] has an early version of our Theorem 3. One may see Devroye, Gyorfi
and Lugosi [12, p. 124] for an account which sketches a proof of (5.3) but with these
differences: they have no weighting, there is an extra factor 2, and they use an average of

the non-identical random variables. Also, Colin McDiarmid ”concentration” Theorem 2.7

[17] is along the same line. The last two references were given to us by David McAllester.

§6. Sample Error

Define
Ex(f) = wa(f(z) — f*(x))*.

TET
This is the empirical error (4.2) with y, = f*(x). Then the corresponding minimizer for

(4.3) becomes
frey =g i {E(7) 41115 (6.1

K.t

We see from Theorem 2 that fz - exists and is unique when K3 - D,, K- ;+7Kj7 ; is invertible.
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Even when the variance vanishes, fz - is not f* in general. But the error || fz ., — f*||?
is not caused by noise. It is a deterministic quantity. We shall bound this error in Section

7.

With the weighting, our assumption takes the following general form.

Special Assumption. For each x € X, p, is a probability measure with zero mean

supported on [—M,, M, with B,, := (3 wng)l/z <o

TET
The weighted richness is defined as

1
Now = Inf ||DZE=0)le2@ /|v]lp2 - 6.2
wim i Db sl /ol ©2)

1 1
When )‘E,w < o0, we have HDQ%SEJCHZQ(g) = ||D&K§7¥CH£2(§) > AE,wHCHﬁ(E) for f =

> ici ¢t K. Hence the sampling operator Sz satisfies

1 )\Ew
1D3Sz flleagey > 22l p e gy (6.3)

[rae|

Corresponding to (3.6), the weighted variance of the system is defined as

02 = Z W02 Z K(t,x)*w, (6.4)

TET tct

1 1
which is bounded by HKZ,5D51HQ M w02 < HKE,EDz%HQB?H-

TET

The sample error in the form of ||f,, — fz,|/? involves samples y = (y,)zez, the
weighting w, the point sets 7, ¢, and . We can apply Theorem 3 to estimate the sample
error. To do this, we use the expressions for f, ., (and fz ) given in Theorem 2. But we

shall replace L by the linear operator L., : £2(Z) — ¢?(t) defined by

1

Ly = (KzDuKyz+7Ksy) Ky D (6.5)

’

It improves our error estimate and is natural: for the rich data case with v = 0, L,, is
1
exactly the Moore-Penrose inverse of the operator Dg K ;.
Under the assumption that K; -D,, K ; + K77 is invertible, our error bound is given

by means of the quantity

-1
ko= || Kyl | (K z Do ks +vKpg) |17 (6.6)

16



Theorem 4 (Sample error). Suppose K; 7D K55 + 7Kg is invertible.  Under the
assumption (3.3), let f, ., = 3 ,.;ctK;: be the solution of (4.3) given in Theorem 2 by

c¢= Ly. Set L,, and k as in (6.5) and (6.6) respectively. Then for every € > 0,
3 5
log(l+ —) ;.
)

2
w

Prob{”fz, — farllk < Kol + 6} >1- exp{—
T 2| K g L] || Lo || B,

Proof. Applying Theorem 2 to the sample f*|z, we see that fz ., = Zte;(L(fﬂ—))th

Hence
fars = frr = YLy = F12)) Ko = D2 (LuDi (= £712)) Ko
and
1 fory — fonlli = <Kg’szDé (y — f*|5),LwDé (= F12)) - (6.7)

The expression (6.7) yields the bound
1fary = fro i < 1Kz Lull 1Lwll 1D (v = £ 12) 2 @) < 1Kz Lull | Lol By

From (6.7) we also find that
|%( < H”KE,EDU/ (y - f*|5) ||?2(f)

||fz,7 - fiﬁ

But
2
1K 2D (y = 1712 12 = Z{Z(Z/w - f*<”3)><K¥,EDwel"et>e2(¥)} '

tet “TET

Since the random variables {y, — f*(z)}.cz are independent and have zero means, we see

that E((yz — f*(2))(yar — f*(2'))) = 6z,0:02. It follows that
E(”fz'y - fiﬂ’%{) < %Z ZwiaiK(t,x)Q = KO,,.

tet TET
The one-side inequality of Corollary 3 with m = 1, w = 1 asserts that for a single

random variable £ satisfying |£| < M, there holds for every € > 0,
€ Me
Prob{¢ — E(¢) > ¢} < exp{—m log(1 + 02—(@)}

17



The random variable £ := || f,, — fz4 || satisfies 0 < & < M := [|[K;;Ly|| | L | B}, almost
everywhere, E(£) < ko2 and 02(§) < ME(§) < Mko?. Applying the above inequality,

we see that with confidence at least 1 — exp{— SR ‘ﬁ I log(l + %) }, there holds
W w w

2
Tw

52||fz,’y_fi,7||%(SE(g)—*—gSK/O—Z}—*—g' D

Remark. Another sample error estimate can be given by the Markov inequality which
states for a nonnegative random variable £ and t > 0 that Prob{{ >t} < E(§)/t. Applying
this to the random variable £ = || f,~ — fz+||% and t = E(£) + &, we have

2 2 Koy,
Prob Hfzy’y_ff,’)”KSK’aw—i_s zl—m
This bound is better when ko2 is much smaller than e.
Proposition 2. The operator L,, defined by (6.5) satisfies
_ 1/2
1 IS el
| Ly|| < min ) ’ :
)‘E,w v
Also,
—1
-1 ) 1 ||Kgyg |
(D 1K) ] < mind 55— -
T, w g

Proof. Let v € (*(%) and u = L,v. Then

(K 2D K+ I 1) u = K 2D,

x,

Bounding the inner product

1
2

(KgzDuwBgg+ 7Kg uu) o =< KgzDiv, v >pg=< 0, DiKyju >pm)

from below by inner products with the positive definite operators K; 2Dy Kz 7 and vKG 3

1
separately, we see that ||Dg Ky zullez)|lv]le2(z) is bounded from below by ﬁ”u“?z@
t,%

1 1 1 1
and by < DAKyju, DiKygu >em= |DiKeiulbag > Aswlulle gl DhKy julle. I

follows that
s |
[ull g2z < min Tllwlloo szl = lvlle@).

18



Thus the required estimate for ||L,| follows. The proof for the second statement is the

same. L]

Remark. When t = 7, we do not require the standing hypothesis 1 for Theorem 2 and
Theorem 4. Take

1

L=1Lg;= (K ++D,") . (6.8)

(the parameter y can be zero when K37 is invertible) Moreover, we have
_ -1
IZzzl < (/IE T+ 7/ lwllee)

Proposition 2 combining with Theorem 4 presents estimates for the sample errors
| f2~ — fz~|I* (for both rich and poor data cases). Even in the rich data case, the intro-

duction of the parameter v improves the well-posedness of the system in Theorem 1.

Proposition 3. Assume (3.3) and that K; D, Kz 7 +vKzz is invertible. Then for every

0 < < 1, with confidence 1 — § we have the sample error estimate

= 5 (6.9)

(2Kl LB 1
Vo = Fonl% < Esamp := £02 a ( pibul 1w lBu ) o )

where L,, and k are given by (6.5) and (6.6) respectively, and « is the increasing function

defined for w > 1 as a(u) = (u — 1)logu. In particular, Esamp — 0 when v tends to

2

w — 0.

infinity or o

K——Lw Lw Bz
1(2” rilull I1Lw] “Jog ) > 1. Then

Proof. Choose u = o™ —

2
KOy,

2| K Lo | | Lo || BE,

1
(u—1)logu = log 5

Set ¢ = ko2 (u — 1). We have € > 0 since u > 1. Also, there holds

w

2

E RO
1 1+ —) =— w — 11 = log 4.
o8(1+207) = 3R, L LB U D esu = loe

3
2| KLl ([ L[| BE,

w

It follows from Theorem 4 that ||f,, — fz-||% < ko% 4+ & = koZu with confidence 1 — 4.

But maau = Esamp- Then the stated sample error estimate follows.
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When ~ tends to infinity, we see that y*k — || K7 7| HK{; 1? and || K5z Lol || Lo || —
1 1 ’
| K5 D2 || HKg;KMD@H while ko2 — 0, hence Esamp — 0.

When afv — 0, we have /10121} — 0. The definition of the function « tells us that v — oo
QHK?,?LU)H ”LwHBi) log %

and ko2 = T Tog . Tt follows that
5 U 5 2log %
Esamp = KO, u = mHKz,szH ||Lw||BwW
which converges to zero. [

§7. Regularization Error and Integration Error

We finish the proof of Theorem 1 and give some estimates for the error || fz, — f*||*.
The first estimate depends (linearly) on the regularization parameter v and we call it

regularization error. Recall that f* € Hy ;.

Proposition 4. Assume the standing hypotheses. If f* € Hy ; and Az, > 0, then

v = LA 1%
R

T, w

Proof. According to the definition of fz ., since f* € H ; we have

Ex(fa) + W fanllic < &)+ f" k-

It follows from the fact Ez(f*) = 0 that

a7 < ¥ 1% (7.1)
and
Ex(frr) <N %- (7.2)

* 2 % * .
But & (fz4) = > ez Wa (fz4(2) — f*(2))” = ||DES7(fz — f )H%(E). Together with
(6.3) and (7.2) this implies

A2 ey = FI%
K7 £l

Y% =

20



Then the desired estimate follows. []

Proof of Theorem 1. Since v = 0 and w = 1 in Theorem 1, the expression for f, follows

from Theorem 2 and we see from Proposition 4 that f* = fz . Moreover, the operator

L, = L in Theorem 4 becomes (KE,EKE,E)AK_

77 the one given in Theorem 1. Also,

Since Az = Az > 0, Proposition 2 yields || L, | < 1/Az and || (K;’EKE’E)_IH < 1/)2.

Putting all these into Theorem 4, we know that for every € > 0,

2

N ENZ €
Prob{||fZ —f H%{ < ko? —1—5} >1-— exp{—W log(l + @)}

Il 5 7l

Here v < 3

. This proves Theorem 1. L]

For the general situation including the poor data case, our estimate will be given
under a Lipschitz continuity assumption involving the Voronoi of X. We call it integration
error because the estimate comes from bounding the integral over X by sample values at
x.

Let X = (X,)zez be the Voronoi of X associated with Z, and w, = px (X,).

Define the Lipschitz norm on a subset X’ C X as

1f(s) = f(u)]
: N = fllpee(xy + sup . 7.3
I lipey = 1o + sup 2l (7.3)
We shall assume that the inclusion map of H . ; into the Lipschitz space satisfies
> vez Wall FIE;
Cs:= sup c 5 Lip(X.) (7.4)
FEM 1 1%

This assumption is true if X is compact and the inclusion map of H ; into the space of
Lipschitz functions on X is bounded (This is the case when K is a C? Mercer kernel, see
[33]) In fact, if HfHLlp(X) < COHfHK for each f S HK,z’ then OE < Cgpx(X)

When K is a convolution kernel satisfying a mild decay condition, (7.4) also holds.

See Proposition 5 below and Example 5 in Section 8.
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Theorem 5. Assume the standing hypotheses. Let X = (X,).cz be the Voronoi of X

associated with T, and w, = px(Xy). If T is A-dense, Cz < 00, and f* € Hy 3, then

Proof. Let f € Hy ;. Then

(1) = S we(f@) — ()% = S () — £ (2))? / dpx.

TET TET
It follows that
If = F*1? < E(f) + I,

where I i= |, p fy, (F(2) = *(@))? = (f(u) = £*(u))2dpx (u)].

For each x € T and u € X,

|(f@@) = £ (@)* = () = £ @) S 20f = F i, 17— wlles arny-

Since 7 is A-dense, we must have ||z — u[/gee(rn) < A, otherwise u € X,/ for some 2’ # .

Moreover, px(X,) = w,. Hence

Iy <20 wallf = I jpx,) 1A < 2G5 f = FII%A.

TET

Take f to be fz .. Then
1fz = F717 < E(fz) + 205 oy — FPIEA.
This in connection with (7.1) and (7.2) implies
I fz = FXI? < AL IR+ 8C= ] F¥ 1A
This proves Theorem 5. [
From the proof of Theorem 5, we see that for f € Hy 7 and z € 7,
[, 1500 Pdox < px (Xl ey < 0l i,

Then the following holds.
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Corollary 4. Under the assumption of Theorem 5, there holds

IFI? < Callfllc.  Vf € Hyq

Theorem 5 and Theorem 4 (together with the bounds in Corollary 4 and Proposition

3) proves the following error estimate.

Corollary 5. Under the standing hypotheses and the assumption (3.3), let X = (X,)zcz
be the Voronoi associated with T and w, = px(X;). If T is A-dense, Cz < oo, and

[ € Hy 3, then for every 0 < 0 < 1, with confidence 1 — § there holds
%2 * *
1 fzy — [ < 2C5Esamp + 2|/ * (% + 16C5| f*||% A

where Esamp is given by (6.9) in Proposition 3.
Let us verify the condition (7.4) under some decay condition for K.

Proposition 5. Assume standing hypothesis 1. Let X = (X, ).cz be the Voronoi associ-
ated with T, and w, = px(X,). If each Ky is Lipschitz on X, satisfying
B; = SUI_)Z ||Kt||L1'p(XI) < oo, Bz:=supw, Z ||Kt||L1'p(XI) < 00,
reT tct tet TET
then

Cs < 4B;B;HKE}1H.
Proof. Let f =), ;¢ K; € Hy 7 and z € T. Then for ui,us € X,
[fur) = flug)] = > er(Ki(un) = Ki(ua)) | <Y lerl | Kol ip i,y 01 = ualles (-
tet tet
Also, ||fllzee(x,) < Doierledll Kellne(x,) < ZteZ|Ct|”Kt||Lip(Xz)' These in connection
with the Schwartz inequality tell us that

||f”Lip(Xz) < 2{2 |Ct|2||KtHLip(Xz)}1/2{Z ”K’ﬁHLip(xm)}l/2

tct tet

can be bounded by 2,/Bi{}",; |Ct|2||KtHLip(XI)}1/2‘ Therefore we have

> wallf i,y < 4Br D lee D wallKrllnipx,) ) < 4BsBsllelf,

TET tet TET
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But ||c|| < ||Kz__1||||f||%< Then our conclusion follows. O

2
£2(t) it

For the poor data situation, the integration error can be bad. In fact, if Kzzc =0
for some ¢ € (*(t), set f* = >, 5¢ Ky € Hyz. Then f*(x) = 0 for each z € T. Hence
fzy =0and | fz, — f*| = ||lf*[| for any v > 0.

Summarizing, our main goal of the error estimate is to bound the difference f, , — f*

(either [|fuy — f*Ilic or even || fuy — f*]z2 ). But

[ fary = PN < W fzry = frnll + 2y = F7

Each of the two summands on the right is estimated separately, the first via Theorem 4

and the second in two cases: Az, > 0 by Proposition 4; in general by Theorem 5.

68. Convolution Kernels
Some estimates for Az will be given for convolution kernels having || K- ZlH < o00. We
consider now the setting with X = IR", w =1 and ¢ = Z" (The more general situation of

X C IR" can be analyzed as in the discussion in Section 3).

The convolution kernels take the form:
K(s,u) =9(s —u), s,u€IR"™ with ¢ € L*(IR™) being continuous and even. (8.1)

For these kernels, K(s,s) = ¥(0) for any s. Then K is Mercer if and only if ¢ has
nonnegative Fourier transform ¢(¢) > 0. See [6]. The Gaussian is an example of a

convolution kernel. More examples can be seen in [3, 8, 14, 27, 32].

Proposition 6. Let X = IR", ¢ = Z", and K be as in (8.1). Then both ||K7;|| and
HKE_,El || are finite if and only if for some 0 < a < b < 00,
a< ) P(E+2m) <b, Ve (8.2)
JEZ™
Note that the function >, zn (€ 4 2jn) is 2m-periodic. From Proposition 6, one
can easily find "kernels” which satisfy our standing hypotheses but are not Mercer kernels
on X: take 1 whose Fourier transform is not nonnegative but satisfies (8.2) for positive
constants a, b.
The proof of Proposition 6 follows from the expressions for [|Kzz|| and HKz_ ;H in

Lemma 1 which give the sharp bounds for a and b.
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Lemma 1. Let t = Z" and K(s,u) = (s — u) with some continuous even function

Y € L*(IR") satisfying (8.2) for a,b > 0. Then standing hypothesis 1 holds. In particular,

(a) 1K) = \ S g D + 27) \ <b

I,o°

<
I,o°

) 151 = | (e e+ 20)

Proof. Note that

Q=

< KE,EC7C >£2(Z) = Z w(t - t/)ctct/ = (27-(-)_77‘/ 1&(5) th€i§ t dé-
t,t'ct n el
2
= (2”)_"/ (Z P&+ 2€7r)> > et de >0
ot Meze tet

Then K735 is positive. From the identity

1/2
{(27)_n/[ ] |Z Cte_zg'tfdf} = llellez Ve e £2(1),

tet
we see that the upper bounds for the norms hold. The lower bounds can be seen by
taking for each ¢ > 0, a sequence ¢ € ¢?(f) whose Fourier series is the characteristic
function of the set {¢ € [m,7]" : [F(§)| > | F||~ — e} Here F(§) = 3. czn (£ + 2jm) or
(jezn $(6+25m) O

Remark. The same norm expressions hold when one scales the set Z" by a constant
H > 0: ift = HZ" and U(§) := Y ;czn V(& + 2jm/H) > 0, then K7z = H™"||¥| ..
and || K[| = H™||[ W~

1
"t H Le="
Turn to the Shannon example. Here K is a convolution kernel generated by the sinc

function ¢ whose Fourier transform ¢ is the characteristic function of the interval [—, 7).

Example 4. Letn =1 and ¢(z) = ¢(x) = sin(nz)/(7mx) be the sinc function and K given
by (8.1). Then fort = Z, {K;} ez is an orthonormal basis of H .3, | K7 7l| = ||K{z1|| =1,

and

Hyz= {Z%% . c€ EQ(Z)}.

JEZ

Moreover, as subspaces of L?(IR), we have
Hi =Hgz=V={f € L’(R): f(§) =0 V& [-7 7}
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Proof. Take the inner product on V to be the one inherited from L?(IR), we see from the

Plancheral formula and the fact 1/3(5) = X[—r,x that
< KtaKs >re= (27T)_1 < I?tvf?s >re2= (27T)_1/ |1[}(§)|26i£(t_5)d§ = 1/1(75 - S) = K(t7 S)'
R

Thus, < K, Ks >12=< K¢, Ks >k. Also, K, = e‘“fz/;(f’) is supported on [—m, 7], hence
K; € V for any t. Moreover, for each f € V, we have f supported on [—7, 7] and given on
this interval by >, 7 cje”¢ for some ¢ € (2. Hence f = diez cjl?j, and f =3}, 7 ¢ Kj.
Therefore, Hx = Hygz = (Vi || - [|L2(wr))- []

Denote G, o :=2"(1+n%/2/(a —n)). For £ € (0,1/4), we set in the following
Cc_ = (cos L7 — sin Ew)n, Cy = (2 — cos L7 + sin Ew)n.

We expand the setting now where we do not have a kernel. In this new setting, just
a continuous function 1 € L?(IR™) (not necessarily even) is involved. Then the operator
K 7 is replaced by Cy g : £2(f) — £2(T) defined as
(Cfia)m = Z Y(x —t)ay. (8.3)
tet
The constant Az is also defined similarly by
Az = inf ||
vEL2(t)
Theorem 6. Let 0 < L < 1/4,t=2Z", h > 0 with 1/h € IN, and u = {u;};cz» satisfy

Cavlle@/llvlleg- (8.4)

|wj — hjllgse (rny < Lh for every j € Z". Suppose ) is an L? function on R" satisfying
[P < Co(L+ €)™ VEeR™ (8.5)

for some Cy > 0, > n. Define C; ; by (8.3) and Az by (8.4) with T =u. Then

[Cagll < 204 CoCiah ™2, (36)
If moreover, for some 0 < cg < Cp, h < (%)2/(204—70 and
? N2
D lE+2m| = cg ¥, (8.7)
jezr

then the constant Ay can be bounded from below as

C_c
> 2=

Ay > h—"/2,

Note that Cy depends on «. For general T, we get the following consequences.
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Corollary 6. Let t = Z", and 1 be an L? function on IR" satisfying (8.5) and (8.7) for

C_ck )2/(2a—n) and

some a > n,0 < ¢y < Cy. If T is A-dense for some 0 < A < £(75C+020

0 < L < 1/4, then
C_C()

21+n /2£ TATE

Ap >

Proof. Since A/L < 1, we can choose some h satisfying A < Lh < 2A and 1/h € IN.
Then T is Lh-dense. For each j € Z", there is some u; € T such that ||hj —u;|| g (rn) < Lh.

It means that @ := {u;};cz» satisfies the requirement in Theorem 6. As h < 2A/L <

( 0703 )2/(204—71)

50, 070 , we conclude by Theorem 6 that for each ¢ € £2(%),
o~n,x

CCO

ICz el = [ICazcllee@) = W% lell g gy

Hence Mz > <= coh__z <o P3N ]

21+n/2

Now we can see that Proposition 1 follows from Corollary 6: (3.11) in connection with
(3.10) tells us that >, 7n (€ +2§m)|2 > [(€)|? > ¢ for € € [—m,71]™, hence (8.7) holds.
Standing hypothesis 2 requires the norm [[KZ7||. In the current general setting, we

can estimate the norm Cz 3 which involves the separation of 7, defined as
Sepz = inf ||z — y||pec(rn)-
Pz #y@” ylle (R™)

Corollary 7. Lett = Z" and 1 be a function on R" satisfying (8.5) for some Cy > 0, v >
n. For any discrete set T C X and 0 < £ < 1/4, we have
4 2 \"?
HCE’ZH <204 CoCh (max{@, Z}) )
Proof. Let h be a positive constant with 1/h € IN which will be determined later. Take a
set of multi-integers ¥ := ([ — 1, 2= + 3] N Z) We separate the set 7 into {Z(™},cx

ac 2 E
where () = TN (hZ" + h€y,). Here for a € ¥, Q, = ((—£,L]"+2La) N (=1, 3]™. Then

HZ ayp(z — t)l|j2(§) = Z HZ ap(z — t)”i(g(a))'
tet a€X (et
The definition of Sep- tells us that for each o € ¥ and j € Z", the set T(*) N (hj+hQy)

contains at most S := ([(2£h)/Seps] + 1)" points. Thus we can divide the set Z(*) into S
subsets {xk )}k . such that T _(a) N (hj+ hQ,) contains at most one point for each j € Z".
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Fix a and k. Then there are J C Z" and {6;} C [-L, £]™ such that
7. = 2Lah + {hj + hb;}jc .

Let ©(® = {hj + hb;}jcz» where §; = 0 for j & J. Consider the linear operator Ca 1
defined by (8.3) with Z replaced by @™ and ¢ by ¥(2Lah +-). As |(2Lah + ) (€)| =
4)(€)], we apply Theorem 6 and conclude that
1D citr@ =Dl e < 1€ zell o < 20+CoCaah™ |l -

tet

This is true for each a, k. Therefore,
S
2 2
’lci,fc‘|g2(5) = HZCW@ - t)Hp(E) = Z Z”Z C{lj](.’lﬁ - t)H£2(E§:‘))
tet aeX k=1 tet

can be bounded by (2 + 1/(2£))”S(20+000n,ah*"/2HCHKQ(;))Q. Hence

L+1 N 2+1/(2C0)
Sepz h

2 n 1 )n/2.

)% <20, CoCha

When Sep; > 2L, we choose i = 1 and obtain [|C; 7| < 2C4CoCra(2/£)".
When Sep < 2L, we choose some h satisfying 1/h € IN and Sepz/(2£) < h < Sepz/L
and obtain [|C; || < 2C+CoCh (4/ Sepg)n/Q. This proves Corollary 7. [

Remark. Note that Az < ||C;;l|. Then we see from the lower bound for Az given in
Corollary 6 and the upper bound for ||C; || stated in Corollary 7 that our estimates are

sharp up to a constant depending on the ratio A/Sep.

Remark. The lower bound in Corollary 6 and the upper bound in Corollary 7 can be

established for general convolution kernels without the decay (8.5).

Remark. One may consider more general t. For example, choose t to be a subset of R"
such that {e™*"}, ; is a Riesz system in L*([—w/H,w/H]") for some H > 0. Then similar
upper and lower bounds hold with constants depending on H. Here for a Hilbert space H,
we say that a sequence of elements {¢; : t € t} C 'H is a Riesz system in H if there are two
positive constants C1,Cy > 0 such that
Cillell gy < Hzct¢t||H < Collcll 23y, Ve € (7).
tet
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The Riesz system is called a Riesz basis of H if moreover, span{¢; },.; is dense in 'H.

To prove Theorem 6, we need Kadec’s 3-Theorem. See [30], and [24] for the multi-
variate version:
Let £ < 1/4. If ||2; — jl[¢oe(mr) < L for each j € Z", then

2
< [ > L

@) 212y € S

jezr
< m)"CEfe(cmmgmys VF € L2([=m,7]").

(8.8)

This is the frame property of the Riesz basis {e=% %} ;czn of L2([—m,71]").
Proof of Theorem 6. Notice that

Y 1+ < Chian

JjeEZ™

Let x,t € IR". Apply the inverse Fourier transform, we obtain for ¢ € £2(%),

Satta—t) = @0 [ (30T et )erae

_ n

tet tet
Denote (&) := Y, g cee” ", g(&) = U(€)é(€). Then the above expression is
-n -z -n 20 iz i 2.
eny [ g@ettas= Yo em [ gler e
" tezn =
If we denote for ¢ € Z",

)= {

jeZ™

2}1/2

then ||Cy zcllez@) = [ Xosez cttd(u — t)||p2 @) can be bounded from above and below as

(2m) " /[_1 g(€ + 20m [R)eiS ™ de

T in
7ot

L9 — Y L9 <lCarcllem <Ilo(e)+ Y, Llg).

LezZ™\{0} tez™\{0}

Let us first derive upper bounds from (8.5) by means of Kadec’s i—Theorem (8.8).
The condition on @ tells us that {u;/h};cz» satisfies the condition for (8.8). Applying the
upper bound of (8.8) to the functions g({/h + 2¢w/h), we know that

o 4 n
Ii(g9) < (V2mh) C+||Q(E + T)HLQ([—W,W]")a VieZ".

29



As é(€) is 2m-periodic, ¢(€ + 20w /h) = ¢(§) because of 1/h € IN. Then we see that
h_n/2||g(§/h’ + 2£7T/h)HL2([—7T,7T]") is

20w

Hg(£+ —

2€7T
)

Hw 2T e(e)

L2([_%7% LQ([_%a%]n)

2 1/2
<{ = ||ws+2sw+T 3T A

s€[—1/(2h),1/(2h)]™

If we set the quantity A}f as

w 267’(’ 1/2
Aj ::{ ) b6 + 25w + == 1 PR >} !
[ 1/(2m) 1/ (2h)]"

we find that

Ii(9) < (V2rh) " CL AV ||E(€) <hPCLAY el oy

HL2([—7r,7T]")

By the decay condition (8.5), we have A < Cy/Ch.a , and
n 1
Y4l S (/h+1)"PC 0+ ‘2’;;) < hoT"2C0Ch 0
LeZ™\{0} LeZ™\{0}

which yields

> Lilg) < hTCLCCnallcl 2y
tezm\{0}

Thus, we have
ICazcllem <To(g) + D Ii(g) < 204 CoChah™||cl| 2 5.
Lez"\{0}
This proves (8.6).

Next we provide a lower bound for Iy(g). Apply the lower bound of (8.8) to the
functions g(§/h), we find

In(9) = (V2rh) " C_||gll L2(—r /h,m /1)) -

Observe that

gl L2 ((=r /)y = /[ }w(f—f—ZSW } 6(&)|2de.

) ] Se[_%_'_ %]n

L
' 2h

N
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But for ¢ € [—m, 7],

3 [De+2sm)| < Y CR(L+ ¢+ 28m]) 72 < 20,00

s@l—3n+1,55— 3" |s|>1/(2h)
This in connection with (8.7) implies
HgH%Q([—ﬂ'/h,ﬂ'/h]") > (5 — Cgcn,aha)H6H2L2([—7r,7r}”)'

It follows that

Io(g) > b "2C_ \/03 — C§Cnah® el -

When h*~"/2 < C_c2/(5C+C3C), o), we have ¢ — C3C,, oh® > c3/2, and

G —n
> Llg) <(1-1/V2)Io(g),  Iolg) > 7%0—71 2|l g2 gy
Lez™\{0}

Therefore,

1 C_C()
1Cz zcllezmy > EIO(Q) 2 5

h_n/2|\CHe2(z)-

Hence Az > %h_"/ 2 and the proof of Theorem 6 is complete.

[

We study for the convolution kernel the last quantity Cz required by (7.4). We shall

apply Proposition 5 involving the decay of the kernel.

Example 5. Let X = R", t = Z", X = (X.).ez be the Voronoi associated with T and

wy = px(Xz). If px is the Lebesgue measure, T is A-dense, and v is a continuous even

A~

function on R" satisfying > ;zn ¥(§ + 2jm) > ¢ > 0 for every § and
[(@)| + V()| < Co(1 + |z[)~

for some Cy > 0, > n, then for the kernel K(s,u) = ¢(s — u) we have

&}

Cj S 8(1 + n) (4n)o‘ (zacn,a + 3n) (Cn,a + 1) C
0

(A +1)2°,

Proof. Let t € t and x € T. Then the decay condition gives

HKtHLip(Xz) < Co(1++v/n)(1+ inf . ]u|)_a < Co(1++/n) (14 max{0, |x—t|—\/ﬁA})_a.

uceX,—
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It follows immediately that

B; < Co(1+ v/n) Sup Z 1+ max{0, [y — t| — vnA}) "

is bounded by Co(1 + /n)(v/n(A + 1))a (2°Ch 0 +3™).

Concerning Bz we fix t € ¢, and see from w, = px(X,) that

waHKtHLlp(X ) < ZC’O (1+ \/_)/ (14 max{0, |z — t| — vVnA}) “dpx

TET TET X

can be bounded by Co(1 + v/n) [y (1 + max{0, |y — t| — 2\/nA}) ““dpx. As px is the

Lebesgue measure, the integral is bounded by

/ ) (1 4+ max{0, |y| — 2v/nA}) “dy < (2 + 4v/nA)*Cy o + (4y/nA)".

Therefore,

Bz < Co(1 +vn)(2+4v/nA)* (Cp o + 1).

Then the estimate for Cz follows from Proposition 5 and Lemma 1. L]

More general decay conditions such as the Wiener amalgam spaces [15, 2] can be used

for the condition (8.5) on 1 or the decay of p,.

69. Estimating the Operator Norms for Compact Domains

When X is compact, the richness Az can be easily bounded from below. Moreover, it

will be shown that Az — oo when T becomes dense. Denote
N, (Z) :=sup{d € IN : for each x € X, there are (x;)¢, C T satisfying |z; — x| < o}.
Proposition 7. Let t = (t;);_, be finite. Then for sufficiently small o > 0 there holds

| K (u,t') — Vtct,ue X with |u—t/ <o (9.1)

"l = 2SHK——1||
for each t' € t. In this case,

N, (T)
2|k 2| K|
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In particular, Az — oo when N, (T) — 0.

Proof. The continuity of K tells us that for sufficiently small o > 0, (9.1) holds for each
t et

Let 0 < 0 < 2Sep;. By the definition of N,(Z) =: N, for each ¢t € ¢ there are
(uij)) ", C T such that \u —t| < 0. As o < 3Sepz, we know that (u,gj));y:lﬂ(ug))J =0
when t #£ t'.

Fix j € {1,...,N}. The set 7V = (uﬁj))teg satisfies |u§j) —t| < o. By (9.1), we see
that

1

=Y e (K@, ¢) - K(t,1))| < HCHM)W'
t,t

tet

(Kaw 1¢) w9 — (K

Therefore,
lellezgzy

Ve € 2(1),
2||K——1||

[Kz0 z¢ — Kizcllz @) <

and

1 e H£2(t)
| Kg 3¢l 2@y = c|[ g2
! RO 2 K

It follows that

lell 2y \*
| K tCHW(m) > Z | Kg tc||g2(u(a)) > No(z )(2||K ||)

Then our conclusion follows. []

§10. Extension to a Setting without a Kernel

Our study can be extended to a setting without a kernel K.

Let (H,|| - |[=) be a Hilbert space of continuous function on X, finite or infinite
dimensional. Let {¢; : t € t} be an orthonormal basis. Then H, ; is replaced by H and
Kj 7 by the identity operator on H, hence standing hypothesis 1 holds. Now the linear

operator C-; : (?(t) — (?(Z) is given by the matrix (¢;(z and only standing
x,t

TET,tEL’
hypothesis 2 is required, where C ; replaces K. ;. The main results are still true. For

example, take 0% := > 02>, ;(¢(x))?. Corresponding to Theorem 1, we have
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Theorem 7. Assume f* € H with H, X, p,{¢:},c; as above, y as in (3.3). If T provides
rich data, then the optimization problem argmingey Y., = (f(z) — yx)2 can be solved:
fo = Z ai¢s, a=1Ly and L= (C%’%CE’;)_ICEE.
tet

Moreover, for every € > 0, there holds

prob 1 |, < o rebzi- exp{_;;% log(1+ ?—f)}
T

Examples of finite dimensional spaces H include polynomial spaces for the purpose of
interpolation. Examples of infinite dimensional spaces include the Fourier series (the most
classical!); function spaces on a 2-dimensional rectangle (with eigenfunctions of Laplacian
being the orthonormal basis); and wavelet spaces (with an orthonormal basis of wavelets
or shifts of refinable functions).

Next suppose that {¢; : t € t} is only a Riesz basis of H. Then the mapping K :
(?(t) — 'H given by Kec = Y, .5 ¢1¢y is an isomorphism. This isomorphism plays the role
of K33 The setting is now similar to the one with standing hypothesis 1 satisfied. One
example is generated by a (stable, but not necessarily orthogonal) scaling function ¢ of a
multiresolution analysis in wavelet analysis. Take k € Z,f = Z", and ¢; = (2% - —t), the
scaled shifts of ¢. Then estimates for Az can be given as in Section 8, which would lead

to sample error estimates like Theorem 1. The regularization error and integration error

estimates can be obtained from the approximation properties of multiresolution analysis

10, 23].

Remark. In this paper we study the error || fz ., — f*||* (regularization error or integration
error estimates) under the assumption f* € H ki~ 1t would be interesting to have some
estimates for the error without this assumption. One situation is when Hy ; Is a closed
subspace of a RKHS Hy generated by a Mercer kernel K and f* € Hg. One may study

the error even for f* to be outside Hy, as done for the approximation error in [22, 26].
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