
ar
X

iv
:1

30
3.

23
14

v1
 [

cs
.L

G
]

 1
0

M
ar

 2
01

3

Mini-Batch Primal and Dual Methods for SVMs

Martin Takáč martin.taki@gmail.com

University of Edinburgh, JCMB, King’s Buildings, EH9 3JZ, Edinburgh, UK

Avleen Bijral abijral@ttic.edu

Toyota Technological Institute at Chicago, 6045 S. Kenwood Ave., Chicago, Illinois 60637, USA

Peter Richtárik peter.richtarik@ed.ac.uk

University of Edinburgh, JCMB, King’s Buildings, EH9 3JZ, Edinburgh, UK

Nathan Srebro nati@ttic.edu

Toyota Technological Institute at Chicago, 6045 S. Kenwood Ave., Chicago, Illinois 60637, USA

Abstract

We address the issue of using mini-batches in
stochastic optimization of SVMs. We show
that the same quantity, the spectral norm of
the data, controls the parallelization speedup
obtained for both primal stochastic subgradi-
ent descent (SGD) and stochastic dual coor-
dinate ascent (SCDA) methods and use it to
derive novel variants of mini-batched SDCA.
Our guarantees for both methods are ex-
pressed in terms of the original nonsmooth
primal problem based on the hinge-loss.

1. Introduction

Stochastic optimization approaches have been shown
to have significant theoretical and empirical advan-
tages in training linear Support Vector Machines
(SVMs), as well as in many other learning applica-
tions, and are often the methods of choice in prac-
tice. Such methods use a single, randomly chosen,
training example at each iteration. In the context of
SVMs, approaches of this form include primal stochas-
tic gradient descent (SGD) methods (e.g., Pegasos,
Shalev-Shwartz et al. 2011, NORMA, Zhang 2004)
and dual stochastic coordinate ascent (Hsieh et al.,
2008).

However, the inherent sequential nature of such ap-
proaches becomes a problematic limitation for parallel
and distributed computations as the predictor must
be updated after each training point is processed, pro-
viding very little opportunity for parallelization. A
popular remedy is to use mini-batches. That is, to use
several training points at each iteration, instead of just

one, calculating the update based on each point sep-
arately and aggregating the updates. The question is
then whether basing each iteration on several points
can indeed reduce the number of required iterations,
and thus yield parallelization speedups.

In this paper, we consider using mini-batches with
Pegasos (SGD on the primal objective) and with
Stochastic Dual Coordinate Ascent (SDCA). We show
that for both methods, the quantity that controls the
speedup obtained using mini-batching/parallelization
is the spectral norm of the data.

In Section 3 we provide the first analysis of mini-
batched Pegasos (with the original, non-smooth,
SVM objective) that provably leads to parallelization
speedups (Theorem 1). The idea of using mini-batches
with Pegasos is not new, and is discussed already by
Shalev-Shwartz et al. (2011), albeit without a theo-
retical justification. The original Pegasos theoretical
analysis does not benefit from using mini-batches—the
same number of iterations is required even when large
mini-batches are used, there is no speedup, and the
serial runtime (overall number of operations, in this
case data accesses) increases linearly with the mini-
batch size. In fact, no parallelization speedup can be
guaranteed based only on a bound on the radius of the
data, as in the original Pegasos analysis. Instead, we
provide a refined analysis based on the spectral norm
of the data.

We then move on to SDCA (Section 4). We show
the situation is more involved, and a modification to
the method is necessary. SDCA has been consistently
shown to outperform Pegasos in practice (Hsieh et al.,
2008; Shalev-Shwartz et al., 2011), and is also popular
as it does not rely on setting a step-size as in Pegasos.

http://arxiv.org/abs/1303.2314v1

Mini-Batch Primal and Dual Methods for SVMs

It is thus interesting and useful to obtain mini-batch
variants of SDCA as well. We first show that a naive
mini-batching approach for SDCA can fail, in partic-
ular when the mini-batch size is large relative to the
spectral norm (Section 4.1). We then present a “safe”
variant of mini-batched SDCA, which depends on the
spectral norm, and an analysis for this safe variant that
establishes the same spectral-norm-dependent paral-
lelization speedups as for Pegasos (Section 4.2). Simi-
lar to a recent analysis of non-mini-batched SDCA by
Shalev-Shwartz & Zhang (2012), we establish a guar-
antee on the duality gap, and thus also on the sub-
optimality of the primal SVM objective, when us-
ing mini-batched SDCA (Theorem 2). We then go on
to describe a more aggressive, adaptive, method for
mini-batched SDCA, which is based on the analysis of
the “safe” approach, and which we show often outper-
forms it in practice (Section 4.3, with experiments in
Section 5).

For simplicity of presentation we focus on the hinge
loss, as in the SVM objective. However, all our results
for both Pegasos and SDCA are valid for any Lipschitz
continuous loss function.

Related Work. Several recent papers consider the
use of mini-batches in stochastic gradient descent,
as well as stochastic dual averaging and stochas-
tic mirror descent, when minimizing a smooth loss
function (Dekel et al., 2012; Agarwal & Duchi, 2011;
Cotter et al., 2011). These papers establish paral-
lelization speedups for smooth loss minimization with
mini-batches, possibly with the aid of some “acceler-
ation” techniques, and without relying on, or consid-
ering, the spectral norm of the data. However, these
results do not apply to SVM training, where the ob-
jective to be minimized is the non-smooth hinge loss.
In fact, the only data assumption in these papers is
an assumption on the radius of the data, which is not
enough for obtaining parallelization guarantees when
the loss is non-smooth. Our contribution is thus or-
thogonal to these papers, showing that it is possible
to obtain parallelization speedups even for non-smooth
objectives, but only with a dependence on the spectral
norm. We also analyze SDCA, which is a substantially
different method from the methods analyzed in these
papers. It is interesting to note that a bound of the
spectral norm could perhaps indicate that it is eas-
ier to “smooth” the objective, and thus allow obtain-
ing results similar to ours (i.e. on the suboptimality of
the original non-smooth objective) by smoothing the
objective and relying on mini-batched smooth SGD,
where the spectral norm might control how well the
smoothed loss captures the original loss. But we are

not aware of any analysis of this nature, nor whether
such an analysis is possible.

There has been some recent work on mini-batched co-
ordinate descent methods for ℓ1-regularized problems
(and, more generally, regularizes by a separable con-
vex function), similar to the SVM dual. Bradley et al.
(2011) presented and analyzed SHOTGUN, a paral-
lel coordinate descent method for ℓ1-regularized prob-
lems, showing linear speedups for mini-batch sizes
bounded in terms of the spectral norm of the data.
The analysis does not directly apply to the SVM dual
because of the box constraints, but is similar in spirit.
Furthermore, Bradley et al. (2011) do not discuss a
“safe” variant which is applicable for any mini-batch
size, and only study the analogue of what we re-
fer to as “naive” mini-batching (Section 4.1). More
directly related is recent work of Richtárik & Takáč
(2013; 2012) which provided a theoretical framework
and analysis for a more general setting than SHOT-
GUN, that includes also the SVM dual as a special
case. However, guarantees in this framework, as well
as those of Bradley et al. (2011), are only on the dual
suboptimality (in our terminology), and not on the
more relevant primal suboptimality, i.e., the subop-
timality of the original SVM problem we are inter-
ested in. Our theoretical analysis builds on that of
Richtárik & Takáč (2012), combined with recent ideas
of Shalev-Shwartz & Zhang (2012) for “standard” (se-
rial) SDCA, to obtain bounds on the duality gap and
primal suboptimality.

2. Support Vector Machines

We consider the optimization problem of training a
linear1 Support Vector Machine (SVM) based on n la-
beled training examples {(xi, yi)}

n
i=1, where xi ∈ R

d

and yi ∈ ±1. We use X = [x1, . . . ,xn] ∈ R
d×n to de-

note the matrix of training examples. We assume the
data is normalized such that maxi ‖xi‖ ≤ 1, and thus
suppress the dependence on maxi ‖xi‖ in all results.
Training a SVM corresponds to finding a linear predic-
tor w ∈ R

d with low ℓ2-norm ‖w‖ and small (empir-
ical) average hinge loss L̂(w) := 1

n

∑n
i=1 ℓ(yi 〈w,xi〉),

where ℓ(z) := [1 − z]+ = max{0, 1 − z}. This bi-
objective problem can be serialized as

min
w∈Rd

[

P(w) := 1
n

n
∑

i=1

ℓ(yi 〈w,xi〉) +
λ
2 ‖w‖

2

]

, (1)

1Since both Pegasos and SDCA can be kernelized, all
methods discussed are implementable also with kernels,
and all our results hold. However, the main advantage
of SGD and SDCA is where the feature map is given ex-
plicitly, and so we focus our presentation on this setting.

Mini-Batch Primal and Dual Methods for SVMs

where λ > 0 is a regularization trade-off parameter. It
is also useful to consider the dual of (1):

max
α∈Rn,0≤αi≤1

[

D(α) := −1
2λn2α

⊤Qα+ 1
n

n
∑

i=1

αi

]

, (2)

where

Q ∈ R
n×n, Qi,j = yiyj 〈xi,xj〉 , (3)

is the Gram matrix of the (labeled) data. The (primal)
optimum of (1) is given by w∗ = 1

λn

∑n
i=1 α

∗
i yixi,

where α∗ is the (dual) optimum of (2). It is thus
natural to associate with each dual solution α a primal
solution (i.e., a linear predictor)

w(α) := 1
λn

n
∑

i=1

αiyixi. (4)

We will be discussing “mini-batches” of size b, repre-
sented by random subsets A ⊆ 〈n〉 := {1, 2, . . . , n} of
examples, drawn uniformly at random from all sub-
sets of 〈n〉 of cardinality b. Whenever we draw such a
subset, we will for simplicity write A ∈ Rand(b). For
A ∈ Rand(b) we use QA ∈ R

b×b to denote the random
submatrix of Q corresponding to rows and columns
indexed by A, vA ∈ R

b to denote a similar restriction
of a vector v ∈ R

n, and v[A] ∈ R
n for the “censored”

vector where entries inside A are as in v and entries
outside A are zero. The average hinge loss on examples
in A is denoted by

L̂A(w) := 1
b

∑

i∈A

ℓ(yi 〈w,xi〉). (5)

3. Mini-Batches in Primal Stochastic

Gradient Descent Methods

Algorithm 1 Pegasos with Mini-Batches

Input: {(xi, yi)}
n
i=1, λ > 0, b ∈ 〈n〉, T ≥ 1

Initialize: set w(1) = 0 ∈ R
d

for t = 1 to T do

Choose random mini-batch At ∈ Rand(b)
ηt =

1
λt , A+

t = {i ∈ At : yi〈w
(t),xi〉 < 1}

w(t+1) = (1− ηtλ)w
(t) + ηt

b

∑

i∈A+
t
yixi

end for

Output: w̄(T) = 2
T

∑T
t=⌊T/2⌋+1 w

(t)

Pegasos is an SGD approach to solving (1), where at
each iteration the iterate w(t) is updated based on an
unbiased estimator of a sub-gradient of the objective
P(w). Whereas in a “pure” stochastic setting, the sub-
gradient is estimated based on only a single training

example, in our mini-batched variation (Algorithm 1)
at each iteration we consider the partial objective:

Pt(w) := L̂At
(w) + λ

2 ‖w‖
2
, (6)

where At ∈ Rand(b). We then calculate the subgradi-
ent of the partial objective Pt at w

(t):

∇
(t) := ∇Pt(w

(t))
(6)
= ∇L̂At

(w(t)) + λw(t), (7)

where

∇L̂A(w)
(5)
= − 1

b

∑

i∈A

χi(w)yixi (8)

and χi(w) := 1 if yi 〈w,xi〉 < 1 and 0 otherwise (in-
dicator for not classifying example i correctly with
a margin). The next iterate is obtained by setting

w(t+1) = w(t) − ηt∇
(t). We can now write

w(t+1) (7)+(8)
= (1−ηtλ)w

(t)+ ηt

b

∑

i∈At

χi(w
(t))yixi. (9)

Analysis of mini-batched Pegasos rests on bounding
the norm of the subgradient estimates ∇

(t). An un-
conditional bound on this norm, used in the standard
Pegasos analysis, follows from bounding

‖∇L̂A(w)‖
(8)

≤ 1
b

∑

i∈A

‖χi(w)yixi‖ ≤
1
b

∑

i∈A

1 = 1.

From (7) we then get ‖∇(t)‖ ≤ λ‖w(t)‖+ 1; the stan-
dard Pegasos analysis follows. This bound relies only
on the assumption maxi ‖xi‖ ≤ 1, and is the tightest
bound without further assumptions on the data.

The core novel observation here is that the expected
(square) norm of ∇L̂A can be bounded in terms of (an
upper bound on) the spectral norm of the data:

σ2 ≥ 1
n ‖X‖

2
= 1

n‖
∑

i

xix
⊤
i ‖

(3)
= 1

n ‖Q‖ , (10)

where ‖·‖ denotes the spectral norm (largest singular
value) of a matrix. In order to bound ∇L̂A, we first
perform the following calculation, introducing the key
quantity βb, useful also in the analysis of SDCA.

Lemma 1. For any v ∈ R
n, Q̃ ∈ R

n×n, A ∈ Rand(b),

E[v⊤
[A]Q̃v[A]] =

b
n [(1−

b−1
n−1)

n
∑

i=1

Q̃iiv
2
i +

b−1
n−1v

⊤Q̃v].

Moreover, if Q̃ii ≤ 1 for all i and 1
n‖Q̃‖ ≤ σ2, then

E[v⊤
[A]Q̃v[A]] ≤

b
nβb ‖v‖

2
, where

βb := 1 + (b−1)(nσ2−1)
n−1 . (11)

Mini-Batch Primal and Dual Methods for SVMs

Proof.

E[v⊤
[A]Q̃v[A]] = E[

∑

i∈A

v2
i Q̃ii +

∑

i,j∈A,i6=j

vivjQ̃ij]

(∗)
= bEi[v

2
i Q̃ii] + b(b− 1)Ei,j [vivjQ̃ij]

= b
n

∑

i

Q̃iiv
2
i +

b(b−1)
n(n−1)v

⊤(Q̃− diag(Q̃))v

= b
n [(1−

b−1
n−1)

∑

i

Q̃iiv
2
i +

b−1
n−1v

⊤Q̃v],

where in (∗) the expectations are over i, j chosen uni-
formly at random without replacement. Now using
Q̃ii ≤ 1 and ‖Q̃‖ ≤ nσ2, we can upper-bound the
expectation as follows:

≤ b
n [(1−

b−1
n−1) ‖v‖

2 + b−1
n−1nσ

2 ‖v‖2] = b
nβb ‖v‖

2 .

We can now apply Lemma 1 to ∇L̂A:

Lemma 2. For any w ∈ R
d and A ∈ Rand(b) we have

E[‖∇L̂A(w)‖2] ≤ βb

b , where βb is as in Lemma 1.

Proof. If χ ∈ R
n is the vector with entries χi(w), then

E[‖∇L̂A(w)‖2]
(8)
= E[‖ 1b

∑

i∈A

χiyixi‖
2]

(3)
= 1

b2E[χ
⊤
[A]Qχ[A]]

(Lem1)

≤ 1
b2

b
nβb ‖χ‖

2
≤ βb

b .

Using the by-now standard analysis of SGD for
strongly convex functions, we obtain the main result
of this section:

Theorem 1. After T iterations of Pegasos with mini-
batches (Algorithm 1), we have that for the averaged

iterate w̄(T) = 2
T

∑T
t=⌊T/2⌋+1 w

(t):

E

[

P(w̄(T))
]

− inf
w∈Rd

P(w) ≤ βb

b ·
30
λT .

Proof. Unrolling (9) with ηt = 1/(λt) yields

w(t) = − 1
λ(t−1)

t−1
∑

τ=1

g(τ), (12)

where g(τ) := ∇L̂Aτ
(w(τ)). Using the inequality

‖
∑t−1

τ=1 g
(τ)‖2 ≤ (t− 1)

∑t−1
τ=1 ‖g

(τ)‖2, we now get

E[‖w(t)‖2]
(12)

≤

t−1
∑

τ=1

E[‖g(τ)‖2]
λ2(t−1)

(Lem2)

≤ βb

λ2b , (13)

E[‖∇(t)‖2]
(7)+(Lem2)

≤ 2(λ2
E[‖w(t)‖2] + βb

b)
(13)

≤ 4βb

b .

The performance guarantee is now given by the
analysis of SGD with tail averaging (Theorem 5 of
Rakhlin et al. 2012, with α = 1

2 and G2 = 4βb

b).

Parallelization speedup. When b = 1 we have
βb = 1 (see (11)) and Theorem 1 agrees with the stan-
dard (serial) Pegasos analysis2 (Shalev-Shwartz et al.,
2011). For larger mini-batches, the guarantee depends
on the quantity βb, which in turn depends on the spec-
tral norm σ2. Since 1

n ≤ σ2 ≤ 1, we have 1 ≤ βb ≤ b.

The worst-case situation is at a degenerate extreme,
when all data points lie on a single line, and so σ2 = 1
and βb = b. In this case Lemma 2 degenerates to
the worst-case bound of E[‖∇L̂A(w)‖2] ≤ 1, and in
Theorem 1 we have βb

b = 1, indicating that using larger
mini-batches does not help at all, and the same number
of iteration (i.e., the same parallel runtime, and b times
as much serial runtime) is required.

However, when σ2 < 1, and so βb < 1, we see a benefit
in using mini-batches in Theorem 1, corresponding to
a parallelization speedup of b

βb
. The best situation is

when σ2 = 1
n , and so βb = 1, which happens when

all training points are orthogonal. In this case there
is never any interaction between points in the mini-
batch, and using a mini-batch of size b is just as effec-
tive as making b single-example steps. When βb = 1
we indeed see that the speedup speedup is equal to
the number of mini-batches, and that the behavior in
terms of the number of data accesses (equivalently, se-
rial runtime) bT , does not depend on b; that is, even
with larger mini-batches, we require no more data ac-
cesses, and we gain linearly from being able to perform
the accesses in parallel. The case σ2 = 1

n is rather ex-
treme, but even for intermediate values 1

n < σ2 < 1 we
get speedup. In particular, as long as b ≤ 1

σ2 , we have
βb ≤ 2, and an essentially linear speedup. Roughly
speaking, 1

σ2 captures the number of examples in the
mini-batch beyond which we start getting significant
interactions between points.

4. Mini-Batches in Dual Stochastic

Coordinate Ascent Methods

An alternative stochastic method to Pegasos
is Stochastic Dual Coordinate Ascent (SDCA,
Hsieh et al. 2008), aimed to solve the dual problem
(2). At each iteration we choose a single training
example (xi, yi), uniformly at random, corresponding
to a single dual variable (coordinate) αi = e⊤i α.
Subsequently, αi is updated so as to maximize the
(dual) objective, keeping all other coordinates of α

unchanged and maintaining the box constraints. At

2Except that we avoid the logarithmic factor by relying
on tail averaging and a more modern SGD analysis.

Mini-Batch Primal and Dual Methods for SVMs

iteration t, the update δ
(t)
i to α

(t)
i is computed via

δ
(t)
i := argmax

0≤α
(t)
i +δ≤1

D(α(t) + δei)

(2)
= argmax

0≤α
(t)
i

+δ≤1

(λn− (Qei)
⊤α(t))δ −

Qi,i

2 δ2

= clip
[−α

(t)
i

,1−α
(t)
i

]

λn−(Qei)
⊤
α

(t)

Qi,i

(3),(4)
= clip

[−α
(t)
i

,1−α
(t)
i

]

λn(1−yi〈w(α(t)),xi〉)
‖xi‖2 , (14)

where clipI is projection onto the interval I. Vari-

ables α
(t)
j for j 6= i are unchanged. Hence, a single

iteration has the form α(t+1) = α(t) + δ
(t)
i ei. Sim-

ilar to a Pegasos update, at each iteration a single,
random, training point is considered, the “response”
yi
〈

w(α(t)),xi

〉

is calculated (this operation dominates
the computational effort), and based on the response,
a multiple of xi is added to the weight vector w (cor-
responding to changing αi). The two methods thus
involve fairly similar operations at each iteration, with
essentially identical computational costs. They differ
in that in Pegasos, αi is changed according to some
pre-determined step-size, while SDCA changes it opti-
mally so as to maximize the dual objective (and main-
tain dual feasibility); there is no step-size parameter.

SDCA was suggested and studied empirically by
Hsieh et al. (2008), where empirical advantages over
Pegasos were often observed. In terms of a theo-
retical analysis, by considering the dual problem (2)
as an ℓ1-regularized, box-constrained quadratic prob-
lem, it is possible to obtain guarantees on the dual
suboptimality, D(α∗) − D(α(t)), after a finite num-
ber of SDCA iterations (Shalev-Shwartz & Tewari,
2011; Nesterov, 2012; Richtárik & Takáč, 2013). How-
ever, such guarantees do not directly imply guaran-
tees on the primal suboptimality of w(α(t)). Recently,
Shalev-Shwartz & Zhang (2012) bridged this gap, and
provided guarantees on P(w(α(t))) − P(w∗) after a
finite number of SDCA iterations. These guarantees
serve as the starting point for our theoretical study.

4.1. Naive Mini-Batching

A naive approach to parallelizing SDCA using mini-

batches is to compute δ
(t)
i in parallel, according to

(14), for all i ∈ At, all based on the current iterate

α(t), and then update α
(t+1)
i = α

(t)
i + δ

(t)
i for i ∈ At,

and keep α
(t+1)
j = α

(t)
j for j 6∈ At. However, not only

might this approach not reduce the number of required
iterations, it might actually increase the number of
required iterations. This is because the dual objective
need not improve monotonically (as it does for “pure”
SDCA), and even not converge.

To see this, consider an extreme situation with only
two identical training examples: Q = [1 1

1 1], λ = 1
n = 1

2
and mini-batch size b = 2 (i.e., in each iteration
we use both examples). If we start with α(0) = 0

with D(α(0)) = 0 then δ
(0)
1 = δ

(0)
2 = 1 and follow-

ing the naive approach we have α(1) = (1, 1)T with
objective value D(α(1)) = 0. In the next iteration

δ
(1)
1 = δ

(1)
2 = −1 which brings us back to α(2) = 0.

So the algorithm will alternate between those two so-
lutions with objective value D(α) = 0, while at the
optimum D(α∗) = D((0.5, 0.5)⊤) = 0.25.

This is of course a simplistic toy example, but the same
phenomenon will occur when a large number of train-
ing examples are identical or highly correlated. This
can also be observed empirically in some of our exper-
iments discussed later, e.g., in Figure 2.

The problem here is that since we update each αi in-
dependently to its optimal value as if all other coordi-
nates were fixed, we are ignoring interactions between
the updates. As we see in the extreme example above,
two different i, j ∈ At, might suggest essentially the
same change to w(α(t)), but we would then perform
this update twice, overshooting and yielding a new it-
erate which is actually worse then the previous one.

4.2. Safe Mini-Batching

Properly accounting for the interactions between co-
ordinates in the mini-batch would require jointly op-
timizing over all αi, i ∈ At. This would be a very
powerful update and no-doubt reduce the number of
required iterations, but would require solving a box-
constrained quadratic program, with a quadratic term
of the form δ⊤

AQAδA, δA ∈ R
b, at each iteration. This

quadratic program cannot be distributed to different
machines, each handling only a single data point.

Instead, we propose a “safe” variant, where the term
δ⊤
AQAδA is approximately bounded by the separable

surrogate β ‖δA‖
2
, for some β > 0 which we will dis-

cuss later. That is, the update is given by:

δ
(t)
i := argmax

0≤α
(t)
i

+δ≤1

(λn− (Qei)
⊤α(t))δ − β

2 δ
2

= clip
[−α

(t)
i

,1−α
(t)
i

]

λn(1−yi〈w(α(t)),xi〉)
β , (15)

with α
(t+1)
i = α

(t)
i + δ

(t)
i for i ∈ At, and α

(t+1)
j = α

(t)
j

for j 6∈ At. In essence, 1
β serves as a step-size, where

we are now careful not to take steps so big that they
will accumulate together and overshoot the objective.
If handling only a single point at each iteration, such
a short-step approach is not necessary, we do not need
a step-size, and we can take a “full step”, setting αi

Mini-Batch Primal and Dual Methods for SVMs

optimally (β = 1). But with the potential for interac-
tion between coordinates updated in parallel, we must
use a smaller step, depending on the potential for such
interactions.

We will first rely on the bound (10), and establish that
the choice β = βb as in (11) provides for a safe step
size. To do so, we consider the dual objective at α+δ,

D(α+δ) = − (α⊤Qα+2α⊤Qδ+δ
⊤Qδ)

2λn2 +

n
∑

i=1

αi+δi

n , (16)

and the following separable approximation to it:

H(δ,α) := − (α⊤Qα+2α⊤Qδ+βb‖δ‖
2)

2λn2 +

n
∑

i=1

αi+δi

n ,

(17)

in which βb ‖δ‖
2
replaces δ⊤Qδ. Our update (15) with

β = βb can be written as δ = arg max
δ:0≤α+δ≤1

H(δ,α)

(we then use the coordinates δi for i ∈ A and ignore
the rest). We are essentially performing parallel coor-
dinate ascent on the separable approximation H(δ,α)
instead of on D(α + δ). To understand this approx-
imation, we note that H(0,α) = D(α), and show
that H(δ,α) provides an approximate expected lower
bound on D(α+ δ):

Lemma 3. For any α, δ ∈ R
n and A ∈ Rand(b),

EA[D(α+ δ[A])] ≥ (1− b
n)D(α) + b

nH(δ,α).

Proof. Examining (16) and (17), the terms that do not
depend on δ are equal on both sides. For the linear
term in δ, we have that E[δ[A]] =

b
nδ, and again we

have equality on both sides. For the quadratic term we
use Lemma 1 which yields E[δ⊤

[A]Qδ[A]] ≤
b
nβb ‖δ‖

2
,

and after negation establishes the desired bound.

Inequalities of this general type are also studied in
(Richtárik & Takáč, 2012) (see Sections 3 and 4).
Based on the above lemma, we can modify the anal-
ysis of Shalev-Shwartz & Zhang (2012) to obtain (see
complete proof in the appendix):

Theorem 2. Consider the SDCA updates given by
(15), with At ∈ Rand(b), starting from α(0) = 0 and
with β = βb (given in eq. (11)). For any ǫ > 0 and

t0 ≥ max{0, ⌈nb log(
2λn
βb

)⌉}, (18)

T0 ≥ t0 +
βb

b

[

4
λǫ − 2 n

βb

]

+
, (19)

T ≥ T0 +max{⌈nb ⌉,
βb

b
1
λǫ}, (20)

ᾱ := 1
T−T0

T−1
∑

t=T0

α(t), (21)

we have

E[P(w(ᾱ))]−P(w∗) ≤ E[P(w(ᾱ))−D(ᾱ)] ≤ ǫ.

The number of iterations of mini-batched SDCA, suffi-
cient to reach primal suboptimality ǫ, is by Theorem 2
equal to

Õ
(

n
b + βb

b ·
1
λǫ

)

. (22)

We observe the same speedup as in the case of mini-
batched Pegasos: factor of b

βb
, with an essentially lin-

ear speedup when b ≤ 1
σ2 . It is interesting to note that

the quantity βb only affects the second, ǫ-dependent,
term in (22). The “fixed cost” term, which essentially
requires a full pass over the data, is not affected by βb,
and is always scaled down by b.

4.3. Aggressive Mini-Batching

Using β = βσ is safe, but might be too
safe/conservative. In particular, we used the spec-

tral norm to bound δ⊤
Qδ ≤ ‖Q‖ ‖δ‖

2
in Lemma 3

(through Lemma 1), but this is a worst case bound
over all possible vectors, and might be loose for the rel-
evant vectors δ. Relying on a worst-case bound might
mean we are taking much smaller steps then we could
be. Furthermore, the approach we presented thus far
relies on knowing the spectral norm of the data, or at
least a bound on the spectral norm (recall (10)), in
order to set the step-size. Although it is possible to
estimate this quantity by sampling, this can certainly
be inconvenient.

Instead, we suggest a more aggressive variant of mini-
batched SDCA which gradually adapts β based on the

actual values of ‖δ
(t)
[At]
‖2 and δ

(t)
[At]

Qδ
(t)
[At]

. In Section 5

one can observe advantages of this aggressive strategy.

In this variant, at each iteration we calculate the ra-

tio δ̃
⊤

[A]Qδ̃
⊤

[A]/‖δ̃[A]‖
2, and nudge the step size towards

it by updating it to a weighted geometric average of
the previous step size and “optimal” step size based on
the step δ considered. One complication is that due to
the box constraints, not only the magnitude but also
the direction of the step δ depends on the step-size β,
leading to a circular situation. The approach we take
is as follows: we maintain a “current step size” β. At
each iteration, we first calculate a tentative step δ̃A,
according to (15), with the current β. We then calcu-

late ρ =
δ̃
⊤

[A]Qδ̃
⊤

[A]

‖δ̃[A]‖
2 , according to this step direction, and

update β to βγρ1−γ for some pre-determined parame-
ter 0 < γ < 1 that controls how quickly the step-size
adapts. But, instead of using δ̃ calculated with the
previous β, we actually re-compute δA using the step-
size ρ. We note that this means the ratio ρ does not

Mini-Batch Primal and Dual Methods for SVMs

Algorithm 2 SDCA with Mini-Batches (aggressive)

Input: {(xi, yi)}
n
i=1, λ > 0, b ∈ R

d, T ≥ 1, γ = 0.95

Initialize: set α(0) = 0, w(0) = 0, β(0) = βb

for t = 0 to T do

Choose At ∈ Rand(b)
For i ∈ At, compute δ̃i from (15) using β = β(t)

Sum ζ :=
∑

i∈At
δ̃
2

i and ∆̃ :=
∑

i∈At
δ̃iyixi

Compute ρ = clip[1,βb]

(

‖∆̃‖
2

ζ

)

For i ∈ At, compute δi from (15) using β = ρ.
β(t+1) := (β(t))γρ1−γ

if D(α(t) + δ[At]) > D(α(t)) then

α(t+1) = α(t) + δ[At],

w(t+1) = w(t) + 1
λn

∑

i∈At
δiyixi

else

α(t+1) = α(t), w(t+1) = w(t)

end if

end for

correspond to the step δA actually taken, but rather
to the tentative step δ̃A. We could potentially con-
tinue iteratively updating ρ according to δA and δA

according to ρ, but we found that this does not im-
prove performance significantly and is generally not
worth the extra computational effort. This aggressive
strategy is summarized in Algorithm 2. Note that we
initialize β = βb, and also constrain β to remain in
the range [1, βb], but we can use a very crude upper
bound σ2 for calculating βb. Also, in our aggressive
strategy, we refuse steps that do not actually increase
the dual objective, corresponding to overly aggressive
step sizes.

Carrying out the aggressive strategy requires comput-

ing δ̃
⊤

[A]Qδ̃[A] and the dual objective efficiently and in
parallel. The main observation here is that:

δ̃
⊤

[A]Qδ̃[A] =

∥

∥

∥

∥

∥

∑

i∈A

δ̃iyixi

∥

∥

∥

∥

∥

2

(23)

and so the main operation to be performed is an ag-
gregation of

∑

i∈A δ̃iyixi, similar to the operation re-
quired in mini-batched Pegasos. As for the dual objec-
tive, it can be written as D(α) = −‖w(α)‖

2
− 1

n ‖α‖1
and can thus be readily calculated if we maintain
w(α), its norm, and ‖α‖1.

5. Experiments

Figure 1 shows the required number of iterations (cor-
responding to the parallel runtime) required for achiev-
ing a primal suboptimality of 0.001 using Pegasos,

Table 1. Datasets and regularization parameters λ used;
“%” is percent of features which are non-zero. cov is the
forest covertype dataset of Shalev-Shwartz et al. (2011),
astro-ph consists of abstracts of papers from physics also
of Shalev-Shwartz et al. (2011), rcv1 is from the Reuters
collection and news20 is from the 20 news groups both
obtained from libsvm collection (Libsvm).

Data # train # test # dim % λ

cov 522,911 58,101 54 22 0.000010
rcv1 20,242 677,399 47,236 0.16 0.000100

astro-ph 29,882 32,487 99,757 0.08 0.000050
news20 15,020 4,976 1,355,191 0.04 0.000125

naive SDCA, safe SDCA and aggressive SDCA, on
four benchmark datasets detailed in Table 1, using
different mini-batch sizes. Also shown (on an inde-
pendent scale; right axis) is the leading term βb

b in our
complexity results. The results confirm the advantage
of SDCA over Pegasos, at least for b = 1, and that
both Pegasos and SDCA enjoy nearly-linear speedups,
at least for small batch sizes. Once the mini-batch
size is such that βb

b starts flattening out (correspond-
ing to b ≈ 1

σ2 , and so significant correlations inside
each mini-batch), the safe variant of SDCA follows a
similar behavior and does not allow for much paral-
lelization speedup beyond this point, but at least does
not deteriorate like the naive variant. Pegasos and the
aggressive variant do continue showing speedups be-
yond b ≈ 1

σ2 . The experiments clearly demonstrate
the aggressive modification allows SDCA to continue
enjoying roughly the same empirical speedups as Pega-
sos, even for large mini-batch sizes, maintaining an ad-
vantage throughout. It is interesting to note that the
aggressive variant continues improving even past the
point of failure of the naive variant, thus establishing
that it is empirically important to adjust the step-size
to achieve a balance between safety and progress.

In Figure 2 we demonstrate the evolution of solutions
using the various methods for two specific data sets.
Here we can again see the relative behaviour of the
methods, as well as clearly see the failure of the naive
approach, which past some point causes the objective
to deteriorate and does not converge to the optimal
solution.

6. Conclusion

Contribution. Our contribution in this paper is
twofold: (i) we identify the spectral norm of the
data, and through it the quantity βb, as the im-
portant quantity controlling guarantees for mini-
batched/parallelized Pegasos (primal method) and

Mini-Batch Primal and Dual Methods for SVMs

10
0

10
1

10
2

10
3

10
4

10
2

10
3

10
4

10
5

10
6

Batch size

Ite
ra

tio
ns

covertype

10
0

10
1

10
2

10
3

10
410

−2

10
−1

10
0

Pegasos (SGD)
Naive SDCA
Safe SDCA
Aggressive SDCA
β

b
/b (right axis)

10
0

10
1

10
2

10
3

10
4

10
2

10
3

10
4

10
5

10
6

Batch size

Ite
ra

tio
ns

news20

10
0

10
1

10
2

10
3

10
410

−2

10
−1

10
0

10
0

10
1

10
2

10
3

10
4

10
2

10
3

10
4

10
5

10
6

Batch size

Ite
ra

tio
ns

astro−ph

10
0

10
1

10
2

10
3

10
410

−2

10
−1

10
0

10
0

10
1

10
2

10
3

10
4

10
2

10
3

10
4

10
5

10
6

Batch size

Ite
ra

tio
ns

rcv1

10
0

10
1

10
2

10
3

10
410

−2

10
−1

10
0

Figure 1. Number of iterations (left vertical axis) needed to find a 0.001-accurate primal solution for different mini-batch
sizes b (horizontal axis). The leading factor in our analysis, βb/b, is plotted on the right vertical axis.

10
0

10
1

10
2

10
3

10
40

0.1

0.2

0.3

0.4

0.5

Iterations

T
es

t E
rr

or

news20, b=256

Pegasos (SGD)
Naive SDCA
Safe SDCA
Aggressive SDCA

10
0

10
1

10
2

10
3

10
410

−8

10
−6

10
−4

10
−2

10
0

Iterations

P
rim

al
/D

ua
l S

ub
op

tim
al

ity

news20, b=256

10
0

10
1

10
2

10
30

0.05

0.1

0.15

0.2

0.25

Iterations

T
es

t E
rr

or

astro−ph, b=8192

10
0

10
1

10
2

10
310

−8

10
−6

10
−4

10
−2

10
0

Iterations

astro−ph, b=8192

P
rim

al
/D

ua
l S

ub
op

tim
al

ity

Figure 2. Evolutions of primal (solid) and dual (dashed) sub-optimality and test error for news20 and astro-ph datasets.
Instead of tail averaging, in the experiments we used decaying averaging with w̄

(t) = 0.9w̄(t−1) + 0.1w(t).

SDCA (dual method). We provide the first analysis
of mini-batched Pagasos, with the non-smooth hinge-
loss, that shows speedups, and we analyze for the first
time mini-batched SDCA with guarantees expressed in
terms of the primal problem (hence, our mini-batched
SDCA is a primal-dual method); (ii) based on our anal-
ysis, we present novel variants of mini-batched SDCA
which are necessary for achieving speedups similar to
those of Pegasos, and thus open the door to effec-
tive mini-batching using the often-empirically-better
SDCA.

Related work. Our safe SDCA mini-batching
approach is similar to the parallel coordinate
descent methods of Bradley et al. (2011) and
Richtárik & Takáč (2012), but we provide an analysis
in terms of the primal SVM objective, which is
the more relevant object of interest. Furthermore,
Bradley et al.’s analysis does not use a step-size and
is thus limited only to small enough mini-batches—
if the spectral norm is unknown and too large a
mini-batch is used, their method might not converge.
Richtárik & Takáč’s method does incorporate a fixed
step-size, similar to our safe variant, but as we discuss
this step-size might be too conservative for achieving
the true potential of mini-batching.

Generality. We chose to focus on Pegasos and SDCA
with regularized hinge-loss minimization, but all our
results remain unchanged for any Lipschitz loss func-
tions. Furthermore, Lemma 2 can also be used to es-

tablish identical speedups for mini-batched SGD op-
timization of min‖w‖≤B L̂(w), as well as for direct
stochastic approximation of the population objective
(generalization error) minL(w). In considering the
population objective, the sample size is essentially in-
finite, we sample with replacements (from the popula-
tion), σ2 is a bound on the second moment of the data
distribution, and βb = 1 + (b − 1)σ2.

Experiments. Our experiments confirm the empiri-
cal advantages of SDCA over Pegasos, previously ob-
served without mini-batching. However, we also point
out that in order to perform mini-batched SDCA ef-
fectively, a step-size is needed, detracting from one of
the main advantages of SDCA over Pegasos. Further-
more, in the safe variant, this stepsize needs to be set
according to the spectral norm (or bound on the spec-
tral norm), with too small a setting for β (i.e., too
large steps) possibly leading to non-convergence, and
too large a setting for β yielding reduced speedups.
In contrast, the Pegasos stepsize is independent of the
spectral norm, and in a sense Pegasos adapts implic-
itly (see, e.g., its behavior compared to aggressive
SDCA in the experiments). We do provide a more
aggressive variant of SDCA, which does match Pega-
sos’s speedups empirically, but this requires an explicit
heuristic adaptation of the stepsize.

Parallel Implementation. In this paper we ana-
lyzed the iteration complexity, and behavior of the
iterates, of mini-batched Pegasos and SDCA. Un-

Mini-Batch Primal and Dual Methods for SVMs

like “pure” (b=1) Pegasos and SDCA, which are
not amenable to parallelization, using mini-batches
does provide opportunities for it. Of course, actu-
ally achieving good parallelization speedups on a spe-
cific architecture in practice requires an efficient par-
allel, possibly distributed, implementation of the it-
erations. In this regard, we point out that the core
computation required for both Pegasos and SDCA is
that of computing

∑

i∈A gi(〈w,xi〉)xi, where g is some
scalar function. Parallelizing such computations effi-
ciently in a distributed environment has been studied
by e.g., Dekel et al. (2012); Hsu et al. (2011); their
methods can be used here too. Alternatively, one
could also consider asynchronous or delayed updates
(Agarwal & Duchi, 2011; Niu et al., 2011).

References

Agarwal, A. and Duchi, J. Distributed delayed
stochastic optimization. In NIPS, 2011.

Bradley, J.K., Kyrola, A., Bickson, D., and Guestrin,
C. Parallel coordinate descent for l1-regularized loss
minimization. In ICML, 2011.

Cotter, A., Shamir, O., Srebro, N., and Sridharan, K.
Better mini-batch algorithms via accelerated gradi-
ent methods. In NIPS, 2011.

Dekel, O., Gilad-Bachrach, R., Shamir, O., and Xiao,
L. Optimal distributed online prediction using mini-
batches. Journal of Machine Learning Research, 13:
165–202, 2012.

Hsieh, C-J., Chang, K-W., Lin, C-J., Keerthi, S.S.,
and Sundarajan, S. A dual coordinate descent
method for large-scale linear svm. In ICML, 2008.

Hsu, D., Karampatziakis, N., Langford, J., and Smola,
A. Parallel online learning. arXiv:1103.4204, 2011.

Libsvm. Datasets. http://www.csie.ntu.edu.tw/∼cjlin/
libsvmtools/datasets/binary.html.

Nesterov, Yu. Efficiency of coordinate descent meth-
ods on huge-scale optimization problems. SIAM J.
Optimization, 22:341–362, 2012.

Niu, F., Recht, B., Re, C., and Wright, S. Hogwild:
A lock-free approach to parallelizing stochastic gra-
dient descent. In Shawe-Taylor, J., Zemel, R.S.,
Bartlett, P., Pereira, F.C.N., and Weinberger, K.Q.
(eds.), NIPS 24, pp. 693–701. 2011.

Rakhlin, A., Shamir, O., and Sridharan, K. Mak-
ing gradient descent optimal for strongly convex
stochastic optimization. ArXiv:1109.5647, 2012.

Richtárik, P. and Takáč, M. Parallel coordi-
nate descent methods for big data optimization.
ArXiv:1212.0873, 2012.

Richtárik, P. and Takáč, M. Iteration complex-
ity of randomized block-coordinate descent meth-
ods for minimizing a composite function. Math-
ematical Programming, 2013. doi: 10.1007/
s10107-012-0614-z.

Shalev-Shwartz, S. and Tewari, A. Stochastic Meth-
ods for l1-regularized Loss Minimization. JMLR, 12:
1865–1892, 2011.

Shalev-Shwartz, S. and Zhang, T. Stochastic dual co-
ordinate ascent methods for regularized loss mini-
mization. ArXiv:1209.1873, 2012.

Shalev-Shwartz, S., Singer, Y., Srebro, N., and Cot-
ter, A. Pegasos: Primal estimated sub-gradient
solver for svm. Mathematical Programming: Series
A and B- Special Issue on Optimization and Ma-
chine Learning, pp. 3–30, 2011.

Zhang, T. Solving large scale linear prediction using
stochastic gradient descent algorithms. In ICML,
2004.

Mini-Batch Primal and Dual Methods for SVMs

A. Proof of Theorem 2

The proof of Theorem 2 follows mostly along the path of Shalev-Shwartz & Zhang (2012), crucially using
Lemma 3, and with a few other required modifications detailed below.

We will prove the theorem for a general L-Lipschitz loss function ℓ(·). For consistency with
Shalev-Shwartz & Zhang, we will also allow example-specific loss functions ℓi, i = 1, 2, . . . , n, and only require
each ℓi be individually Lipschitz, and thus refer to the primal and dual problems (expressed slightly differently
but equivalently):

min
w∈Rd

[

P(w) := 1
n

n
∑

i=1

ℓi(〈w,xi〉) +
λ
2 ‖w‖

2

]

, (P)

max
α∈Rn

[

D(α) := − 1
n

n
∑

i=1

ℓ∗i (−αi)−
λ
2

∥

∥

1
λnX

⊤α
∥

∥

2

2

]

, (D)

where ℓ∗i (u) = maxz(zu − ℓi(z)) is the Fenchel conjugate of ℓi. In the above we dropped without loss of
generality the labels yi since we can always substitute xi ← yixi. For the hinge loss ℓi(a) = [1 − a]+ we have
ℓ∗i (−a) = −a for a ∈ [0, 1] and ℓ∗i (−a) =∞ otherwise, thus encoding the box constraints. Recall also (from (4))

that w(α) = 1
λn

∑n
i=1 αixi and so ‖w(α)‖2 = 1

λ2n2α
⊤XX⊤α =

∥

∥

1
λnX

⊤α
∥

∥

2
.

The separable approximation H(δ,α) defined in (17) now has the more general form:

H(δ,α) := − 1
n

n
∑

i=1

ℓ∗i (−(αi + δi))−
λ
2

(

‖w(α)‖
2
+ βb

1
λn

n
∑

i=1

‖xi‖
2
δ2
i + 2

(

1
λnδ

)⊤
Xw(α)

)

(24)

and all the properties mentioned in Section 4, including Lemma 3, still hold.

Our goal here is to get a bound on the duality gap, which we will denote by

G(α) := P(w(α))−D(α) = 1
n

n
∑

i=1

[ℓi(〈w(α),xi〉) + ℓ∗i (−αi) +αi 〈w(α),xi〉] . (25)

The analysis now rests on the following lemma, paralleling Lemma 1 of Shalev-Shwartz & Zhang (2012), which
bounds the expected improvement in the dual objective after a single iteration in terms of the duality gap:

Lemma 4. For any t and any s ∈ [0, 1] we have

EAt
[D(α(t+1))]−D(α(t)) ≥ b

(

s
nG(α(t))−

(

s
n

)2 βb

2λG
(t)
)

, (26)

where

G(t) := 1
n

n
∑

i=1

‖xi‖
2(χ

(t)
i −α

(t)
i)2 ≤ G, (27)

with G = 4L for general L-Lipschitz loss, and G = 1 for the hinge loss, and −χ
(t)
i ∈ ℓ′i(

〈

w(α(t)),xi

〉

).

Proof. The situation here is trickier then in the case b = 1 considered by Shalev-Shwartz & Zhang, and we will
first bound the right hand side of (26) by H−D and then use the fact that δ(t) is a minimizer of H(·,α):

−
n

b

(

E[D(α(t+1))]−D(α(t))
)

= −
n

b

(

E[D(α(t) + δ
(t)
[At]

)]−D(α(t))
) (Lemma 3)

≤ −H(δ(t),α(t)) +D(α(t))

=
1

n

n
∑

i=1

(

ℓ∗i (−(α
(t)
i + δ

(t)
i))− ℓ∗i (−α

(t)
i)
)

+
λ

2

(

βb

∥

∥

∥

∥

1

λn
δ(t)

∥

∥

∥

∥

2

X

+ 2

(

1

λn
δ(t)
)⊤

Xw(α(t))

)

,

Mini-Batch Primal and Dual Methods for SVMs

where we denote ‖u‖
2
X :=

∑n
i=1 u

2
i ‖xi‖

2. We will now use the optimally of δ(t) to upper bound the above, noting

that if we replace δ(t) with any quantity, and in particular with s(χ(t) −α(t)), we can only decrease H(·,α(t)),
and thus increase the right-hand-side above:

≤ 1
n

n
∑

i=1

[

ℓ∗i (−(α
(t)
i + s(χ

(t)
i −α

(t)
i)))− ℓ∗i (−α

(t)
i)
]

+ λ
2

(

βb

∥

∥

∥

1
λns(χ

(t) −α(t))
∥

∥

∥

2

X
+ 2

(

1
λns(χ

(t) −α(t))
)⊤

Xw(α(t))

)

Now from convexity we have ℓ∗i (−(α
(t)
i + s(χ

(t)
i −α

(t)
i))) ≤ sℓ∗i (−χ

(t)
i) + (1− s)ℓ∗i (−α

(t)
i), and so:

≤ 1
n

n
∑

i=1

(

sℓ∗i (−χ
(t)
i) + sχ

(t)
i

〈

w(α(t)),xi

〉

− sℓ∗i (−α
(t)
i)
)

+ λ
2

(

βb

∥

∥

∥

1
λns(χ

(t) −α(t))
∥

∥

∥

2

X
+ 2

(

1
λns(−α

(t))
)⊤

Xw(α(t))

)

and from conjugacy we have ℓ∗i (−χ
(t)
i) = −χ

(t)
i

〈

w(α(t)),xi

〉

− ℓi(
〈

w(α(t)),xi

〉

), and so:

≤ s
n

n
∑

i=1

(

−χ
(t)
i

〈

w(α(t)),xi

〉

− ℓi

(〈

w(α(t)),xi

〉)

+ χ
(t)
i

〈

w(α(t)),xi

〉

− ℓ∗i (−α
(t)
i)
)

+ λ
2

(

βb

∥

∥

∥

1
λns(χ

(t) −α(t))
∥

∥

∥

2

X
+ 2

(

1
λns(−α

(t))
)⊤

Xw(α(t))

)

≤ s
n

n
∑

i=1

(

−ℓi

(〈

w(α(t)),xi

〉)

− ℓ∗i (−α
(t)
i)−α

(t)
i

〈

w(α(t)),xi

〉)

+ λ
2βb

∥

∥

∥

1
λns(χ

(t) −α(t))
∥

∥

∥

2

X

(25)
= −sG(α(t)) + 1

2λ

(

s
n

)2
(

βb

∥

∥

∥
(χ(t) −α(t))

∥

∥

∥

2

X

)

.

Multiplying both sides of the resulting inequality by −b
n we obtain (26). To get the bound on G(t), recall that ℓ(·)

is L-Lipschitz, hence −L ≤ χ
(t)
i ≤ L. Furthermore, α(t) is dual feasible, hence ℓ∗i (−α

(t)
i) <∞ and so (−α

(t)
i) is

a (sub)derivative of ℓi and so we also have −L ≤ α
(t)
i ≤ L and for each i, and (χ

(t)
i −α

(t)
i)2 ≤ 4L. For the hinge

loss we have 0 ≤ χ
(t)
i ,α

(t)
i ≤ 1, and so (χ

(t)
i −α

(t)
i)2 ≤ 1.

We are now ready to prove the theorem.

Proof of Theorem 2. We will bound the change in the dual sub-optimality ǫ
(t)
D := D(α∗)−D(α(t)):

EAt
[ǫ
(t+1)
D] = E[D(α(t))−D(α(t+1)) + ǫ

(t)
D]

(Lemma 4)

≤ −b
(

s
nG(α(t))−

(

s
n

)2 βb

2λG
)

+ ǫ
(t)
D

ǫ
(t)
D

≤G(α(t))

≤ −b s
nǫ

(t)
D + b

(s

n

)2
βb

2λG+ ǫ
(t)
D = (1− b s

n)ǫ
(t)
D + b

(s

n

)2
βb

2λG. (28)

Unrolling this recurrence, we have:

E[ǫ
(t)
D] ≤ (1 − b s

n)
tǫ

(0)
D + b

(

s
n

)2 βb

2λ
G

t−1
∑

i=0

(1− b s
n)

i ≤ (1− b s
n)

tǫ
(0)
D +

(

s
n

)

βbG
2λ .

Setting s = 1 and

t0 := [⌈nb log(2λnǫ
(0)
D /(Gβb))⌉]+ (29)

Mini-Batch Primal and Dual Methods for SVMs

yields:

E[ǫ
(t0)
D] ≤ (1− b

n)
t0ǫ

(0)
D +

s

n

βbG

2λ
≤

Gβb

2λnǫD
ǫD +

1

n

βbG

2λ
=

βbG

λn
. (30)

Following the proof of Shalev-Shwartz & Zhang we will now show by induction that

∀t ≥ t0 : E[ǫ
(t)
D] ≤

2βbG

λ(2n+ b(t− t0))
. (31)

Clearly, (30) implies that (31) holds for t = t0. Now, if it holds for some t ≥ t0, we show that it also holds for
t+ 1. Using s = 2n

2n+b(t−t0)
in (28) we have:

E[ǫ
(t+1)
D]

(28)

≤ (1 − b s
n)E[ǫ

(t)
D] + b

(s

n

)2 βb

2λ
G

(31)

≤ (1− b s
n)

2βbG

λ(2n+ b(t− t0))
+ b

(s

n

)2 βb

2λ
G

= (1− b
2

2n+ b(t− t0)
)

2βbG

λ(2n+ b(t− t0))
+ b

(

2

2n+ b(t− t0)

)2
βb

2λ
G

= 2Gβb

λ(2n+b(t−t0)+b)
(2n+b(t−t0)+b)(2n+b(t−t0)−b)

(2n+b(t−t0))2
≤

2Gβb

λ(2n+ b(t− t0) + b)
, (32)

where in the last inequality we used the arithmetic-geometric mean inequality. This establishes (31).

Now, for the average ᾱ defined in (21) we have:

E[G(ᾱ)] = E

[

G

(

T−1
∑

t=T0

1
T−T0

α(t)

)]

≤ 1
T−T0

E

[

T−1
∑

t=T0

G
(

α(t)
)

]

Applying Lemma 4 with s = n
b(T−T0)

:

≤
nb(T − T0)

nb

1

T − T0

(

E[D(α(T))]− E[D(α(T0))]
)

+
Gβbn

2nb(T − T0)λ

≤
(

D(α∗)− E[D(α(T0))]
)

+
Gβb

2b(T − T0)λ

(31)

≤

(

2βbG

λ(2n+ b(T0 − t0))

)

+
Gβb

2b(T − T0)λ

and if T ≥ ⌈nb ⌉+ T0 and T0 ≥ t0:

≤
βbG

bλ

(

2

2n
b + (T0 − t0)

+
1

2(T − T0)

)

. (33)

Now, we can ensure the above is at most ǫ if we require:

T0 − t0 ≥
βb

b

(

4G

λǫ
− 2

n

βb

)

(34)

T − T0 ≥
βb

b

G

λǫG
. (35)

Combining the requirements (29), (34) and (35) with T ≥ ⌈nb ⌉+T0 and T0 ≥ t0, and recalling that for the hinge

loss G = 1 and with α(0) = 0 we have ǫ
(0)
D = D(α∗)−D(0) ≤ 1−0 = 1 gives the requirements in Theorem 2.

